Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Чрезвычайная ситуация ЧС – обстановка на определенной территории сложившаяся в результате аварии опасного природного явления катастрофы стихийного или иного бедствия которые могут повлечь или повлекли за собой человеческие жертвы ущерб здоровью или окружающей природной среде значительные материальные потери и нарушение условий жизнедеятельности людей. С этой точки зрения ЧС можно подразделить: на внезапные взрывы транспортные аварии землетрясения и т.; стремительные пожары выброс газообразных сильнодействующих ядовитых...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Тема 2 Опасные и чрезвычайные ситуации техногенного характера

2 .1. Понятие об опасных и чрезвычайных ситуациях в техносфере Основные термины и определения

Жизнедеятельность — повседневная деятельность или способ существования человека.

Происшествие — опасное событие, связанное с незначительным причинением ущерба людским, природным или материальным ресурсам.

Опасность — негативное свойство живой и неживой материи, способное причинять ущерб самой материи: людям, природной среде, материальным и культурным ценностям, человеческому сообществу в целом и самой Земле. Источником опасности может быть все живое и неживое. Различают опасности естественного и антропогенного происхождения.

Чем выше преобразующая деятельность человека, тем выше уровень антропогенных опасностей – вредных и травмирующих факторов.

Вредный фактор — негативное воздействие на человека или иные объекты, которое приводит к ухудшению самочувствия или заболеванию (разрушению, отказу в работе).

Травмирующий фактор — негативное воздействие на человека, которое приводит к травме или летальному исходу.

Антропогенные опасности — опасности, возникающие при любом виде жизнедеятельности человека (производство, сельское хозяйство, транспорт, переработка и пр.).

Техногенная опасная ситуация — неблагоприятная обстановка техногенного происхождения, приведшая к выходу из строя, повреждению или разрушению технических устройств, транспортных средств, зданий, сооружений.

Авария — происшествие в технической сфере (системе), не сопровождающееся гибелью людей и непоправимым разрушением технических средств; не всякая авария является источником чрезвычайной ситуации.

Катастрофа — происшествие в технической системе, сопровождающееся гибелью людей, необратимым разрушением технических средств; соответствует признакам чрезвычайной ситуации.

Чрезвычайная ситуация (ЧС) – обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей. Чрезвычайные ситуации возникают намного реже, чем порождающие их опасные ситуации. Поэтому от ЧС страдает намного меньше людей, чем от повседневных опасностей. Например, в России от опасностей на дорогах ежегодно погибает 35 тыс. человек; но из этих 35 тыс. опасных ситуаций к ЧС относится не более 10%.

Таким образом, ЧС – это более тяжкая разновидность опасной ситуации.__ Система «человек – среда обитания» Человек и окружающая его среда гармонично взаимодействуют и развиваются лишь в условиях, когда потоки энергии, вещества и информации находятся в пределах, благоприятно воспринимаемых человеком и природной средой. При этом любое превышение привычных уровней потоков сопровождается негативным воздействием на человека или природную среду.

В условиях техносферы, когда величина любого потока меняется от минимально значимой до максимально возможной, можно выделить ряд характерных состояний системы «человек – среда обитания»:

Комфортное (оптимальное) – потоки вещества и энергии соответствуют оптимальным условиям взаимодействия, обеспечивают благоприятные условия деятельности и отдыха, создают предпосылки для проявления наивысшей работоспособности и, как следствие, продуктивной деятельности, гарантируют сохранение здоровья человека и целостности компонента «среда обитания»;

Допустимое — потоки веществ и энергии, воздействуя на человека и среду обитания, не оказывают негативного влияния на здоровье, но приводят к дискомфорту, снижая эффективность деятельности человека; соблюдение условий данного состояния не приводит к необратимым негативным процессам у человека и в среде обитания;

Опасное — потоки вещества и энергии превышают допустимые уровни и оказывают негативное воздействие на здоровье человека, при длительном воздействии вызывают заболевания и приводят к деградации природной среды;

Чрезвычайно опасное — потоки высоких уровней за короткий период времени могут нанести травму, привести к летальному исходу, вызвать разрушения в природной среде.

Основные факторы возникновения опасных и чрезвычайных ситуаций техногенного характера Основными факторами возникновения опасностей и ЧС техногенного характера являются:

Неустойчивое (напряженное) состояние объекта (личности, общества, государства, системы), при котором воздействие на него всех потоков вещества, энергии и/или информации превышают максимально допустимые значения (это снижает способности предупреждения, ослабления, устранения и отражения опасностей);

Увеличение энергоемкости, внедрение новых технологий и материалов, опасных для природы и человека;

Несовершенство и устарелость оборудования, снижение технологической и трудовой дисциплины;

Накопление отходов производства и энергетики, в т. ч. химических и радиоактивных;

Недостатки контроля надзорных органов и государственных инспекций;

Нехватка квалифицированных кадров, обладающих культурой безопасности на производстве и в быту;

Недостаточный уровень предупредительных мероприятий по уменьшению масштабов и последствий чрезвычайных ситуаций, снижению риска их возникновения.

Перечисленные факторы повышают риск возникновения опасных ситуаций, аварий и катастроф техногенного характера во всех сферах хозяйственной деятельности.

3.2. Виды опасных и чрезвычайных ситуаций техногенного характера

Классификация ЧС по масштабу распространения Постановление Правительства Российской Федерации от 21 мая 2007 г. № 304 «О классификации чрезвычайных ситуаций природного и техногенного характера» определяет 6 типов ЧС в зависимости от территории распространения, количества людей, погибших или получивших ущерб здоровью, либо размера ущерба:

ЧС локального характера — не выходит за пределы территории объекта, при этом количество пострадавших не более 10 человек или размер ущерба не более 100 тыс. руб.;

ЧС муниципального характера — не выходит за пределы территории одного поселения или внутри городской территории города федерального значения, при этом количество пострадавших составляет не более 50 человек либо размер ущерба составляет не более 5 млн руб.;

ЧС межмуниципального характера — затрагивает территорию двух и более поселений, внутригородских территорий города федерального значения или межселенную территорию, при этом количество пострадавших либо ущерба аналогично критериям ЧС муниципального характера;

ЧС регионального характера — не выходит за пределы территории одного субъекта РФ, количество пострадавших составляет свыше 50 человек, но не более 500 человек, либо размер ущерба составляет свыше 5 млн руб., но не более 500 млн руб.;

ЧС межрегионального характера — затрагивает территорию двух и более субъектов РФ, количество пострадавших либо размер ущерба аналогичен критериям ЧС регионального характера;

ЧС федерального характера — количество пострадавших свыше 500 человек либо размер ущерба свыше 500 млн руб.

Классификация ЧС по темпу развития

Каждому виду чрезвычайных ситуаций свойственна своя скорость распространения опасности, являющаяся важной составляющей интенсивности протекания чрезвычайного события и характеризующая степень внезапности воздействия поражающих факторов. С этой точки зрения ЧС можно подразделить:

На внезапные (взрывы, транспортные аварии, землетрясения и т. д.);

Стремительные (пожары, выброс газообразных сильнодействующих ядовитых веществ, гидродинамические аварии с образованием волн прорыва и т. д.);

Умеренные (выброс радиоактивных веществ, аварии на коммунальных системах и т. д.);

Плавные (аварии на очистных сооружениях, эпидемии и т. д.).

Плавные (медленные) чрезвычайные ситуации могут длиться многие месяцы и годы, например, последствия антропогенной деятельности в зоне Аральского моря.

Классификация ЧС по видам чрезвычайных событий

Для практических нужд общую классификацию ЧС целесообразно строить по типам и видам лежащих в их основе чрезвычайных событий; при этом можно частично в тех или иных звеньях классификационной структуры использовать принадлежность, причинность или масштаб ЧС. По такому комплексу признаков все ЧС мирного времени разбивают на шесть групп (рис. 1).

Рис. 1. Классификация ЧС техногенного характера по виду чрезвычайных событий Перечень ЧС по группам приведен в табл. 3.

Таблица 3 Перечень чрезвычайных ситуаций техногенного характера по группам

Классификация ЧС по природе источника возникновения

По природе источников возникновения все ЧС подразделяются на 5 групп.

1. ЧС, связанные с возникновением аварий на опасных объектах:

Аварии на атомных электростанциях (АЭС);

Утечки радиоактивных газов на предприятиях ядерно-топливного цикла за пределы санитарно-защитной зоны (СЗЗ);

Аварии на атомных судах с радиоактивными загрязнениями акватории порта и прибрежной территории;

Аварии на ядерных установках инженерно-исследовательских центров с радиоактивным загрязнением территории;

Аварийные ситуации во время промышленных и испытательных ядерных взрывов, связанные со сверхнормативным выбросом радиоактивных веществ в окружающую среду;

Падение летательных аппаратов с ядерными энергетическими устройствами на борту с последующим радиоактивным загрязнением местности;

Незначительные загрязнения местности радиоактивными веществами при утере источников ионизирующих излучений, аварий на транспорте, перевозящем радиоактивные препараты, и в некоторых других случаях;

Аварии на химически опасных объектах с выбросом (утечкой) в окружающую среду аварийно химически опасных веществ (АХОВ);

Аварии с выбросом (утечкой) в окружающую среду бактериологических веществ или биологических веществ в концентрациях, превышающих допустимые значения.

2. ЧС, обусловленные пожарами и взрывами и их последствиями:

Пожары в населенных пунктах, на объектах народного хозяйства и транспортных коммуникациях; иных аппаратов);

Взрывы в жилых зданиях.

3. ЧС на транспортных коммуникациях:

Авиационные катастрофы;

Столкновения и сход с рельсов железнодорожных составов (поездов в метрополитене); аварии на водных коммуникациях;

Аварии на трубопроводах, вызвавшие выброс большой массы транспортируемых веществ и загрязнение ими окружающей среды;

Аварии на энерго– и других инженерных сетях, повлекшие нарушение нормальной жизнедеятельности населения в результате возникновения вторичных факторов.

4. ЧС, вызванные стихийными бедствиями:

Землетрясения силой 5 и более баллов по 12-балльной шкале;

Ураганы, смерчи, бури силой 10 и более баллов по 17-балльной шкале;

Катастрофические затопления и наводнения, образовавшиеся в результате разрушения гидротехнических сооружений, землетрясений, горных обвалов и оползней, паводков, половодья или нагонных явлений и цунами;

Сели, оползни, обвалы, лавины, снежные заносы и карстовые явления, вызвавшие разрушения в городах, на транспортных, энергетических и других инженерных сетях, образование завалов и т. п.;

Массовые, лесные и торфяные пожары, принявшие неуправляемый характер и повлекшие нарушение нормальной жизнедеятельности населения региона;

Факторы риска биолого-социального характера: эпидемии, эпизоотии и эпифитотии2.

5. ЧС военно-политического характера в мирное время:

Одиночный (случайный) ракетно-ядерный удар, нанесенный с акватории нейтральных вод кораблем неустановленной принадлежности или падение носителя ядерного оружия со взрывом боевой части;

Падение носителя ядерного оружия с разрушением или без разрушения боевой части;

Вооруженное нападение на штабы, пункты управления, узлы связи, склады войсковых соединений и частей (в т. ч. и ГО).

Эпидемия – массовое распространение инфекционного заболевания людей в какой-либо местности, стране, значительно превышающее обычный уровень заболеваемости этой болезнью.

Эпизоотия – массовое распространение инфекционного заболевания животных в какой-либо местности, значительно превышающее обычный уровень заболеваемости.

Эпифитотия – поражение сельскохозяйственных растений болезнями и вредителями.

1. Дайте определение понятия «чрезвычайная ситуация».

2. Какое состояние системы «человек – среда обитания» называют комфортным?

3. По каким признакам классифицируют чрезвычайные ситуации?

4. Как классифицируются чрезвычайные ситуации по масштабу и числу пострадавших?

5. На какие группы подразделяются чрезвычайные ситуации техногенного характера по природе их возникновения?

Тема 2 Происшествия с выбросом радиоактивных веществ

5.1. Ионизирующее излучение Явление радиоактивности и его применение

Радиоактивность — самопроизвольный распад ядер атомов нестабильных химических элементов (изотопов), сопровождающийся выделением (излучением) потока элементарных частиц и квантов электромагнитной энергии. При взаимодействии такого потока с веществом происходит образование ионов разного (положительного и отрицательного) знака, поэтому это явление называют еще ионизирующим излучением.

Явление радиоактивности – одно из свойств, присущее, подобно массе или температуре, любому веществу Вселенной. В повседневной жизни мы постоянно подвергаемся воздействию излучения, поскольку естественные радиоактивные вещества (радионуклиды) рассеяны в живой и неживой природе.

Явление радиоактивности (ионизации) было открыто в 1896 году Анри Беккерелем, обнаружившим способность солей урана испускать «таинственные лучи», проникающие повсюду. Пьер и Мария Кюри сумели объяснить это явление и выделить новые радиоактивные элементы – полоний и радий. С тех пор радиоактивность интенсивно изучается.

Сегодня явления радиоактивности широко используются – это ядерное оружие, ядерная энергетика, а также новые системы переработки радиоактивного сырья и отходов, широкое применение радиоактивных элементов в различных областях науки, техники, медицины.

Энергетический кризис человечеству не грозит, так как в ядре атома, ничтожно малом объеме вещества, хранится огромное количество энергии: всего 30 г урана-235 вполне достаточно, чтобы в течение суток питать энергией электростанцию мощностью 5 тыс. кВт, обычно сжигающую за этот время около 100 т угля.

Виды ионизирующих излучений Ионизирующие излучения (ИИ) — потоки элементарных частиц (электронов, позитронов, протонов, нейтронов) и квантов электромагнитной энергии, прохождение которых через вещество приводит к ионизации (образованию разнополярных ионов) и возбуждению его атомов и молекул.

Ионизация — превращение нейтральных атомов или молекул в электрически заряженные частицы – ионы.

ИИ попадают на Землю в виде космических лучей, возникают в результате радиоактивного распада атомных ядер (απ β-частицы, γ– и рентгеновские лучи), создаются искусственно на ускорителях заряженных частиц.

Практический интерес представляют наиболее часто встречающиеся виды ИИ – потоки а– и β-частиц, γ-излучение, рентгеновские лучи и потоки нейтронов.

Альфа-излучение (а) – поток положительно заряженных частиц – ядер гелия. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская α-частицу, теряют 2 протона и 2 нейтрона. Скорость частиц при распаденостью, длина их пробега (расстояние от источника до поглощения) в теле равна 0,05 мм, в воздухе – 8–10 см. Они не могут пройти даже через лист бумаги, но плотность ионизации на единицу величины пробега очень велика (на 1 см до десятка тысяч пар), поэтому эти частицы обладают наибольшей ионизирующей способностью и опасны внутри организма.

Бета-излучение (β) – поток отрицательно заряженных частиц. В настоящее время известно около 900 бета-радиоактивных изотопов. Масса β-частиц в несколько десятков тысяч раз меньше α-частиц, но они обладают бо́льшей проникающей способностью. Их скорость равна 200–300 тыс. км/с. Длина пробега потока от источника в воздухе составляет 1800 см, в тканях человека – 2,5 см. β-частицы полностью задерживаются твердыми материалами (алюминиевой пластиной в 3,5 мм, органическим стеклом); их ионизирующая способность в 1000 раз меньше, чем у α-частиц.

Гамма-излучение (γ) – электромагнитное излучение с длиной волны от 1 · 10-7 м до 1 · 10-14 м; испускается при торможении быстрых электронов в веществе. Оно возникает при распаде большинства радиоактивных веществ и обладает большой проникающей способностью; распространяется со скоростью света. В электрических и магнитных полях γ-лучи не отклоняются. Это излучение обладает меньшей ионизирующей способностью, чем а– и βизлучение, так как плотность ионизации на единицу длины очень низкая.

Рентгеновское излучение может быть получено в специальных рентгеновских трубках, в электронных ускорителях, при торможении быстрых электронов в веществе и при переходе электронов с внешних электронных оболочек атома на внутренние, когда создаются ионы.

Рентгеновские лучи, как и γ-излучение, обладают малой ионизирующей способностью, но большой глубиной проникновения.

Нейтроны — элементарные частицы атомного ядра, их масса в 4 раза меньше массы αчастиц. Время их жизни – около 16 мин. Нейтроны не имеют электрического заряда. Длина пробега медленных нейтронов в воздухе составляет около 15 м, в биологической среде – 3 см; для быстрых нейтронов – соответственно 120 м и 10 см. Последние обладают высокой проникающей способностью и представляют наибольшую опасность.

Выделяют два вида ионизирующих излучений: корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (α-, β– и нейтронное излучения); электромагнитное (γ– и рентгеновское излучение) – с очень малой длиной волны.

Для оценки воздействия ионизирующего излучения на любые вещества и живые организмы используются специальные величины – дозы излучения.

Основная характеристика взаимодействия ионизирующего излучения и среды – это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе.

Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и γлучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза – это отношение суммарного заряда всех ионов одного знака в элементарном объеме воздуха к массе воздуха в этом объеме. В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица – рентген (Р). 1 Кл/кг = 3880 Р.

При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важнейшим из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза.

Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества, и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества. За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр – это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр = 100 рад.

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон).

При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, было введено понятие эквивалентной дозы.

Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент – коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества. Значения коэффициента для различных видов излучений приведены в табл. .

7Таблица 7 Коэффициент относительной биологической эффективности для различных видов излучений

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (биологический эквивалент рада). 1 Зв = 100 бэр.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска.

Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Радиоактивные вещества и их активность Радиоактивные вещества принято оценивать по их активности.

Активность определяется числом распадов, происходящих в данном количестве вещества за единицу времени. Активность изотопа чаще определяется периодом полураспада.

Период полураспада радиоактивного изотопа — промежуток времени, за который число радиоактивных атомов данного изотопа уменьшается вдвое. Так, для урана-238 он составляет приблизительно 4,5 млрд лет, а для полония-212 – около 3 · 10-7 с.

Наиболее опасны те радиоактивные вещества, период полураспада которых близок к продолжительности жизни человека. Большую опасность для здоровья человека представляют наиболее распространенные в природе изотопы, например, стронций-90 (имеющий период полураспада 28 лет) и цезий-137 (период полураспада 33 года). Из короткоживущих радиоактивных изотопов наиболее распространен радон-222, составляющий 1/3 естественной радиации. Период его полураспада равен 3,8 суток.

В системе СИ активность измеряется в беккерелях (Бк). 1 Бк равен одному распаду ядра в секунду. Часто пользуются внесистемной единицей – кюри (Ки); 1 Ки = 3,7 · 1010 Бк.

Активность в ряде случаев измеряют в милликюри (мКи), составляющей 10-3 кюри, и микрокюри (мкКи) = 10-6кюри.

Воздействие ионизирующего излучения на живые организмы Биологическое действие ионизирующих излучений на организм имеет ряд особенностей:

Неся в себе огромную опасность для здоровья и жизни, оно неощутимо человеком;

Существует скрытый (инкубационный) период проявления действия ионизирующего излучения, который может быть весьма продолжительным;

Одним из видов последствий облучения являются так называемые генетические эффекты – разнообразные наследственные заболевания, возникающие в результате мутаций (изменений) в половых клетках;

Получаемые человеком дозы излучений накапливаются в организме (кумулятивный эффект), поэтому вероятность возникновения заболеваний пропорциональна длительности воздействия радиации;

Наиболее чувствительны к облучению дети в период роста;

Степень чувствительности к облучению различных органов и тканей человека неодинакова;

Радиочувствительность живых организмов также весьма различна (смертельная доза для бактерий в 100 раз превышает дозу для млекопитающих).

5.2. Радиационно опасные объекты и аварии на них

Радиационно опасные объекты Ядерные технологии несут в себе опасность радиационного загрязнения окружающей среды и лучевого воздействия на живые организмы. Эксплуатация ядерных объектов показала, что, несмотря на все принимаемые меры, на них нельзя исключить возможность аварий, в т. ч. и с выбросом радиоактивных веществ в окружающую среду.

Радиационная авария — нарушение пределов безопасной эксплуатации ядерно-энергетической установки, оборудования или устройства, при которых произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, приводящий к облучению населения и загрязнению окружающей среды. Причинами аварии могут быть нарушения барьеров безопасности, предусмотренных проектом реактора; образование критической массы при перегрузке, транспортировке и хранении ТВЭлов; нарушение контроля и управления цепной ядерной реакцией.

Радиационно опасные объекты (РОО) — научные, народнохозяйственные (промышленные) или оборонные объекты, при разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, а также заражение среды.

Радиационные аварии и их классификации В зависимости от вида радиационно опасного объекта, масштабов и опасности последствий существует несколько различных классификаций радиационных аварий, происшествий и инцидентов. В табл. 8 приведена одна из них, принятая Международным агентством по атомной энергии (МАГАТЭ) для оценки происшествия.

Таблица 8 Международная шкала оценки происшествий на АЭС, адаптированная для России

Зоны радиационно опасных объектов В период функционирования РОО с целью профилактики и контроля выделяют две основные зоны безопасности:

Санитарно-защитная зона (СЗЗ) — территория вокруг объекта, на которой уровень облучения людей в условиях нормальной эксплуатации объекта может превысить предельно допустимую дозу (ПДД);

Зона наблюдения — территория, где возможно влияние радиоактивных сбросов и выбросов РОО и где облучение проживающего населения может достигать установленной предельно допустимой дозы. На случай радиационной аварии рассматривают 5 зон, имеющих различную степень опасности для здоровья людей:

Зона возможного опасного радиоактивного загрязнения — территория, в пределах которой прогнозируются дозовые нагрузки, не превышающие 10 рад в год; зона ограничений — территория, в пределах которой доза γ-облучения может превысить 10 рад (но не более 25 рад), а доза облучения щитовидной железы радиоактивным йодом – не более 30 рад;

Зона профилактических мероприятий — территория, в пределах которой доза внешнего γ-облучения населения за время формирования радиоактивного следа выброса при аварии на РОО может превысить 25 рад (но не более 75 рад), а доза облучения щитовидной железы радиоактивным йодом составляет около 30 рад (максимально – 50 рад);

Зона экстренных мер защиты населения — территория, в пределах которой доза внешнего γ-излучения населения может превысить 75 рад, а доза внутреннего облучения щитовидной железы радиоактивным йодом – 250 рад;

Зона радиационной аварии — территория, на которой могут быть превышены пределы дозы и пределы годового поступления.

После стабилизации радиационной обстановки в районе аварии устанавливаются зоны: зона отчуждения (загрязнение по γ-излучению – свыше 20 мрад/ч; по цезию – свыше 40 Ки/км2; по стронцию – свыше 10 Ки/км2);

Зона временного отселения (загрязнение по γ-излучению – от 5 до 20 мрад/ч; по цезию – от 15 до 40 Ки/км2; по стронцию – от 3 до 10 Ки/км2);

Зона жесткого контроля (загрязнение по γ-излучению – от 3 до 5 мрад/ч; по цезию – до 15 Ки/км2; по стронцию – до 3 Ки/км2).

5.3. Уровень радиации и предельно допустимые дозы облучения

Мощность дозы естественного (природного и техногенного) радиоактивного фона на территории РФ составляет 0,01–0,02 мР/ч.

Согласно Федеральному закону «О радиационной безопасности населения» № 3-ФЗ от 9 января 1996 г. и поправке к ст. 9 от 1999 г. с января 2000 года для населения средняя годовая эффективная доза равна 0,001 зиверта или эффективная доза за период жизни (70 лет) – 0,07 зиверта; в отдельные годы допустимы бо́льшие значения эффективной дозы при условии, что средняя годовая эффективная доза, исчисленная за пять последовательных лет, не превысит 0,001 зиверта.

После Чернобыльской аварии в РФ установлены следующие допустимые пределы радиационного фона: 15–19 мР/ч (миллирентген в час) – безопасно; 20–60 мР/ч – относительно безопасно; 61–120 мР/ч – зона повышенного внимания; 121 мР/ч и более – опасная зона.

Международная комиссия по радиационной защите (МКРЗ) рекомендует считать предельно допустимую дозу (ПДД) разового аварийного облучения – 25 бэр; ПДД профессионального хронического облучения – до 5 бэр в год; для ограниченных групп населения – 0,5 бэр. Генетически значимые дозы для населения находятся в пределах 7–55 мбэр/год.

Доза облучения может быть однократной и многократной. Однократным считается облучение, полученное за первые четверо суток. Если продолжительность облучения превышает этот срок, то оно считается многократным.

При облучении человека дозой менее 100 бэр отмечаются лишь легкие реакции организма, проявляющиеся в формуле крови, изменении вегетативных функций. При дозах более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения. Признаки поражения организма человека при превышении так называемых пороговых значений доз облучения приведены в табл. 9.

Таблица 9 Признаки поражения человека в зависимости от дозы облучения

При радиоактивном заражении местности образуются зоны разной степени опасности для людей, которые характеризуются как мощностью дозы излучения (уровнем радиации) на неопределенное время после аварии, так и дозой, получаемой за определенное время.

По степени опасности зараженную местность на следе выброса и распространения радиоактивных веществ принято делить на следующие 5 зон:

Зона M (радиационной опасности) – 14 мрад/ч;

Зона А (умеренного заражения) – 140 мрад/ч;

Зона Б (сильного заражения) – 1,4 рад/ч;

Зона В (опасного заражения) – 4,2 рад/ч; зона Г (чрезвычайно опасного заражения) – 14 рад/ч.

5.4. Мероприятия по предотвращению радиационных аварий, снижению потерь и ущерба

Основными мерами по предотвращению радиационных аварий и снижению ущерба от них являются:

Рациональное размещение РОО с учетом возможных последствий аварий;

Создание автоматизированной системы контроля радиационной обстановки (АСКРО);

Создание локальной системы оповещения персонала населения в 30-километровой зоне;

Первоочередное строительство и приведение в готовность защитных сооружений в радиусе 30 км вокруг АЭС, а также использование подвальных, встроенных и других легко герметизируемых помещений;

Определение количества населенных пунктов и населения, подлежащих защите на месте эвакуации;

Создание запасов медикаментов, средств индивидуальной защиты и других средств, необходимых для защиты населения и его жизнеобеспечения;

Разработка оптимальных режимов поведения населения и подготовка его к действиям во время аварии;

Создание на АЭС специальных формирований для ликвидации последствий возможных аварий;

Прогнозирование радиационной разведки;

Периодическое проведение учений по ГО на АЭС и прилегающей территории.

5.5. Защита населения от ионизирующих излучений

Основные меры радиационной защиты, обеспечивающие снижение дозы облучения населения загрязненной территории и вводимые в зависимости от ее величины, включают:

Нормирование облучения;

Добровольное отселение жителей с загрязненных территорий;

Ограничение проживания и функционирования населения на отдельных участках загрязненной территории;

Регулирование возвращения жителей на загрязненные территории;

Дезактивацию отдельных участков загрязненной территории, строений и других объектов;

Систему мер в цикле сельскохозяйственных технологий и производств по снижению содержания радионуклидов в местной растительной и животной пищевой продукции, включая рекомендации для жителей по ведению личных приусадебных хозяйств;

Радиационный контроль и бракераж сельскохозяйственной, рыбной, лесной продукции, а также поставки радиационно чистых продуктов питания и фуража;

Радиационный контроль и бракераж производимых на загрязненных территориях товаров;

Обеспечение безопасных условий труда на загрязненных радионуклидами территориях;

Уменьшение доз медицинского облучения на основе принципа оптимизации, а также снижение уровней природного облучения, в частности, за счет ограничения поступления радона в жилые и производственные помещения.

В случаях завершившегося аварийного облучения населения дальнейшее ограничение накопленной дозы может осуществляться, как правило, только за счет уменьшения содержания радона в помещениях и оптимизации профилактических и диагностических рентгенорадиологических исследований.

Осуществление мер радиационной защиты населения в послеаварийной ситуации может приводить к нежелательному вмешательству в его нормальную жизнь. Защита населения осуществляется с помощью мероприятий (переселение, дезактивация, ограничения в питании, поведении и хозяйственной деятельности и др.), которые могут сопровождаться негативными психологическими эффектами, нарушениями здоровья, экологическим ущербом и значительными материальными затратами. Поэтому при введении этих мер защиты и планировании их объема должны учитываться негативные последствия вмешательства.

Схема организации защиты населения от ионизирующих излучений приведена на рис. 3.

Рис. 3. Схема организации защиты населения от ионизирующего излучения

5.6. Радиационные происшествия в России

Радиационно-опасными объектами в РФ являются 29 энергоблоков на 9 АЭС и 18 энергоблоков строящихся станций, 113 исследовательских ядерных установок, 9 атомных судов с объектами их обеспечения, 13 промышленных предприятий ядерно-топливного цикла (ПЯТЦ), около 13 тыс. других предприятий, осуществляющих деятельность с использованием радиоактивных веществ. Среди аварий, возникающих на промышленных объектах, по объему разрушений и человеческим жертвам исключительно опасны аварии на атомных станциях, где выход из строя энергетических установок (реакторов) с ядерным топливом может привести не только к разрушению больших площадей, но и к образованию ударной волны. Доля атомной электроэнергетики в общем балансе РФ составляет 16,7%. Источником радиационной опасности на атомных станциях являются реакторы энергоблоков, бассейны выдержки ядерного топлива, хранилища жидких и сухих отходов. В потенциально опасных зонах, прилегающих к действующим АЭС, проживает более 4 млн человек. К настоящему времени в мире зафиксировано более 150 аварий на атомных электростанциях (АЭС) с утечкой радиоактивности.

Кроме того, на дне Мирового океана находится шесть затонувших атомных подлодок, девять атомных реакторов, 50 ядерных боеприпасов и одна водородная бомба ВМФ США.

В российской энергетике одной из главных экологических проблем является утилизация радиоактивных отходов (РАО). За 50 лет использования атомной энергии не выработано безопасной системы захоронения и обезвреживания РАО. Все эти годы основным способом избавления от накапливающихся объемов РАО был сброс в моря, океаны, открытые наземные и речные сбросы. Радиоактивные отходы складируются на списанные суда ВМФ, и когда они наполняются, их буксируют в океан и топят. При этом не соблюдаются международные нормы ни по содержимому контейнеров, ни по глубине затопления. Так, недалеко от архипелага Новая Земля обнаружены контейнеры с уровнем радиации 160 Р/ч, затопленные на глубине от 18 до 270 м (вместо положенного минимума 4000 м).

В 1992 году аппарат Президента РФ рассекретил данные о загрязнении северных и дальневосточных морей: за 1959–1992 годы наша страна сбросила в северные моря жидкие радиоактивные отходы суммарной активностью около 20 тыс. кюри и твердые РАО активностью около 2,3 млн кюри; в моря Дальнего Востока – отходы активностью соответственно 12,3 и 6,2 тыс. кюри.

Одной из острых экологических проблем России остается проблема утилизации атомного подводного флота и обращения с РАО и отработанным ядерным топливом на объектах ВМФ. По данным официального доклада Минприроды РФ, с 1996 года из эксплуатации выведена 121 атомная подводная лодка. После запрещения в 1993 году сброса в моря и океаны отходов ядерного топлива (ОЯТ) береговые и плавучие хранилища полностью загружены, часть РАО и ОЯТ складируются на открытых площадках. По экспертным оценкам, очистка ядерных военных комплексов и восстановление нарушенных экосистем потребует не менее 50–60 лет с общими минимальными затратами 300–400 млрд долл. Отходы ядерного топлива накапливаются во время реакции в тепловыделяющих элементах (ТВЭл). Процесс деления в ТВЭл длится несколько лет, поскольку загрузка реакторов ядерным топливом осуществляется, как правило, через три года. За этот период короткоживущие изотопы распадаются, одновременно идет накопление радионуклидов с большим периодом полураспада.

При этом ОЯТ – не просто отходы, а ценнейший материал для переработки. Например, в природном уране содержится 0,7% урана-235, а в ОЯТ – до 1,5%. Переработанные ОЯТ можно использовать как для изготовления свежего ядерного топлива (уран, плутоний), так ив различных отраслях промышленности и медицине. Уран и плутоний, извлеченные из 100 г ОЯТ, по энергетической ценности равны примерно 2 т нефти или 4–8 т угля.

Наша страна до сих пор переживает экологические последствия множества радиационных воздействий:

714 ядерных взрывов при испытании ядерного оружия (из них 467 – в Казахстане, 132 – на северном полигоне Новая Земля);

183 испытания в атмосфере, отразившиеся на экосистеме Крайнего Севера и Алтая (продолжительность жизни населения региона – 42 года);

115 подземных взрывов в различных регионах страны (для создания хранилищ природного газа, с целью глубинного сейсмического зондирования земной коры и т. д.).

При аварии на Чернобыльской АЭС 26 апреля 1986 года выброс радиоактивных отходов составил 63 кг, или 3,5% радионуклидов реактора. Для сравнения: мощность атомной бомбы, сброшенной на Хиросиму, составляла 20 кт с образованием 740 г радиоактивных отходов. Следовательно, авария на ЧАЭС эквивалентна 85 атомным бомбам мощностью по 20 кт. В ходе ликвидации последствий этой аварии была проведена дезактивация 600 населенных пунктов, эвакуировано 115 тыс. человек, йодной профилактикой охвачено 5,4 млн человек, 650 тыс. ликвидаторов получили различные дозы облучения.

В целом радиоактивному заражению подверглись 19 субъектов РФ с населением более 30 млн человек, а также территории 10 государств Европы.

Контрольные вопросы и задания

1. Какие виды ионизирующих излучений вы знаете?

2. Расскажите о механизме воздействия радиации на человека.

3. Какие объекты относятся к радиационно опасным?

4. Дайте характеристику зон объектов (АЭС) по степени опасности для здоровья в случае радиационной аварии.

5. Назовите единицы измерения радиоактивности.

6. Какие дозы облучения являются предельно допустимыми?

7. Охарактеризуйте радиационную безопасность в России.

PAGE \* MERGEFORMAT 1

Другие похожие работы, которые могут вас заинтересовать.вшм>

Классификация ЧС техногенного характера

Транспортные аварии и катастрофы.

Аварийные ситуации на городском транспорте.

Аварийные ситуации на различных видах транспорта: железнодорожный, водный, воздушный.

Аварии с выбросом химически опасных веществ.

Аварии с выбросом радиоактивных веществ.

Аварии на гидротехнических сооружениях.

Чрезвычайная ситуация техногенного характера – обстановка на определенной территории, сложившаяся в результате аварии, крупной аварии (катастрофы), повлекшей за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей.

Катастрофа техногенного характера – событие с трагическими последствиями, крупная авария с гибелью людей.

Аварии бывают разных видов: повреждение станка, оборудования, транспортного средства, системы энергоснабжения, здания, которое может сопровождаться взрывами, пожарами, выбросом радиоактивных веществ, не повлекшее за собой значительного материального ущерба и серьезных человеческих жертв (взрывы могут быть вызваны неправильной эксплуатацией бытовых и газовых плит или баллонов с газом, находящимся под давлением).

Классификация чс по видам чрезвычайных событий

Для практических нужд общую классификацию ЧС целесообразно строить по типам и видам лежащих в их основе чрезвычайных событий; при этом можно частично в тех или иных звеньях классификационной структуры использовать принадлежность, причинность или масштаб ЧС.

По такому комплексу признаков все ЧС мирного времени разбивают на шесть групп (рис. 1).

Рис. 1. Классификация ЧС техногенного характера по виду чрезвычайных событий

Перечень ЧС по группам приведен в табл. 3.

Таблица 3

Перечень чрезвычайных ситуаций техногенного характера по группам

Классификация чс по природе источника возникновения

1. Чс, связанные с возникновением аварий на опасных объектах:

Аварии на атомных электростанциях (АЭС);

Утечки радиоактивных газов на предприятиях ядерно-топливного цикла за пределы санитарно-защитной зоны (СЗЗ);

Аварии на атомных судах с радиоактивными загрязнениями акватории порта и прибрежной территории;

Аварии на ядерных установках инженерно-исследовательских центров с радиоактивным загрязнением территории;

Аварийные ситуации во время промышленных и испытательных ядерных взрывов, связанные со сверхнормативным выбросом радиоактивных веществ в окружающую среду;

Падение летательных аппаратов с ядерными энергетическими устройствами на борту с последующим радиоактивным загрязнением местности;

Незначительные загрязнения местности радиоактивными веществами при утере источников ионизирующих излучений, аварий на транспорте, перевозящем радиоактивные препараты, и в некоторых других случаях;

Аварии на химически опасных объектах с выбросом (утечкой) в окружающую среду аварийно химически опасных веществ (АХОВ);

Аварии с выбросом (утечкой) в окружающую среду бактериологических веществ или биологических веществ в концентрациях, превышающих допустимые значения.

ЧС техногенного характера наносят огромные материальные потери, представляют опасную угрозу для здоровья, уносят жизни тысячи людей, отрицательно воздействуют на экологическую среду. В связи с этим каждому члену общества важно знать, что нужно для предотвращения ЧС, какие правила соблюдать в сложных обстоятельствах.

Быстрая навигация по статье

Что это такое

Общие понятия и классификация ЧС природного и техногенного характера включают в себя определение, термины предмета.

В целом чрезвычайные ситуации подразделяют на три группы: техногенные, природные, социальные.

Рассмотрим определение. Чрезвычайная ситуация техногенного характера представляет собой обстановку, которая создается на определенной территории источником опасности и составляет угрозу человеческой жизни, наносит ущерб имуществу и окружающей среде.

ЧС техногенного характера имеют свои отличительные признаки. Главным из них является человеческий фактор. Подобные ЧП возникают на объектах, созданных людьми. Либо на природных объектах под влиянием деятельности людей. Подобные чрезвычайные происшествия происходят в результате действия человека.

После схода с рельсов в центре города Лак Мегант, Квебек с железнодорожных вагонов поднимается дым, которые везли сырую нефть

В отличие от техногенных ЧС природные катаклизмы возникают по причинам естественного характера: тайфуны, бури, ураганы, молнии, морозы, землетрясения, проливные дожди, наводнения.

Что собой представляют источники чрезвычайных ситуаций

К источникам ЧС техногенного происхождения причисляют происшествия, представляющие собой угрозу для нормальной жизни людей, их имущества, объектов народного хозяйства, окружающей среды. К подобным ЧП относятся взрывы, пожары, аварии, утечка опасных жидких, газообразных и прочих веществ.

Каждый источник обладает поражающим фактором. Он выражается в конкретном физическом или химическом воздействии, имеющим разрушающий характер и определенные параметры.

Перечислим поражающие факторы ЧС техногенного характера.

Взрыв в зоне объекта вызывает ударную волну. Движется она в различные стороны со сверхзвуковой скоростью. Обладает гигантской разрушительной силой, мощность которой определяется уровнем возникающего давления как внутри образования волны, так и в её передней движущейся части.


При взрыве мощного ядерного заряда количество погибших от ударной волны и теплового излучения будет несравненно больше числа погибших от проникающей радиации

Осколки. Промышленные машины, устройства, другое оборудование под воздействием температуры и ударной волны разрушаются. Образуются осколки, разлетающиеся с высокой быстротой.

Горящее облако, возникшее из топлива, способно причинить ожоги и привести к возгоранию горючих элементов. Может, поднимаясь, образовать огромное грибовидное облако продолжительностью существования 14 секунд.


Взрыв на заводе удобрений в городе Уэст. Взрывом были разрушены расположенные рядом с заводом школа и дом престарелых

Возгорание и взрывы в зоне ЧС приводят к возникновению пожара с различной зоной охвата огнем.

Поражающие факторы техногенных ЧС могут сработать все в комплексе. Такая ситуация называется «Эффект домино». Под этим термином понимается волновое возникновение новых источников угроз, порождающих взрывы горючих смесей, загорание новых огненных шаров, появление осколочных явлений. Характерен также для природных ЧС, таких, например, как землетрясение.

Внезапное появление в воздушной среде химических ядовитых веществ: аммиака, фосгена, сернистого ангидрида, хлора, ряда других.

Распространение радиации. Она может быть в форме проникающей радиации или в форме радиоактивного загрязнения.

Типы чрезвычайных происшествий

В систематизации чрезвычайные ситуации техногенного характера подразделяются на типы.

Самый распространенный – транспортные аварии . Они делятся на виды: крупные автокатастрофы, крушения поездов, столкновения и затопления морских и речных транспортов, падения самолетов и т.п. Причиной большинства из них являются людские ошибки, износ машин или недостатки в конструкции. Так, в 1972 году, близ Харьковского аэропорта, развалился при заходе на посадку самолет Ан-10. Все 122 человека, находившиеся на борту, погибли. Причиной падения самолета названы конструктивные недостатки машины. Дальнейшие полеты данного типа самолетов были прекращены.


Крушение самолета Boeing в Сан-Франциско

Большой материальный ущерб причиняют пожары и взрывы . Они возникают на предприятиях, на особо опасных объектах нефтепромыслов и добычи природного газа. Для более эффективной организации пожаротушения применяют классификацию пожаров по классам и категориям сложности, что важно при возгораниях в жилых массивах и городских кварталах. Из-за халатности должностных лиц на пожарах погибают люди. У всех на памяти страшный пожар в развлекательном клубе «Хромая лошадь» города Перми, который произошел в 2009 году. Он повлек смерть более 150 человек. Были уволены многие работники, ответственные за надзор, а руководство края в полном составе ушло в отставку.


Пожар в развлекательном клубе «Хромая лошадь»

Обрушения строений и сооружений , как в жилых массивах, так и промышленных зонах. (Крушение крыши в московском развлекательном комплексе «Трансвааль Парк». Опорные конструкции были неправильно спроектированы и не выдержали тяжесть снежного покрова).


Спасательные работы на месте происшествия после обрушения крыши

Аварии с выбросом химически опасных веществ как на производстве, так и при транспортировке. В 1984 году в филиале американской компании «Юнион Карбайд» по халатности персонала в воздух проникло тысячи тонн ядовитых веществ. В индийском городе Бхопал тогда погибли тысячи людей, до сих пор здесь рождаются дети с врожденными пороками.


Утечка газа 1984 года в индийском городе Бхопал стала ужасной трагедией, в первые часы катастрофы погибло около 4000 человек

Особую опасность представляют чрезвычайные ситуации на АЭС и различных атомных устройствах, расположенных, к примеру, на подводных лодках, в исследовательских центрах. Радиация способна распространяться на десятки и сотни километров, накапливаться и храниться в земле, воде, воздухе, растительности долгие десятки лет. Яркий пример этому – события на атомной станции Чернобыля.


Авария на Чернобыльской АЭС

Происшествия с выбросом биологических отравляющих средств на производственных объектах, при их перевозке и хранении.

ЧП на объектах распределения и передачи электроэнергии : электролиниях, подстанциях. Данный тип происшествий затрагивает жизнь многих миллионов людей, оставляя их без света, тепла и других нормальных условий быта. Так, 30-31 июля 2012 г. в 19 штатах Индии в результате аварии без электричества осталось свыше 600 млн. человек. Не работали метро, светофоры, кондиционеры и многое другое оборудование.

ЧП на коммунальных сетях , в том числе: канализационных, водоснабжения, тепловых, на газопроводах.

Аварийные ситуации на очистных объектах с массовым выбросом загрязняющих веществ.

Аварии в результате прорыва паводка, разрушения плотин . В августе 2009 г. произошла страшная катастрофа на Саяно-Шушенской ГЭС, повлекшая гибель 75 человек и выход из строя на длительный период станции. Причиной стало износ оборудования. Восстановление станции и ликвидация последствий аварии обошлось стране в более чем 21 млрд. рублей.


Авария на Саяно-Шушенской ГЭС

Классификация по масштабам происшествия

Существует классификация ЧС по масштабам происшествия. Она применяется для определения денежной компенсации потерпевшим регионам, исходя от суммы понесенного ущерба. Согласно данной систематизации, чрезвычайные ситуации природного и техногенного характера подразделяются на:

  • местные, ограниченные масштабом области, в которых число погибших или потерпевших 10 человек, а ущерб не превышает 100 тысяч рублей;
  • муниципальные, случившиеся в пределах одного поселения, где пострадало не более 50 жителей, а материальные потери составили 5 млн. рублей;
  • охватившие своим действием территорию двух и более муниципалитетов, при этом число потерпевших 50 человек, а ущерб исчисляется суммой не выше 5 миллионов рублей;
  • областные, произошедшие в границах одного субъекта РФ, в ходе которых установлено погибших или пострадавших от 50 до 500 человек, а сумма материальных потерь варьируется от 5 млн. до полмиллиарда рублей;
  • межрегиональные, затронувшие две или более области, с числом пострадавших и суммой материального ущерба как в региональных ситуациях;
  • федеральные, с числом потерпевших более 500 человек, либо материальным ущербом, превышающим 0,5 млрд. рублей.

Данный документ используется для определения размеров возмещения расходов по ликвидации ЧС из бюджетных средств, фондов страховых компаний, компенсаций за счет виновных лиц.

Многолетнее изучение аварийных ситуаций позволило выявить и установить пять этапов развития ЧС.

Причины аварий

В основном ЧС техногенного характера возникают по следующим причинам:

  1. низкий уровень квалификации кадров, занятых непосредственно на объекте;
  2. нарушения технологической дисциплины и порядка обслуживания объекта;
  3. материальный износ оборудования, средств технического контроля и предупреждения нестандартных ситуаций;
  4. ошибки на стадиях проектирования и строительства объекта.

Большинство аварий происходят по причинам ошибок и халатных действий персонала. По этим причинам возникают в мире 45% чрезвычайных ситуаций на АЭС, 60% авиакатастроф, 80% морских катастроф, 90% ДТП.

Проблема аварийности промышленного производства, энергетических систем различных трубопроводов в России достаточно актуальна. Это объясняется огромной территорией страны и наличием на ней множества технических и строительных объектов, обслуживающих население. Каждый из них обладает сроком износа. Только система водоснабжения во многих городах изношена на 65%.

Кризисы в экономике, недостаток финансовых средств усугубляет положение, нарастают серьезные экологические проблемы.

Но аварии случаются не только в России, но и в более благополучных с экономической точки зрения странах. В апреле 2010 года в Мексиканском заливе у побережья штата Луизиана (США) взорвалась и затонула после сильного пожара морская буровая установка. Вылилось около пяти млн. баррелей нефти. Катастрофа нанесла большой ущерб побережью, размер которого оценили в миллиарды долларов.


Взрыв на буровой платформе Deepwater Horizon

Профилактика ЧС

Ежегодно природные и техногенные чрезвычайные ситуации приобретают все большее распространение во всем мире, в том числе, и в России. Ущерб от их последствий исчисляется до 5% от валового продукта страны. Потери от аварий и катастроф в сравнении с 60-ми годами прошлого столетия увеличились в десятикратном размере.

В России за три квартала 2017 года зафиксировано 117 ЧС техногенного характера, в которых погибло 357 человек.

Возможно ли избежать ЧС техногенного происхождения? Специалисты полагают, что избежать полностью возникновения ЧП не удастся, но снизить потери от них возможно путем разработки и осуществления конкретных мер по их предупреждению.

Сегодня государства вынуждены учитывать возможные потери от происшествий в своей экономической политике, разрабатывать более существенные программы по предупреждению чрезвычайных ситуаций природного и техногенного характера. Естественно, большее внимание уделяется предупреждению чрезвычайных ситуаций, что с экономической точки зрения гораздо эффективнее, чем устранение последствий подобных ЧС.

В России предупреждение чрезвычайных ситуаций представляет комплекс мер, осуществляемых органами власти различных уровней по устранению причин возникновения аварий, снижению потерь от их негативных последствий. Примером может служить Концепция безопасности, принятая властями города Нижний Тагил. В ней предусмотрены новые подходы к проектированию и градостроительству, разработаны меры по снижению угроз потенциально опасных производств, запрещена застройка санитарно-защитных зон вокруг опасных объектов.

На федеральном уровне пристальное внимание уделяется информированию и обучению населения защитным действиям в случае возникновений техногенных ЧС. В школах введен предмет ОБЖ (Основы безопасности жизнедеятельности), позволяющий ознакомить учащихся с элементами правильного поведения в опасных ситуациях. На уроках и внеклассных мероприятиях подросткам предлагаются ситуативные задачи, проверочные тесты по ОБЖ. Подобные тесты можно увидеть в Интернете.

Проблемы остаются

Проводимые исследования показывают, что на практике не все так гладко. Медленно решаются вопросы профилактики ЧС в работе с хлорсодержащим оборудованием. На предприятиях молочной и мясоперерабатывающей промышленности аммиачно-холодильные установки не отвечают современным технологическим требованиям. Не уменьшается опасность возникновения пожаров на предприятиях по переработке нефти, производству синтетического каучука, нефтебазах.

По-прежнему остро стоит вопрос о возведении очистных сооружений. В стране действуют свыше 30 тысяч водоемов и сотни накопителей сточных вод и отходов.

В отдельных регионах (Ленинградская, Пермская, Томская, Свердловская, Кемеровская, Иркутская области, город Москва) наблюдается высокая концентрация опасных производственных объектов наряду с высокой плотностью населения, растет износ основных фондов.

Учебно-методическое пособие для вузов

Связанные с выбросом аварийно опасных химических

и радиоактивных веществ»

Составители:

Н.А. Куралесин

Л.Г. Скоробогатова

С.М. Дубова

О.Г. Никитина

Издательско-полиграфический центр

Воронежского государственного университета


Утверждено заседанием кафедры безопасности жизнедеятельности и основ медицинских знаний 01 апреля 2013г., протокол № 2507-0006

Рецензент: к.т.н., доцент, заведующий кафедрой технологии и обеспечения гражданской обороны в чрезвычайных ситуациях
Воронежского государственного технического университета Павел Сергеевич Куприенко

Учебно-методическое пособие подготовлено на кафедре безопасности жизнедеятельности и основ медицинских знаний Воронежского государственного университета


Среди экстремальных ситуаций выделяют особый класс событий, получивший название «чрезвычайные ситуации». В словаре русского языка С.И. Ожегова слово «чрезвычайный» трактуется как «исклю­чительный, очень большой, превосходящий все». В законе «О защите населения и территорий от чрезвычайных ситуаций природного и тех­ногенного характера» (№ 68-ФЗ от 21.12.94) приводится следующее определение.

Чрезвычайная ситуация техногенного характера – обстановка на определенной территории, сложившаяся в результате аварии, крупной аварии (катастрофы), повлекшей за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей. Катастрофа техногенного характера – событие с трагическими последствиями, крупная авария с гибелью людей.

Техногенные чрезвычайные ситуации связаны с производс­твенной деятельностью человека и могут протекать с загрязне­нием и без загрязнения окружающей среды.

Загрязнения окружающей среды могут происходить при авариях на промышленных предприятиях с выбросом радиоак­тивных, химически опасных и биологически опасных веществ.

К авариям с выбросом или угрозой выброса радиоактивных веществ относятся аварии, происходящие на атомных станци­ях, ядерных установках исследовательских центров, атомных судах и при падении летательных аппаратов с ядерными энер­гетическими установками на борту, а также на предприятиях ядерно-оружейного комплекса. В результате таких аварий мо­жет возникнуть сильное радиоактивное загрязнение местности или акватории.

Аварии с выбросом (угрозой выброса) химически опасных веществ случаются на химических объектах страны, на базах и складах временного хранения боевых химических отравляющих веществ и вызывают химическое загрязнение терри­торий за пределами их санитарно-защитных зон, поражение персонала и населения.



К ЧС без загрязнения окружающей среды относят аварии, со­провождаемые взрывами, пожарами, обрушением зданий (соору­жений), нарушением систем жизнеобеспечения и транспортных коммуникаций, разрушением гидротехнических систем и т. п.

ЧС техногенного характера разнообразны как по причинам их возникновения, так и по масштабам.

По виду (характеру источника) техногенные катастрофы подразделяются:

а) аварии на химически опасных объектах;

б) аварии на радиационно опасных объектах

в) аварии на пожаро- и взрывоопасных объектах;

г) катастрофы и аварии на транспорте (авиационные, железнодорожные, автодорожные, на водном транспорте, метро, на трубопроводах);

д) аварии на гидродинамически опасных объектах;

е) аварии на коммунально-энергетических сетях.

Чрезвычайные ситуации, связанные с выбросом аварийно-опасных химических веществ (АОХВ)

В РФ функционирует более 3,3 тыс. объектов экономики, располагающих АХОВ, суммарный запас которых составляет более 700 тыс. тонн. Более 50 % предприятий используют аммиак и хлор (хладагенты и дезинфекторы на водопроводных станциях), 5 % предприятий – соляную и серную кислоты. Кроме того, в 7 арсеналах РФ хранится около 47 тыс. т химического оружия. Общая площадь территории РФ, которая может подвергнуться химическому заражению, составляет 300 тыс. км 2 с охватом более 59 млн. человек, так как все указанные выше объекты и предприятия находятся в городах с населением более 100 тыс. человек. Особенно много таких объектов размещено на территории Московской, Ленинградской, Нижегородской, Кемеровской областей, на Северном Кавказе, в Поволжье, на Урале. Надо отметить, что на предприятиях, расположенных нередко в черте городов или в непосредственной их близости, могут одновременно храниться до нескольких тысяч тонн АХОВ (аварийно-химических опасных веществ). Только на водопроводных станциях, где в качестве средства очистки воды используется хлор, его запасы могут составлять 200-400 т.

Основные запасы АХОВ сосредоточены на предприятиях химической, целлюлозно-бумажной, оборонной, нефтехимической промышленности, агропромышленного комплекса, черной и цветной металлургии, промышленности по выпуску удобрений. Значительные их запасы имеются на объектах пищевой, мясомолочной промышленности, холодильных установках, торговых базах, в жилищно-коммунальном хозяйстве.

В настоящее время известно более 6 миллионов химических соединений, являющихся АХОВ. В повседневной жизни человек сталкивается с несколькими десятками тысяч химических веществ. Они входят в состав воздуха, воды, пищи, из них состоят все окружающие нас предметы. По некоторым оценкам, насчитывается около 10 тысяч химических веществ, которые постоянно попадают в организм человека с воздухом, водой, продуктами питания, лекарствами, косметическими препаратами. Небольшие концентрации этих веществ не опасны для здоровья человека. Около 500 химических веществ представляют угрозу для человека при случайном или преднамеренном употреблении.

Аварийно-опасные химические вещества (АОХВ) – это химические вещества, которые производятся, хранятся, используются в производстве, на объектах народного хозяйства, обладающие высокой токсичностью и способные при опреде­ленных условиях вызывать массовые отравления людей и животных, а также загрязнять окружающую среду.

АХОВ могут попасть в окружающую природную среду при авариях и катастрофах, в результате разрушения трубопроводов, цистерн или резервуаров, поломки оборудования, нарушения технологии проведения работ, транспортных аварий, стихийных бедствий, при бесконтрольном сбрасывании химических веществ в моря и океаны, выбросах в атмосферу. Они способны вызвать массовое химическое поражение людей, животных, растений.

По степени воздействия на организм АХОВ подразделяются: чрезвычайно опасные, высокоопасные, умеренно опасные. малоопасные вещества.

По физическим свойствам АХОВ классифицируются:

1. Твердые и сыпучие, летучие при температуре до 40 °С (гранозан, меркуран);

2. Твердые и сыпучие, нелетучие при обычной температуре хранения (сулема, фосфор, мышьяк);

3. Жидкие, летучие, хранящиеся под давлением; сжатые и сжиженные газы (аммиак, хлор, фосген и др.);

4. Жидкие и летучие, хранящиеся в емкостях без давления (хлорпикрин, метафос, сероуглерод и др.);

5. Дымящиеся кислоты (азотная, соляная, серная и др.)

По скорости развития патологических нарушений в организме:

– вещества быстрого действия. Развитие симптомов интоксикации у пораженных при этом наблюдается в течение нескольких минут (синильная кислота, оксид углерода, хлор и аммиак, ФОС и др.);

– вещества замедленного действия с развитием симптомов интоксикации в течение нескольких часов (динитрофенол, фосген и др.);

– вещества медленного действия, под воздействием которых симптомы интоксикации развиваются в срок до 2 недель (металлы, диоксины и др.).

Возможность более или менее продолжительного заражения местности зависит от стойкости химического вещества. Нестойкие АОХВ (температура кипения ниже 130 °С) заражают местность на минуты и десятки минут. Стойкие (температура кипения выше 130 °С) сохраняют свойства от нескольких часов до нескольких месяцев.

По клиническим признакам интоксикации и механизму действия:

1. Вещества с преимущественно удушающим действием (хлор, фосген, дифос­ген, хлорпикрин, хлорид серы, фтор и его соединения и др.);

2. Вещества преимущественно общеядовитого действия (оксид углерода, циа­ниды, анилин, гидразин и др.);

3. Вещества, обладающие удушающим и общеядовитым действием (сероводо­род, диоксид серы, азотная кислота, оксиды азота и др.);

4. Вещества нервно-паралитического действия (фосфорорганические соединения, тетраэтилсвинец);

5. Вещества, обладающие удушающим и нейротропным действием (аммиак);

6. Метаболические яды (дихлорэтан);

7. Вещества, извращающие обмен веществ (диоксин).

АХОВ могут проникать в организм через дыхательные пути, слизистые глаз, че­рез желудочно-кишечный тракт (при употреблении загрязненной воды и пищи), через кожные покровы (незащищенные или защищенные одеждой), через открытые раны. АОХВ разносятся кровью ко всем органам и тканям, что может привести к патологическим изменениям, потере работоспособности и гибели человека.

Важнейшая характеристика АХОВ – токсичность. Токсич­ность – степень ядовитости, характеризующаяся пороговой концентрацией, пределом переносимости, смертельной концен­трацией или смертельной дозой. Пороговая концентрация – это количество вещества, которое может вызвать негативный физиологический эффект: ощущаются лишь первичные призна­ки поражения, при этом работоспособность сохраняется. Предел переносимости – это максимальная концентрация, которую человек может выдержать определенное время без устойчивого поражения. В промышленности пределом переносимости является ПДК, регламентирующая допустимую степень загрязнения АХОВ воздуха рабочей зоны. ПДК – это предельно допустимая концентрация АХОВ, которая при постоянном воздействии на человека в течение рабочего дня не вызывает даже через дли­тельный промежуток времени патологических изменений или заболеваний.

Дозы АХОВ, проникающие в организм и вызывающие токсический эффект, называются токсодозами . Различают пороговую (выводит из строя 50 % пораженных) и смертельную (вызывает смерть у 50 % пораженных) токсодозы. Средняя смертельная токсодоза (LD 50) – это количество АХОВ, вызывающее при пероральном поступлении смертельный исход 50 % пораженных. Средняя смертельная концентрация (LC 50) – это количество АХОВ, вызывающее при ингаляционном поступлении смертельный исход 50 % пораженных. Измеряются они соответственно мг/кг, мг/л и мг/м 3 .

Предприятия народного хозяйства, производящие, хранящие и использующие АОХВ, при аварии на которых может произойти массовое поражение людей, являют­ся химически опасными объектами (ХОО) .

Анализ структуры объектов экономики, производящих, хранящих и потребляющих АХОВ, показывает, что в технологических линиях обращается, как правило, небольшое количество токсичных продуктов, значительно большее их количество содержится на складах предприятий, на наливных станциях и в транспортных емкостях.

При авариях в цехах предприятия обычно имеет место локальное заражение воздуха, оборудования цехов и территории предприятия. При этом поражение может получить, в основном, производственный персонал. При авариях на складах и в наливных станциях, когда повреждаются или разрушаются крупнотоннажные емкости, АХОВ могут распространяться даже за пределы объекта, что может привести к массовому поражению не только персонала объекта, но и проживающего вблизи него населения.

Критерием для определения химической опасности объекта является количество населения, попадающего в зону возможного химического загрязнения (ЗВХЗ), которая представляет собой круг радиусом, равным наибольшей глубине распространения облака загрязненного воздуха с пороговой концентрацией. Первая степень химической опасности для города, когда в ЗВXЗ попадает 50 % территории (населения), вторая – от 30 % до 50 % и третья – от 10 % до 30 %.

В результате аварии возникает аварийная химическая обстановка, ее масштабы, возможные последствия, продолжительность в значительной мере зависят от типа АХОВ, количества вещества, метеоусловий, готовности населения к действиям в условиях химического заражения.

Основным физико-химическим показателем, определяющим размеры опасной для людей зоны распространения вредных веществ, является их фазовое состояние при данных метеоус­ловиях. Опыт показывает, что разрушение емкостей с АХОВ или применение боеприпасов с ОВ в твердом или жидком состоя­нии приводит к локальному действию , т. е. в месте разрушения емкости (взрыва боеприпаса) или ближайших окрестностях. Пары и газы, а также неоседающий аэрозоль распространяются на многие километры, что значительно увеличивает масштабы опасности.

Причины аварий , в большинстве случаев, связаны с нарушениями установленных норм и правил при проектировании, строительстве и реконструкции ХОО; нарушением технологии производства, правил эксплуатации оборудования, машин и механизмов; низкой трудовой и технологической дисциплины производственного процесса. Одна из возможных причин аварий на ХОО – стихийные бедствия.

АХОВ хранят в стандартных алюминиевых, железобетонных и стальных оболочках. Форму и тип ёмкости выбирают исходя из масштабов производства или потребления, условий их транспортирования. Наиболее широкое распространение в настоящее время получили ёмкости цилиндрической формы и шаровые резервуары. Вместимость таких резервуаров бывает различной. Хлор хранится в емкости от 1 до 1000 т, аммиак – от 5 до 30 000 т.

Наземные резервуары, как правило, располагаются группами. В каждой группе должна предусматриваться резервная емкость для перекачки АХОВ в случае их утечки из какого либо аварийного резервуара. Для каждой группы резервуаров по периметру устраивается замкнутое обваловывание или ограничивающая стенка из несгораемых и коррозионно-устойчивых материалов или грунта высотой не менее одного метра.

Для ХОО предусматриваются санитарно-защитные зоны. Размеры зон зависят от типа АХОВ и объема их хранения и составляют от 300 до 1000 м. Расстояние от складов с наземным расположением резервуаров до мест массового скопления людей (рынков, стадионов, парков и т.п) увеличивается не менее, чем в 2 раза от указанных значений.

Химическая авария – непланируемый и неуправляемый выброс (пролив, россыпь, утечка) АОХВ, отрицательно воздействующий на человека и окру­жающую среду. В результате химической аварии образуется зона химического заражения (рис. 1). Это территория, в пределах которой распространены АХОВ в концентрациях, создающих опасность для жизни и здоровья людей, животных и растений в течение определенного времени. Размеры такой зоны зависят от типа АХОВ, их количества, метеоусловий и топографических особенностей местности. Внешние границы зоны химического заражения обычно соответствуют пороговому значению токсодозы при ингаляционном воздействии на человека. Внутри этой зоны выделяют очаг химического заражения и зоны: смертельных токсодоз, поражающих токсодоз и пороговую (дискомфортную) зону.

Очаг химического заражения – территория, в пределах которой произошел вы­брос (пролив, россыпь, утечка) АОХВ и в результате воздействия поражающих факторов произошли массовая гибель и поражение людей, сельскохозяйственных животных и растений, а также нанесен ущерб окружающей природной среде. Его радиус зависит от вида АХОВ и условий хранения. При аварийном разливе АХОВ в поддон или обваловку внешние границы очага химического заражения соответствуют границам обваловки или диаметру поддона.

В зависимости от продолжительности поражающего действия АОХВ очаги химического заражения подразделяются на 4 вида:

1 – стойкие быстродействующие (ФОС, анилин);

2 – стойкие медленнодействующие (серная кислота, диоксин);

3 – нестойкие быстродействующие (синильная кислота, аммиак, оксид углерода);

4 – нестойкие медленнодействующие (фосген, азотная кислота).

Зона смертельных токсодоз – это территория, на внешней границе которой 50 % людей получают смертельную токсодозу. Здесь облако АХОВ обладает наибольшими поражающими возможностями. Часто за радиус зоны смертельных токсодоз принимают радиус района аварии, который зависит от вида АХОВ и условий его хранения. При проведении практических расчетов (прогнозировании) рекомендуется значение радиуса района аварии принимать равным при разрушении емкости в 50 т: для низкокипящих АХОВ 0,5 км, для высококипящих АХОВ – 0,2-0,3 км. При возникновении пожаров в ходе химической аварии радиус увеличивается в 1,5-2 раза.

Зона поражающих токсодоз (зона опасного химического заражения) – это территория, на внешней границе которой 50 % людей получают поражающую токсодозу, вызывающую потерю их трудоспособности. Удаление внешних границ этой зоны от аварийных емкостей даны в СНиП 2.01.51-90 «Инженерно-технические мероприятия гражданской обороны».

Пороговая (дискомфортная) зона – это территория, на внешней границе которой люди испытывают дискомфорт и у них начинается обострение хронических заболеваний или появляются первые признаки интоксикации, но они еще сохраняют работоспособность.

Эти зоны в зависимости от метеоусловий могут иметь различные размеры и форму. Расчет дискомфортных зон ведется по ОНД (общесоюзный нормативный документ)-86 «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий».

При проектировании ХОО необходимо:

– располагать объекты вне районов массовой жилой застройки, с подветренной стороны, с учетом возможного воздействия естественных опасностей;

– снижать запасы АХОВ до минимально необходимых;

– принимать меры по недопущению распространения АХОВ при авариях за пределы санитарно-защитных зон;

– обеспечить персонал и население, проживающее в опасной зоне средствами коллективной и индивидуальной защиты.

Для определения размеров опасных зон при авариях на ХОО используют СНиП 2.01.51-90 и РД (руководящие документы) 52.04.253-90 «Методика прогнозирования масштабов заражения сильнодействующими ядовитыми веществами при авариях (разрушениях) на химически опасных объектах и транспорте».

По масштабам последствий аварии на ХОО подразделяются:

1) локальные (последствия ограничиваются одним цехом ХОО);

2) местные (последствия ограничиваются производственной площадкой ХОО или его санитарно‑защитной зоной);

3) общие (последствия распространяются за пределы санитарно‑защитной зоны ХОО, при этом возникает ЧС с вытекающими отсюда последствиями для населения, проживающего вблизи ХОО).

Отличительной особенностью аварий на ХОО является то, что при высоких концентрациях химических веществ поражение людей может происходить в короткие сроки. Поэтому сохранение жизни и здоровья людей будет зависеть от знаний признаков появления в окружающей среде опасных веществ, правил поведения и необходимых мер защиты, умелых действий населения.

Для защиты населения и персонала при авариях на ХОО рекомендуется:

1) своевременное оповещение;

2) использование средств коллективной и индивидуальной защиты;

3) применять при поражениях организма противоядия (антидоты) и средства обработки кожных покровов (дегазации);

4) соблюдать режим поведения и защиты на зараженной территории;

5) пройти санитарную обработку, произвести очистку одежды, территории, сооружений, техники и имущества;

6) ограничение доступа и перемещения населения в зонах загрязнения;

7) при необходимости – эвакуация населения.

При получении сигнала «Химическая тревога» или в случае обнаружения признаков химического заражения необходимо срочно надеть противогаз, средства защиты кожи, укрыться в убежище или укрытии. Универсальным средством защиты населения от воздействия АХОВ являются убежища. Их месторасположение указывается специальными знаками или надписями. Надежным средством защиты от воздействия АХОВ являются противогазы. Противогаз должен быть исправным, а его лицевая часть подобрана и подогнана по росту, плотно прилегать к лицу, не вызывать болевых ощущений.

Химическая разведка проводится с целью своевременного выявления масштабов и характера заражения. Метод прогнозирования позволяет определить с достаточной степенью вероят­ности основные количественные показатели последствий химической аварии, провес­ти ориентировочные расчеты, используемые при ликвидации аварии. На основе та­ких расчетов делаются выводы и принимаются соответствующие решения. Быстрое уточнение фактической обстановки при возникновении аварии позволяет своевременно внести необходимые коррективы в расчеты. При оценке химической обстановки используются фактические данные химиче­ской разведки , получаемые при обследовании загрязненной территории.

Контроль химического загрязнения атмосферного воздуха ведут отдельными приборами или их комлексами. Например, контрольно-измерительный комплекс «Пост-1» предназначен для стационарного наблюдения на территории ХОО сернистого газа, оксида углерода, фенола, сероводорода, хлора, диоксида азота, фтористого водорода. Стационарная газоизмерительная система «Политрон» предназначена для раннего обнаружения более 200 токсичных и более 160 взрывоопасных газов и паров, а также недостатка и избытка кислорода в воздухе.

При ликвидации последствий химических аварий необходимо предотвратить попадание АХОВ в реки, озера, пруды, ливневую канализацию, подвалы зданий, сооружений. В ряде случаев требуется осуществлять сбор, транспортировку и захоронение продуктов обезвреживания АХОВ, а также дегазация территории, где произошел пролив АХОВ.

Первая медицинская помощь пораженным АОХВ имеет исключительно важное значение и оказывается в возможно короткое время рабочими, служащими объекта народного хозяйства и населением в порядке само- и взаимопомощи.

В ЧС с выбросом в окружающую среду АХОВ в порядке первой помощи осуществляется:

1. Защита органов дыхания, зрения и кожи от непосредственного воздействия на них АОХВ путем применения средств индивидуальной защиты, ватно-марлевых повязок, укрывания лица влажной тканью, полотенцем и др.;

2. Введение антидота; адсорбента;

3. Скорейший вынос поражённого из зоны загрязнения;

4. Ускоренное выведение яда из организма: обильное питье с целью промывания желудка беззондовым способом, прием рвотных, слабительных средств;

5. Частичная санитарная обработка (дегазация) открытых частей тела (обмывание проточной водой с мылом, 2 % раствором питьевой соды);

6. Частичная специальная обработка одежды, обуви, средств защиты и др.

Если ЧС с выбросом АХОВ застала вас в жилом доме , квартире прежде всего необходимо плотно закрыть окна, двери, вентиляционные отверстия. Все это снижает коэффициент обмена наружного и внутреннего воздуха в 1,5-2 раза, а концентрацию АХОВ в помещениях в 2,2-2,8 раза. Это особенно характерно для верхних этажей зданий и в жаркую погоду, когда конвективный обмен между этажами более значительный. Доказано, что материалы, поры которых заполнены влагой тоже снижают коэффициент их воздухопроницаемости (практически до нуля). Поэтому эффективным может быть применение в качестве герметизирующих материалов смоченных водой простыней, покрывал и т.п. Выключите нагревательные приборы. Целесообразно применять ватно-марлевые повязки, смоченные специальными растворами, т.к. основной путь поступления аэрозолей и паров в организм человека – ингаляционный. В качестве нейтрализующих растворов для смачивания повязок рекомендуется использовать: от паров хлора – 2 % раствор питьевой соды, от паров аммиака – 5 % раствор лимонной или уксусной кислоты.

Если ЧС застала вас на улице , необходимо укрыться в ближайшем здании: лучше в жилом или объекте культурно-бытового назначения. Из-за конструктивных особенностей они имеют наименьшую кратность воздухообмена. При этом необходимо знать, что при выбросах тяжелых веществ целесообразно занимать верхние и средние этажи, а при выбросе легких АХОВ – нижние этажи зданий. Тяжелее воздуха хлор, оксиды азота, сернистый ангидрид, фосген, а легче воздуха аммиак, синильная кислота, акрилонитрил.

В случае аварии с АХОВ при нахождении в общественном месте : выполняйте все указания администрации, не создавайте давку у выхода, защитите органы дыхания влажной тканью;

В случае самостоятельного выхода из зоны заражения необходимо защитить органы дыхания ватно-марлевой повязкой, предварительно смоченной в воде или в 5 % растворе питьевой соды. Следует надеть плотную верхнюю одежду, лучше плащ, застегнуть все пуговицы, шею обвязать шарфом, на голову надеть головной убор, а на ноги – резиновые сапоги. Выходить из очага заражения всегда необходимо перпендикулярно направлению ветра. В процессе движения запрещается прикасаться к окружающим предметам, поднимать пыль, наступать на капли АХОВ, снимать средства защиты. Недопустимо поддаваться панике.

Современную жизнь нельзя представить без препаратов бытовой химии. В домашних условиях, в саду и огороде постоянно используются химические вещества. Ассортимент препаратов бытовой химии довольно широк. Каждый из них имеет свои специфические особенности. Объединяет их то, что все они опасны для человека.

Правила безопасности при работе с химикатами :

1. Все средства бытовой химии должны храниться в недоступных для детей местах, отдельно от продуктов питания и питьевой воды. Агрессивные химические вещества хранить в плотно закрывающихся емкостях с соответствующими этикетками.

2. Не хранить дома неизвестные или ненужные химикаты;

3. Перед началом работы с химикатом необходимо ознакомиться с инструкцией по его применению;

4. При работе со средствами бытовой химии использовать резиновые рукавицы, очки, фартуки;

5. Нельзя наклоняться над сосудами с химикатами, нюхать их и пробовать;

6. После завершения работы тщательно вымыть руки теплой водой с мылом.

Техногенные чрезвычайные ситуации наносят значительный экологический ущерб в результате масштабного загрязнения поверхностных и подземных вод, почв, биоты, атмосферного воздуха опасными для окружающей среды веществами, а также гибели животных и растений, деградации экосистемы. Техногенная чрезвычайная ситуация или авария – это экстремальное событие техногенного происхождения на определенной территории или акватории, сложившаяся в результате возникновения аварии или техногенной катастрофы, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей и окружающей среде, значительные материальные потери и нарушения условий жизнедеятельности людей. Этот урон выражается через последствия техногенного бедствия, являющегося источником чрезвычайной ситуации техногенного характера. Различают техногенные чрезвычайные ситуации по месту их возникновения и по характеру основных поражающих факторов источника чрезвычайного события. Основными источниками техногенных событий являются аварии и катастрофы на ядерно-, радиационно, химически, биологически, пожаровзрыво-, гидродинамически опасных объектах жизнеобеспечения, включая: транспортные аварии и катастрофы; пожары и взрывы, угроза взрывов, аварии на речном (морском) транспорте и других объектах.

Причинами возникновения чрезвычайных ситуаций техногенного характера хорошо известны: изношенность производственных фондов, устаревание технологического оборудования, отсутствие надлежащего контроля за опасными производственными процессами, слабая дисциплина труда, халатное отношение к своим обязанностям. Как правило, именно эти причины приводят к возникновению аварий и катастроф.

Авария – это повреждение машины, станка, оборудования, здания, сооружения. Происходят на коммунально-энергетических сетях, промышленных предприятиях. Если эти происшествия значительны и повлекли за собой серьезные человеческие жертвы, то их относят к разряду катастроф.

Катастрофа – это крупная авария, повлекшая за собой большие человеческие жертвы, ущерб здоровью людей, разрушение либо уничтожение объектов, материальных ценностей в значительных размерах, а также приведшая к серьезному ущербу окружающей природной среде.

Чрезвычайные ситуации техногенного характера подразделяются на аварии (катастрофы):

· промышленные взрывы;

· пожары на промышленных объектах;

· с выбросом АХОВ (аварийно химически опасные вещества) на ХОО (химически опасный объект);

· с выбросом радиоактивных веществ на РОО (радиационно опасный объект);

· с выбросом биологически опасных веществ на БОО (биологически опасный объект);

· на электроэнергетических системах;



· в коммунальных системах жизнеобеспечения;

· на очистных сооружениях;

· гидротехнические;

· гидродинамические (прорывы плотин);

· на пожаро- и взрывоопасных объектах (ПВОО);

· транспортные.

Промышленный взрыв – процесс быстрого неуправляемого физического или химического превращения системы, сопровождающийся переходом её потенциальной энергии в механическую работу. При химических взрывах вещества могут быть твердыми, жидкими, газообразными, а также аэрозолями горючих веществ в воздухе. Физический взрыв чаще всего связан с неконтролируемым высвобождением потенциальной энергии сжатых газов из замкнутых объемов машин и аппаратов, сила взрыва сжатого или сжиженного газа зависит от внутреннего давления этого газа. Люди, как правило, получают травмы различной степени. Установлено, что при избыточном (сверх атмосферном) давлении человек получает легкие травмы (20 – 40 кПа) в виде вывихов, ушибов, порывов ушных перепонок. Средние травмы (50 кПа) – контузия, кровь из носа и ушей. Тяжелые травмы (более 50 кПа) – тяжелые контузии, повреждения внутренних органов, потеря сознания, множественные переломы, смерть.

Пожар на промышленном объекте – процесс неконтролируемого горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей. Причины возникновения пожаров на промышленных объектах можно разделить на две группы. Первая – это нарушение противопожарного режима или неосторожное обращение с огнем, вторая – нарушение пожарной безопасности при проектировании и строительстве зданий. Пожары могут возникнуть при взрыве в помещениях или производственных аппаратах при утечках и аварийных выбросах пожаровзрывоопасных сред в объемы производственных помещений. При пожарах существует несколько различных опасных факторов. Первый из них – это повышенные температуры в зоне горения. Они могут привести к тепловым ожогам поверхности кожи и внутренних органов людей, а также вызвать потерю несущей способности строительных конструкций зданий и сооружений. Вторым фактором является поступление в воздух рабочей зоны значительного количества вредных продуктов сгорания, в большинстве случаев приводящее к острым отравлениям людей.

Рис.2.1. Пожар на нефтехранилище.

Аварии с выбросом аварийно химически опасных веществ (АХОВ). АХОВ – это опасное химическое вещество, применяемое в промышленности и сельском хозяйстве, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды, приводящее к поражению людей и живой природы. В зависимости от путей поступления в организм человека и животных АХОВ подразделяются на ингаляционного (при поступлении через органы дыхания), перорального (при поступлении через желудочно-кишечный тракт) и кожно-резорбтивного (при поступлении через кожные покровы) действия. На многих объектах экономики АХОВ являются исходным сырьём, промежуточным и конечным продуктом либо побочной продукцией. Все запасы этих веществ хранятся в резервуарах базисных и расходных складов, содержатся в технологической аппаратуре, транспортных средствах (в трубопроводах, железнодорожных цистернах, контейнерах).

В зависимости от термодинамического состояния жидкости в ёмкости, находящейся при хранении, возможны три варианта протекания процесса при разгерметизации:

1. При больших перегревах жидкость может полностью переходить во взвешенное мелкодисперсное и парообразное состояние с образованием токсичных, вредных и пожароопасных смесей;

2. При низких энергетических параметрах жидкости происходит её пролив на твердую поверхность, а испарение осуществляется путем теплоотдачи от твердой поверхности;

3. Промежуточный режим, когда в начальный момент происходит резкое вскипание жидкости с образованием мелкодисперсной фракции, а затем наступает режим свободного испарения с относительно низкими скоростями.

Используемые в настоящее время в промышленности АХОВ можно подразделить на три типа: нейтральные (азот, гелий и др.), окислители (кислород, сероуглерод и др.), горючие (водород, метан). При выбросе в атмосферу каждого из них в зоне выброса создаются свои специфические опасности. Аварии с выбросом (угрозой выброса) АХОВ возможны: при их производстве, переработке, хранении (захоронении); аварии на транспорте при транспортировке АХОВ; аварии с химическими боеприпасами при их утилизации; утрата химических опасных веществ.

Рис.2.2. Авария на химическом опасном объекте.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ