Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

В настоящее время в нашей стране на многих объектах экономики, военных объектах, в научных центрах и на других предприятиях используются радиоактивные вещества. Отдельные системы, блоки и устройства этих объектов преобразуют энергию, получаемую в результате деления ядер урана и некоторых других тяжелых элементов, в электрическую и другие виды энергии (тепловую, механическую). Ряд предприятий используют радиоактивные вещества в технологических процессах или хранят их на своей территории. В России в настоящее время имеется 10 атомных электростанций (30 энергоблоков), 113 исследовательских ядерных установок, 12 промышленных предприятий топливного цикла, 9 атомных судов с объектами их обеспечения, а также 13 тыс. других предприятий и организаций, осуществляющих свою деятельность с использованием радиоактивных веществ и изделий на их основе. Все эти предприятия относятся к объектам с ядерными компонентами, но радиационно опасными из них являются не все. ЗАПОМНИТЕ!

Ионизирующее излучение создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков. Радиационно опасный объект - это объект, на котором хранят, перерабатывают или транспортируют радиоактивные вещества, при аварии на котором или при его разрушении может произойти облучение ионизирующим излучением людей или радиоактивное загрязнение окружающей среды. Под радиоактивным загрязнением окружающей среды понимается присутствие радиоактивных веществ на поверхности местности, в воздухе, в теле человека в количестве, превышающем уровни, установленные нормами радиационной безопасности.

ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ К радиационно опасным объектам относятся: предприятия ядерного топливного цикла (предприятия урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов); атомные станции (атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АТС); объекты с ядерными энергетическими установками (корабельными, космическими и войсковыми атомными электростанциями); ядерные боеприпасы и склады для их хранения. Предприятия ядерного топливного цикла осуществляют добычу урановой руды, ее обогащение, изготовление топливных элементов для ядерных энергетических реакторов, переработку радиоактивных отходов, их хранение и окончательное размещение (захоронение). Наиболее характерным последствием аварий на предприятиях ядерного топливного цикла (возгорание горючих компонентов и радиоактивных материалов, появление течей и разрывов в резервуарах-хранилищах и др.) является выброс радиоактивных веществ в окружающую среду, который приведет к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды. Атомная электростанция (АЭС) - это электростанция, на которой ядерная энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор. Основными причинами аварий на АЭС могут быть нарушение технологической дисциплины оперативным персоналом станции и недостатки в его профессиональной подготовке, т. е. «человеческий фактор». Объекты с ядерными энергетическими установками делятся на корабельные объекты, войсковые атомные электростанции, космические ядерные электроустановки. Причинами аварий на этих установках могут служить разгерметизация первого контура реактора (первый контур находится внутри корпуса реактора) или механические повреждения реактора. Ядерные боеприпасы и взрывное устройство к ним в мирное время хранятся на складах в готовности к выдаче и боевому применению. Причинами возникновения аварийной ситуации с ядерными боеприпасами могут быть столкновение и опрокидывание транспортных средств при их транспортировке, пожары в сборочных помещениях и хранилищах. Максимальную опасность для населения и окружающей среды представляют аварии на атомных станциях.

ВНИМАНИЕ! Лучевая болезнь возникает при воздействии на организм ионизирующих излучений в дозах, превышающих предельно допустимы. В настоящее время хорошо изучены последствия однократного облучения человека и выделено несколько степеней лучевого поражения. Последствия однократного общего облучения Острая лучевая болезнь легкой (I) степени развивается при кратковременном облучении всего тела в дозе, превышающей 100 бэр. Она сопровождается головокружением, редко - тошнотой, отмечается через 2-3 ч после облучения. Острая лучевая болезнь средней (II) степени развивается при воздействии ионизирующего излучения в дозе от 200 до 400 бэр. Первичная реакция (головная боль, тошнота, иногда рвота) возникает через 1-2 ч. Острая лучевая болезнь тяжелой (III) степени наблюдается при воздействии ионизирующего излучения в дозе 400-600 бэр. Первичная реакция возникает через 30-60 мин и резко выражена (повторная рвота, повышение температуры тела, головная боль). Острая лучевая болезнь крайне тяжелой (IV) степени отмечается при воздействии ионизирующего излучения в дозе более 600 бэр. Симптомы обусловлены глубоким поражением кроветворной системы, приобретают первостепенное значение поражения других органов (кишечника, кожи, головного мозга) и интоксикация (состояние организма, вызванное воздействием токсических веществ). Смертельные исходы практически неизбежны. Необходимо отметить, что при хроническом облучении потоками излучения малой дозы суммарные дозы могут быть большими. Наносимые организму повреждения частично могут восстанавливаться. Поэтому доза более 50 бэр, приводящая при однократном воздействии к болезненным явлениям, при хроническом облучении, растянутом, к примеру, на 10 лет, к тяжелым отклонениям в здоровье человека может не привести. Эти обстоятельства позволяют установить допустимые уровни облучения. Для того чтобы можно было количественно определить степень воздействия облучения на организм, было введено понятие эквивалентной дозы облучения, которую связывают со степенью ионизации вещества. Доза измеряется энергией ионизирующего излучения, переданного массе облучаемого вещества. В системе СИ единицей эквивалентной дозы служит зиверт (Зв). 1 Зв = 100 бэр. (Заметим, что понятие дозы всегда определяется по отношению к единице массы или объема вещества.) Без ядерной энергетики человечеству, вероятно, не обойтись. Поэтому в настоящее время проводятся интенсивные исследования с целью повышения безопасности реакторов АЭС, усиления средств их защиты, в том числе и от ошибочных действий обслуживающего персонала, принимаются меры повышения уровня общей культуры в области безопасности у населения, проживающего в зонах АЭС. Обеспечение радиационной безопасности населения.

ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ В целях обеспечения радиационной защиты населения нашей страны в 1995 г. был принят Федеральный закон «О радиационной безопасности населения», в котором определилась политика государства в области радиационной безопасности населения в целях охраны его здоровья. В законе определены основные понятия, имеющие отношение к радиационной безопасности, которые необходимо знать, так как они касаются личной безопасности каждого. Приведем их: радиационная безопасность населения - это состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего облучения; естественный радиационный фон - это доза излучения, создаваемая космическим излучением и излучением природных радионуклидов, естественно распределенных в земле, воде, воздухе, других элементах биосферы, пищевых продуктах и организме человека; техногенно измененный радиационный фон - это естественный радиационный фон, измененный в результате деятельности человека; эффективная доза - это величина воздействия ионизирующего излучения, используемая как мера риска возникновения отдельных последствий облучения организма человека и отдельных его органов с учетом их радиочувствительности; санитарно-защитная зона - это территория вокруг источника ионизирующего излучения, на которой уровень облучения людей в условиях нормальной эксплуатации данного источника может превысить установленный предел дозы для населения. В санитарно-защитной зоне запрещается постоянное и временное проживание людей, вводится режим ограничения хозяйственной деятельности и проводится радиационный контроль; зона наблюдения - это территория за пределами санитарно-защитной зоны, на которой проводится радиационный контроль; радиационная авария - это потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неисправными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды. Нормами предусмотрено, что для населения средняя годовая эффективная доза равна 0,001 зиверта (0,1 бэр), или эффективная доза за период жизни (70 лет) - 0,07 зиверта (7 бэр). Для персонала ядерных объектов принята средняя годовая эффективная доза 0,02 зиверта (2 бэр), или эффективная доза за период трудовой деятельности (50 лет) - 1 зиверт (100 бэр). В законе также указано, что регламентируемые значения основных пределов доз облучения не включают в себя дозы, создаваемые естественным радиационным фоном, а также дозы, получаемые гражданами при проведении медицинских рентгенорадиологических процедур и лечения. Указанные значения пределов доз облучения являются исходными при установлении допустимых уровней облучения организма человека и отдельных его органов. Мы живем в радиоактивном мире, так как живем на радиоактивной Земле. Все естественные источники излучений создают естественный радиационный фон, в котором мы рождаемся и живем на протяжении всей нашей жизни. К этому фону наш организм адаптировался. Общая эквивалентная доза от естественного облучения в среднем достигает примерно 0,002 Зв в год (0,2 бэр/ч). Радон - самый главный из всех естественных источников радиации. Этот газ без цвета, вкуса и запаха - один из продуктов распада урана-238. Он достаточно тяжелый (в 7,5 раза тяжелее воздуха). Главный источник поступления радона - грунт. Радон выделяется в основном из геологических разломов и шахт, но может содержаться в материале стен и даже питьевой воде. Добавку к естественному радиационному фону вносят техногенные источники, в том числе и радиационно опасные объекты.

ВНИМАНИЕ! В сумме эффекты от всех естественных и искусственных источников излучений в настоящее время в среднем составляют 0,25 бэр в год. Следовательно, все люди на Земле получают в среднем по 0,25 бэр в год. Это и принято за начальную точку отсчета при установлении допустимых уровней облучения организма человека.

ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ Для обеспечения радиационной безопасности населения специалистами МЧС России разработаны рекомендации по правилам поведения населения, проживающего в непосредственной близости от радиационно опасных объектов.

1. При проживании в непосредственной близости от радиационно опасных объектов необходимо: уточнить наличие в районе вашего проживания радиационно опасных объектов и получить возможно более подробную и достоверную информацию о них; выяснить в ближайшем территориальном управлении ГО ЧС способы и средства оповещения населения при аварии на радиационно опасном объекте; изучить инструкцию о порядке действий населения в случае возникновения радиационной аварии; создать и иметь определенные запасы необходимых герметизирующих материалов, йодных препаратов, продовольствия и воды.

2. При получении сигнала оповещения о радиационной аварии Если вы находитесь на улице, немедленно защитите органы дыхания платком, шарфом и укройтесь в ближайшем здании, лучше в собственной квартире. Войдя в помещение, в коридоре следует снять с себя верхнюю одежду и обувь, поместить их в пластиковый пакет или пленку. Если вы находитесь в своем доме (квартире), немедленно закройте окна, двери, вентиляционные отверстия, включите радиоприемник или телевизор и будьте готовы к приему информации о дальнейших действиях. Обязательно загерметизируйте помещение и укройте продукты питания. Подручными средствами заделайте щели на окнах и дверях, заклейте вентиляционные отверстия. Открытые продукты поместите в полиэтиленовые мешки, пакеты или пленку. Продукты и воду поместите в холодильник или в закрываемые шкафы. При получении указаний через СМИ проведите йодную профилактику, принимая в течение 7 дней по одной таблетке (0,125 г) йодистого калия, а для детей до 2 лет ’/4 таблетки (0,04 г). При отсутствии йодистого калия можно использовать йодистый раствор: три-пять капель 5%-ного раствора йода на стакан воды, детям до 2 лет одну-две капли на 100 г воды. При приготовлении и приеме пищи все продукты, выдерживающие воздействие воды, промывайте струей воды. Строго соблюдайте правила личной гигиены, предотвращающие или значительно снижающие внутреннее облучение организма. Помещение оставляйте лишь в крайней необходимости и на короткое время. При выходе из помещения защитите органы дыхания, наденьте плащ, или накидку, или табельные средства защиты кожи. После возвращения переоденьтесь.

3. При подготовке к возможной эвакуации Подготовка к возможной эвакуации заключается в сборе самых необходимых вещей. Это документы, деньги, личные вещи, продукты, средства индивидуальной защиты, в том числе подручные - накидки, плащи, резиновые сапоги, перчатки и т. д. Необходимо сложить в чемодан и рюкзак одежду и обувь по сезону, однодневный запас продуктов, нижнее белье и другие необходимые вещи. Оберните чемодан (рюкзак) полиэтиленовой пленкой. Покидая при эвакуации квартиру, отключите все электро- и газовые приборы, вынесите в мусоросборник быстро портящиеся продукты, а на дверь прикрепите объявление «В квартире №___никого нет». При посадке в транспорт или при формировании пешей колонны, зарегистрируйтесь у председателя эвакокомиссии. Прибыв в безопасный район, примите душ и смените белье и обувь на незараженные.

4. Правила поведения при проживании на радиационно загрязненной местности При проживании на местности, степень радиационного загрязнения которой превышает фоновые нормы, но не выше опасных пределов установленных доз, необходимо придерживаться специального режима поведения, соблюдение которого в определенной степени может снизить риск дополнительного облучения.

Уборка помещения должна проводиться влажным способом с тщательным стиранием пыли с мебели и подоконников. Ковры, половики и другие тканевые покрытия не целесообразно вытряхивать, лучше чистить их влажной тряпкой или пылесосом.

Обувь, в которой ходили по улице, желательно ополаскивать водой (особенно подошву), затем протирать влажной тряпкой и оставлять ее за порогом квартиры (дома). Желательно, при наличии условий, оставлять вне квартиры (дома) и верхнюю одежду, в которой ходили по улице. М

усор из пылесоса и использованную при уборке ветошь необходимо сбрасывать в емкость, врытую в землю.

Территория двора должна периодически увлажняться.

При ведении приусадебного хозяйства для снижения радиоактивного загрязнения выращиваемых продуктов в почву целесообразно вносить известь, калийные удобрения и торф. Во время уборки урожая плоды, овощи и корнеплоды не складируют на землю.

Выращенные сельхозпродукты подвергаются радиационному контролю.

При установлении их загрязненности они промываются. Не рекомендуется употреблять в пищу рыбу и раков из местных водоемов, особенно мелких.

Заготовка дикорастущих ягод, грибов, лекарственных трав может проводиться по разрешению местных властей на территориях, определяемых по результатам проводимого радиационного контроля.

На открытой местности не раздевайтесь, не садитесь на землю и не курите; не купайтесь в открытых водоемах.

Воду употребляйте только из проверенных источников, а продукты питания - приобретенные в магазинах.

Тщательно мойте руки и полощите рот 0,5%-ным раствором питьевой соды.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Правила проведения йодной профилактики Урок для учащихся 8 класса

Радиация без вкуса, без цвета, без запаха определяется дозиметром анализом крови

Радиоактивные осадки выпадают в виде дождя, снега, пыли или пепла. Радиационные осадки

Характер поражения Удар РАДИАЦИИ по человеку ПРИВОДИТ К ЛУЧЕВОЙ БОЛЕЗНИ

Лучевая болезнь

Цель проведения йодной профилактики Защитить щитовидную железу препаратами стабильного йода от проникновения в щитовидную железу радиоактивного йода-131, т.к щитовидная железа управляет всеми железами внутренней секреции в организме человека.

Защитный эффект йодной профилактики Время приёма препаратов стабильного йода Фактор защиты За 6 часов до поступления в организм йода-131 в 100 раз Во время поступления в организм йода-131 в 90 раз Через 2 часа после разового поступления йода-131 в 10 раз Через 6 часов после разового поступления йода-131 в 2 раза

Возрастные категории Беременным йодную профилактику проводить нельзя. Опасно для плода! Грудным детям с молоком матери При искусственном вскармливании и детям до 2 лет йодная сетка на стопы, ладони, ягодицы Детям от2-14 лет 1-3 капли 5% раствора йода на 100 мл питательной жидкости, в день. 1раз в день 7дней йодовая сетка на стопы, ладони. Взрослым 3-5 капли 5% раствора йода На 100 мл питательной жидкости, в день. После еды 3раза в день.1раз в день 7дней йодовая сетка на стопы, ладони.

Препараты стабильного йода 5% спиртовой раствор йода С помощью аптекарской пипетки йод капают в стакан с питательной жидкостью в соответствии возрастным категориям 100 мл суточная доза Питательная жидкость: Молоко Кисель Сок Бульон Вода компот Недопустимо разводить йод: в спиртных газированных и кисломолочных напитках

Препараты стабильного йода Таблетки принимаем детям до 2 лет по1/2 таблетки (0,04), взрослвм по1 таблетке1 раз в день. Йодистого калия запивая молоком. В течение 7-8 дней, Но не более 10 дней Продаются в аптеке Индивидуальная аптечка АИ-2 Выдаётся населению санитарными постами из Штаба ГО города (района)

При радиационно-опасных авариях в облаке находится большое количество радиоактивного йода-131, период полураспада которого 8 дней. Поэтому проводить йодную профилактику необходимо в течение первых 8 дней, но не боле 10 дней. избыточное содержание йода в организме человека вредно для его здоровья. Длительность йодной профилактики Помните!

Постепенно уровень радиации на местности снижается примерно в 10 раз через отрезки времени кратные 7 (через 7 часов после выброса РОВ в 10 раз, а через 49 часов – почти в 100 раз). Если радиационный фон превышает допустимый уровень по истечении 10 дней, то принимается решение - ЭВАКУИРОВАТЬ население в чистую зону. Снижение уровня радиации

Аварии на радиационно-опасных объектах

Радиационно - опасный объект (РОО) - объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, с/х животных и растений, объектов народного хозяйства, а также окружающей природной среды (ГОСТ Р 22.0.05-94).

При эксплуатации ядерных энергетических установок могут происходить радиационные аварии.

Радиационная авария – авария на РОО, приводящая к выходу или выбросу радиоактивных веществ и (или) ионизирующих излученийза предусмотренные проектом для нормальной эксплуатации данного объекта границы в количествах, превышающих установленные пределы безопасности его эксплуатации.

Аварии на радиационно-опасных объектах могут сопровождаться выходом газоаэрозольного облака, которое перемещается по направлению ветра. Радиоактивные вещества из облака, оседаяна местность, загрязняют её. Население, попавшее в зону распространения газоаэрозольного облака, подвергается при этом внешнему и внутреннему радиоактивному облучению. Внешнее облучение характеризуется воздействием на субъект ионизирующего излучения, проходящего извне. Внутреннее облучение - это облучение организма, отдельных его органов и тканей ионизирующим излучением от попавших внутрь организма радиоактивных веществ.

Кроме искусственных источников существуют и естественныеисточники излучения, создающие естественный радиационный фон. Нормальный естественный фон считаетсяна уровне 10-20 мкР/ч.

При авариях на АЭС характерно, во-первых, радиоактивное заражение атмосферы и местности легколетучими радионуклидами (йод, цезий и стронций), а, во-вторых, цезий и стронций обладают длительными периодами полураспада – до 30 лет. Значительная часть продуктов выброса находится в парообразном и аэрозольном состоянии, доза внешнего облучения составляет 15%, а внутреннего – 85%.

В случае радиационных аварий допускается облучение, превышающее установленные нормы, в течение определенного промежутка времени и в пределах, определенных для таких ситуаций.

В зонах, подверженных радиационному воздействию, защитные мероприятия проводятся, когда уровень дозы облучения населения в год более 0,1 бэр (биологический эквивалент рентгена), если меньше, то население проживает по обычному режиму жизнедеятельности.

Мероприятия по защите населения:

Следует защитить себя от внешнего и внутреннего облучения: быстро защитить органы дыхания табельными средствами защиты (респиратор, противогаз), а при их отсутствии ватно-марлевыми повязками, шарфом, платком;

Укрыться в ближайшем здании, лучше в собственной квартире;

Войдя в помещение, в коридоре следует снять с себя верхнюю одежду и обувь, поместивих в пластиковый пакет или пленку;

Немедленно закрыть окна, двери и вентиляционные отверстия;

Включить радиоприёмники, телевизоры и радиорепродукторы;

Занять место вдали от окон, быть в готовности к приему информации и указаний о действиях.

Обязательно! загерметизировать помещение и укрыть продукты питания. Для этого подручными средствами заделать щели в окнах и дверях, заклеить вентиляционные отверстия. Открытые продукты поместить в полиэтиленовые мешки, пакеты или плёнку. Сделать запас воды в емкостях с плотно прилегающими крышками. Продукты и воду поместить в холодильники, закрываемые шкафыили кладовки.

При полученииуказаний по средствам массовой информации провести профилактику препаратами йода. Профилактика эффективна при проведении заблаговременно или в самом начале поступления р/а йода. Если прошло хотя бы 2 часа, эффект снижается до 10%. Защита обеспечивается в течение 24 часов при приеме стабильного йода (йодистый калий и др. йодиды). Йодистый калий принимают 1 таб. в течение 7 суток детям до 2 лет 0,04 г на прием, старше 2 лет и взрослым – по 0,125 г на 1 прием; при отсутствии его заменяют водно-спиртовым раствором йода после еды 3 раза в день: детям до 2 лет по 1-2 капли 5% настойки на 100 мл молока, воды; старше 2 лет 3-5 капель на стакан в течение 7 дней. Следует помнить; что препараты йода противопоказаны для беременных женщин.

Наносят сетку из настойки йода на поверхность кистей рук 1 раз в течение 7 суток. Особое внимание: употребление алкоголя в этот период для снятия стресса не оказывает профилактического действия при облучении, а усугубляет течение лучевого поражения.

При приготовлении и приёме пищи все продукты, выдерживающие воздействие воды, промыть.

Строго соблюдать правила личной гигиены, предотвращающиеилизначительно снижающие внутреннее облучение организма. Проводить влажную уборку помещений. В случае загрязненности помещения защитить органы дыхания.

Помещения оставлять лишь в крайней необходимости и на короткое время. При выходе защитить органы дыхания, надеть плащ (накидку из подручных материалов)или табельные средства защиты кожи, не садиться на землю, скамейки, не курить, не раздеваться. Поливать территорию у дома, чтоб не было пыли.

Исключить купание в открытых водоемах, не ходить в лес с высокой травой, не собирать грибы, ягоды, цветы

Верхнюю одежду вытряхивать, обувь обтирать. После возвращения - переодеться Лицо, руки, шею обмыть, рот прополоскать 0,5%-м раствором питьевой соды.

Пожары и взрывы

Пожаро - взрывоопасный объект (ПВОО)- объект, на котором производят, используют, перерабатывают, хранят или транспортируют легковоспламеняющиеся и пожаро - взрывоопасные вещества, создающие реальную угрозу возникновения техногенной ЧС. К ним относятся производства, где используются взрывчатые и имеющие высокую степень возгораемости вещества, а также железнодорожный и трубопроводный транспорт, как несущий основную нагрузку при доставке жидких, газообразных пожаро - и взрывоопасных грузов.

Пожароопасность возросла, т.к. в промышленности и строительстве применяются новые вещества и материалы, сложные и энергоемкие технологические процессы.

Аварии на ПВОО могут привести к тяжелым социальным и экономическим последствиям. Наиболее опасные ПВО объекты: нефтеперерабатывающие заводы, химические предприятия, трубопроводы, склады нефтепродуктов; цехи приготовления и транспортировки угольной пыли, древесной муки, сахарной пудры, выбойные и размольные отделения мельниц; лесопильные, деревообрабатывающие, столярные производства.

Пожары при промышленных авариях вызывают разрушение сооружения из-за сгорания или деформации их элементов от высоких температур.



Наиболее опасны пожары в административных зданиях. Как правило, внутренние стены облицованы панелями из горючего материала. Потолочные плиты также выполнены из горючих древесных плит. Очень опасен в пожарном отношении применяемый при изготовлении мебели поролон, который при горении выделяет ядовитый дым, содержащий цианистые соединения.

Может взрываться и гореть древесная, угольная, торфяная, алюминиевая, мучная, зерновая и сахарная пыль, а также пыль хлопка, льна, пеньки. Самовозгораются скипидар, камфора, барий, пирамидон и другие химикаты.

Аварии на объектах нефтегазодобывающей промышленности всегда приносят большие бедствия.

Нередки пожары от возгорания горючего при перевозках. При этом обрываются провода, и парализуется все движение.

В РФ пожары вспыхивают каждые 4-5 мин., каждый час в огне погибает 1 чел., а в течение года от 7 до 8 тыс. Относительные показатели количества пожаров в РФ к числу населения в 3,5 раза превышают аналогичные показатели в развитых странах, а показатели гибели людей в результате пожаров – в 4-9 раз.

Непосредственными причинамивозникновения пожара или взрыва могут быть замыкание в электропроводах, утечка газа, самовозгорание некоторых веществ и материалов, беспечное обращение с огнём.

Основными причинами пожаров в жилье являются:

Неосторожное обращение с огнем (курение, в том числе и в нетрезвом состоянии);

Открытый огонь (неосторожность при проведении электрогазосварочных работ и др.);

Неисправность и неправильная эксплуатация электрооборудования и электробытовых приборов;

Неисправность и неправильная эксплуатация печей, дымоходов и других отопительно-нагревательных приборов и устройств;

Игры детей с огнем;

Грозовые разряды.

Для возникновения пожара необходимо совмещение в одномместе, водно время трех основных составляющих:

1) горючего вещества(как дерево,бумага, бензин, керосин, природный газ и т.д.);

2) окислителя (как правило, это кислород, находящийся в воздухе);

3) источников воспламенения, например искры или пламени костра, горелки.

Отсутствие одного из перечисленных составляющих делает невозможным возникновение пожаров или приводит к прекращению горения и ликвидации пожара.

пожара являются непосредственное воздействие огня на горящий предмет (горение) и дистанционное воздействиена предметы и объекты высоких температур за счёт излучения.

Вторичными последствиями пожаров могут быть взрывы, утечка ядовитых веществ в окружающую среду, действие токсических продуктов горения, обрушение зданий и другие явления. Большой ущерб не затронутым пожаром помещениям и хранящимся в них предметам может нанести вода, применяемая для тушения пожара.

Основными поражающими факторами взрыва являются воздушная ударная волна и осколочные поля, создаваемые летящими обломками разрушаемых конструкций.

В результате действия поражающих факторов взрыва происходит разрушение или повреждение зданий, сооружений, технологического оборудования, транспортных средств и других объектов, гибель людей.

Вторичными последствиями взрывов являются поражение находящихся внутри объектов и помещений людей обломками обрушенных конструкций зданий и сооружений, их погребение под обломками. В результате взрывов могут возникнуть пожары, утечка опасных веществ из поврежденного оборудования.

При пожарах и взрывах характерны ожоги тела и верхних дыхательных путей, черепно-мозговые травмы, множественные переломы и ушибы, комбинированные поражения. Гибнут или получают ожоги различных степеней, термические и механические повреждения домашние и сельскохозяйственные животные.

Большой ущерб народному хозяйству наносится в результате прекращения функционирования разрушенных объектов.

    Введение
    Основная часть
    Основные опасности при авариях РОО. 2.Классификация аварий и этапы развития аварий на радиационно- опасных объектах.
    3.Наиболее опасные радионуклиды, зонирование территорий вокруг РОО на этапах развития аварий.
    Заключение
    Список использованной литературы
    Введение.
    В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды.
    Слово «радиация» глубоко проникло в сознание человечества. Оно воспринимается как образ новой, страшной угрозы здоровью и жизни людей. Именно так оно обычно отображается в средствах массовой информации в сообщениях о миллионах пострадавших от радиации в результате аварий и испытаний ядерного оружия.
    За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом.
    Радиационно-опасный объект (РОО) - предприятие, на котором при авариях могут произойти массовые радиационные поражения. К ним относятся:
    1) Предприятия ядерного топливного цикла - урановая промышленность, радиохимическая промышленность, ядерные реакторы разных типов, предприятия по переработке ядерного топлива и захоронения радиоактивных отходов;
    2) Научно – исследовательские и проектные институты, имеющие ядерные установки;
    3) Транспортные ядерные энергетические установки;
    4) Военные объекты;
    Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам и долговременности действия поражающих факторов представляют именно радиационные катастрофы. В обычных условиях радиационная обстановка в стране определяется, во-первых, природной радиоактивностью, включая космические излучения; во-вторых, радиоактивным фоном; в-третьих, наличием территорий, загрязненных радиоактивными веществами вследствие произошедших в предыдущие годы аварий на предприятиях атомной промышленности и энергетики; в-четвертых, эксплуатацией ядерно- и радиационно - опасных объектов.
    Целью работы является изучение радиационно-опасных объектов и аварий, происходящих на них.
    В соответствии с целью можно поставить следующие задачи:
    рассмотреть основные опасности при авариях РОО;
    изучить классификацию аварий и этапы развития аварий на радиационно- опасных объектах;
    проанализировать наиболее опасные радионуклиды, зонирование территорий вокруг РОО на этапах развития аварий.
    Предметом исследования являются радиационно- опасные объекты.
    Структура работы представлена введением, основной частью из трех глав, заключением, списком использованной литературы.
    Основные опасности при авариях РОО.
    Факторы опасности ядерных реакторов достаточно многочисленны. Перечислим лишь некоторые из них.
    · Возможность аварии с разгоном реактора. При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности. Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала.
    · Радиоактивные выбросы в окружающую среду. Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. У РБМК они наибольшие, у реактора с шаровой засыпкой наименьшие. Очистные сооружения могут уменьшить их.
    Впрочем, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем, скажем, у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу.
    · Необходимость захоронения отработавшего реактора.
    · Радиоактивное облучение персонала.
    Под ядерной (радиационной) аварией понимают потерю управления цепной реакцией в реакторе либо образование критической массы при перегрузке, транспортировке и хранении тепловыделяющих сборок, или повреждению ТВЭЛов, приведшую к потенциально опасному облучению людей сверх допустимых пределов. Иногда используется понятие ядерно-опасного режима, который представляет собой отклонения от пределов и условий безопасности эксплуатации реакторной установки, не приводящие к ядерной аварии. Ядерно-опасный режим можно рассматривать как режим, создающий аварийную ситуацию.
    Главной опасностью аварий на РОО был и будет выброс в окружающую природную среду РВ, сопровождающийся тяжелыми последствиями. Радиационная авария присуща не только АЭС, но и всем предприятиям ядерного топливного цикла, а также предприятиям, использующим радиоактивные вещества. К таким предприятиям можно отнести предприятия, добывающие урановую или ториевую руду; заводы по переработке руды; обогатительные заводы, заводы по изготовлению ядерного топлива; хранилища РВ и многие другие. Радиационные аварии на РОО могут возникнуть в процессе испытаний, хранения, транспортировки ядерного оружия.
    Основным поражающим фактором при авариях на реакторах АЭС это радиоактивные загрязнения местности и источником загрязнения является атомный реактор как мощный источник накопленных радиоактивных веществ.
    Рассмотрим образование поражающих факторов и их воздействие при аварии на АЭС.
    1. Световое излучение и явление проникающей радиации может оказать воздействие, в основном, на работающую смену персонала.
    2. Радиоактивное заражение местности в результате выбросов продуктов распада в атмосферу во всех случаях будет значительным и на больших площадях.
    3. Ударная волна (сейсмическая) образуется только при ядерном взрыве реактора, при тепловом взрыве ее действие на окружающую среду незначительно.
    И еще одна особенность. При ядерном взрыве и образовании следа для людей главную опасность представляет внешнее облучение (90-95% от общей дозы). При аварии на АЭС с выбросом активного материала картина иная. Значительная часть продуктов деления ядерного топлива находится в парообразном и аэрозольном состоянии. Вот почему доза внешнего облучения здесь составляет 15%, а внутреннего – 85%.
    Специалисты выделяют следующие потенциальные последствия радиационных аварий:
    1. немедленные смертельные случаи и травмы среди работников предприятия и населения;
    2. латентные смертельные случаи заболевания настоящих и будущих поколений, в том числе изменения в соматических клетках, приводящие к возникновению онкологических заболеваний, генетические мутации, оказывающие влияние на будущие поколения, влияние на зародыш и плод вследствие облучения матери в период беременности;
    3. материальный ущерб и радиоактивное загрязнение земли и экосистем;
    4. ущерб для общества, связанный с боязнью относительно потенциальной возможности использования ядерного топлива для создания ядерного оружия.
    К последствиям серьезных радиационных аварий относится и наличие косвенного риска для здоровья и жизни людей. Косвенный риск возникает при непосредственном осуществлении мер безопасности, эвакуации при аварии. Например: эвакуационные мероприятия, вызванные радиационной аварией, обусловливают возникновение множества косвенных рисков: смертельные случаи вследствие дорожно-транспортных происшествий, увеличение числа сердечных приступов у эвакуируемого населения, психические травмы, вызванные стрессовой ситуацией во время эвакуации, и т.п.
    Классификация аварий и этапы развития аварий на радиационно- опасных объектах.
    Классификация производится с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной ее ликвидации.
    Классификация возможных аварий на РОО производится по двум признакам: во-первых, по типовым нарушениям нормальной эксплуатации и, во-вторых, по характеру последствий для персонала, населения и окружающей среды.
    Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные, проектные с наибольшими последствиями и запроектные.
    Анализ различного рода отклонений в эксплуатации РОО, а так же аварийных ситуаций показывает, что возможны аварии двух типов.
    Первый тип – гипотетический не вызывает загрязнения.
    Второй тип – с полным разрушением реактора (хранилища), которое может сопровождаться цепной реакцией, т.е. ядерным взрывом малой мощности или тепловыми взрывами, вызванными интенсивным паро и газообразованием.
    Радиационные аварии на РОО подразделяются на три типа:
    Локальная – нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.
    Местная – нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно – защитной зоны и количествах, превышающих установленные нормы для данного предприятия.
    Общая – нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно – защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.
    Отечественная классификация, согласно которой в порядке возрастания серьезности последствий все аварии на РОО разделены на девять классов. Первые восемь классов охватывают аварии с широким диапазоном возможных последствий – от незначительных нарушений в работе до серьезных поломок в оборудовании. Такие аварии относятся к проектным, они рассматриваются при проектировании РОО а также в окончательных выводах по анализу безопасности эксплуатации объекта. В целом под обеспечением радиационной безопасности понимается проведение комплекса организационных и социальных мероприятий направленных на исключение или максимальное снижение опасности вредного воздействия ионизирующих излучений на организм человека и уменьшение радиоактивного загрязнения окружающей среды до безопасных уровней.
    Аварии, отнесенные к девятому классу, являются за проектными и в процессе проектирования не рассматриваются, из-за малой вероятности их возникновения. Эти аварии относятся также к гипотетическим или тяжелым. Подобные аварии возникают при повреждении или разрушении активной зоны реактора или хранилища отходов ядерного топлива и возможны при возникновении не предусмотренного в проекте аварийного исходного события.
    Для больших аварий используются дополнительные подразделения по критерию распространенности связанные с радиоактивным загрязнением:
    1. персонала и рабочих мест;
    2. производственного помещения;
    3. здания;
    4. территории;
      санитарно-защитной зоны.
    Для того что бы рассмотреть этапы развития аварии на РОО,возьмем в пример аварию на АЭС.
    Под нормальной эксплуатацией АЭС понимается все ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощности, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.
    Причинами проектных аварий на АЭС являются исходные события, связанные с нарушением барьеров безопасности, предусмотренные проектом каждого реактора. Именно в расчете на эти исходные события и строится система безопасности АЭС.
    Первый тип аварии – нарушение первого барьера безопасности, а проще – нарушение герметичности оболочек ТВЭЛов из-за кризиса теплообмена или механических повреждений. Кризис теплообмена – это нарушение температурного режима (перегрева) ТВЭЛов.
    Второй тип – нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нарушения первого барьера дальнейшее их распространение останавливается вторым, который образует корпус реактора.
    Третий тип – нарушение всех трех барьеров безопасности. При нарушенных первом и втором теплоноситель с продуктами деления удерживается от выхода в окружающую среду третьим барьером – защитной оболочкой реактора. Под ней понимается совокупность всех конструкций, систем и устройств, которые должны с высокой степенью надежности обеспечить локализацию выбросов.
    В тяжелых случаях нарушения контроля и управления цепной ядерной реакцией может произойти тепловой взрыв когда в следствие быстрого неуправляемого развития реакции резко нарастает мощность и накопление энергии, приводящей к разрушению реактора со взрывом.
    Таким образом с точки зрения радиационных последствий можно выделить четыре вида аварий связанных с разрушением активной зоны реактора АЭС:
    1. потеря теплоносителя, сопровождающаяся отказом активных систем аварийного охлаждения;
    2. потеря источников энергоснабжения (нормального и аварийного);
    3. аварийные переходные процессы без остановки реактора;
      выделение радиоактивности.
    Наиболее опасные радионуклиды, зонирование территорий вокруг РОО на этапах развития аварий.
    Наиболее опасными, с точки зрения внутреннего облучения, оказываются a -излучающие радионуклиды, так как пробег a -частиц в веществе мал, и их энергия целиком поглощается вблизи места концентрации радионуклида. Степень внутреннего облучения зависит не только от вида радионуклида и энергии излучения, но также от количества радионуклидов, попавших внутрь, характера распределения их в организме, периода полураспада и скорости его выведения из организма.
    Наиболее опасным является ингаляционное поступление радионуклидов. Этому способствует огромная дыхательная поверхность альвеол, площадь которой? 100 м2 (в 50 раз больше, чем поверхность кожи). Второй по значимости путь - поступление радионуклидов с пищей и водой.
    Наименее изучен путь поступления радиоактивных веществ через кожу, которая до недавнего времени считалась для них эффективным барьером. Однако в последующем было установлено, что радионуклиды в составе жидких и газообразных соединений проникают через кожу иногда в значительных количествах. Скорость проникновения в организм человека паров оксида трития и газообразного иода через неповрежденную кожу сравнима со скоростью проникновения этих веществ через дыхательные пути, а количество плутония, проникающее в организм вследствие загрязнения кожи его водорастворимыми соединениями, не меньше, чем при поступлении в желудок. Радионуклиды, проникающие через кожные покровы, создают опасность облучения самой кожи и тех внутренних органов, куда они доставляются кровотоком.
    Радионуклиды концентрируются, как правило, избирательно в отдельных органах, например радий, фосфор, стронций, барий, плутоний концентрируются в костях; церий, прометий, америций, кюрий, лантан - в печени; иод - в щитовидной железе; уран - в легких, почках, костях. Такие радионуклиды, как тритий, углерод, натрий, кобальт, цезий, распределяются в организме равномерно. Скорость биологического выведения (при допущении, что выведение радиоактивных веществ происходит по экспоненциальному закону) характеризуется постоянной l б, а эффективная скорость - суммой постоянных
    На фоне тугоплавкости большинство радионуклидов, такие как теллур, йод, цезий обладают высокой летучестью. Вот почему аварийные выбросы реакторов всегда обогащены этими радионуклидами, из которых йод и цезий имеют наиболее важное воздействие на организм человека и животный мир. Состав аварийного выброса продуктов деления реактора существенно отличается от состава продуктов ядерного взрыва. При ядерном взрыве преобладают радионуклиды с коротким периодом полураспада. Поэтому на следе радиоактивного облака происходит быстрый спад мощности дозы излучения. При авариях на АЭС характерно радиоактивное загрязнение атмосферы и местности легколетучими радионуклидами (Йод-131, Цезий-137 и Стронций-90), а, во-вторых, Цезий-137 и Стронций-90 обладают длительными периодами полураспада. Поэтому такого резкого уменьшения мощности дозы, как это имеет место на следе ядерного взрыва, не наблюдается.
    И еще одна особенность. При ядерном взрыве и образовании следа для людей главную опасность представляет внешнее облучение (90-95% от общей дозы). При аварии на АЭС с выбросом активного материала картина иная. Значительная часть продуктов деления ядерного топлива находится в парообразном и аэрозольном состоянии. Вот почему доза внешнего облучения здесь составляет 15%, а внутреннего – 85%.
    Радионуклиды с большим периодом полураспада при попадании внутрь организма обусловливают постоянное облучение организма. Наиболее тяжелые формы повреждения вызывают долгоживущие радионуклиды (радий, торий, уран, плутоний).
    Как правило, радионуклиды, попавшие внутрь организма и сходные с элементами, которые потребляются человеком с пищей (натрий, хлор, калий и др.), не задерживаются в организме и выводятся вместе с такими же веществами. Инертные радиоактивные газы (аргон, ксенон, криптон и др.), попавшие через легкие в кровь, со временем также удаляются.
    Для лучшей защиты персонала и населения производится заблаговременное зонирование территории вокруг РОО. Устанавливаются следующие три зоны:
    Зона экстренных мер защиты – это территория, на которой доза облучения всего тела за время формирования радиоактивного следа или доза внутреннего облучения отдельных органов может превысить верхний предел, установленный для эвакуации;
    Зона предупредительных мероприятий – это территория, на которой доза облучения всего тела за время формирования радиоактивного следа или доза облучения внутренних органов может превысить верхний предел, установленный для укрытия и йодной профилактики;
    Зона ограничений – это территория, на которой доза облучения всего тела или отдельных его органов за год может превысить нижний предел для потребления пищевых продуктов. Зона вводится по решению государственных органов.
    Для защиты работающего на АЭС персонала и населения в мирное время территория вокруг АЭС тоже зонируется.
    1. Зона строгого режима с предельно допустимой дозой (ПДД) = 5 бэр/год. В ней предусматривается постоянный радиационный контроль в местах работ людей, повседневный радиационный контроль объектов и территории.
    2. Зона режима радиационной безопасности с ПДД = 0.5 бэр/год в которой проводится повседневное радиометрическое обследование людей, транспорта и путей их движения после проведения работ.
    3. Санитарно – защитная зона. В ней предусматривается систематическое измерение уровней ионизирующих излучений и радиоактивного заражения.
    Кроме того, устанавливается зона наблюдения = 30 км., в которой проводится контроль за радиоактивностью объектов и внешней среды с установленной периодичностью.
    Заключение.
    Из всего выше сказанного можно сделать вывод, что радиационно опасные объекты являются опасными не только в момент, или после аварии. Эти объекты явлются источниками радиоактивного заражения, в результате несовершенства конструкций, на протяжении всего своего существования. Эта радиация незначительна, но в случае аварии она возрастает во много раз.
    На всей территории нашей страны осуществляется государственный контроль за радиационной обстановкой. Все ядерные материалы подлежат государственному учёту и контролю на различных уровнях государственной власти. Государство регулирует так же безопасность при использовании атомной энергии при помощи специально уполномоченных на то федеральных органов исполнительной власти. Они вводят в действие нормы и правила в области использования атомной энергии, осуществляют надзор за их исполнением, проводят экспертизу ядерных установок, применяют меры административного воздействия и выполняют другие функции, связанные с обеспечением безопасности при использовании атомной энергии.
    При потере управления некоторыми частями ядерной установки может наступить серьёзная радиационная авария, что не просто нежелательно, а просто недопустимо.
    В организациях, где теоретически возможны подобные аварии, обязательно должен быть план мероприятий по защите работников и населения, а так же средства для ликвидации аварий. В качестве профилактики проводятся мероприятия по обеспечению правил, норм в области радиационной безопасности, информирование населения о радиационной обстановке, его обучение в области радиационной безопасности.
    Общие проблемы безопасности включают глобальный комплекс мероприятий от обоснования требований к персоналу и формирования режимов допуска к информации и работам до ограничений по мерам радиационной, электро-, пожаро-, и взрыво-безопасности. При этом важнейшим является предупреждение аварийности и несанкционированных действий, на что должны быть направлены стройная и четкая система организационно-технического обеспечения и однозначно толкуемая документация. Все это принимает особую необходимость, если РОО находится недалеко от населенного пункта или внутри.
    В настоящее время особо актуальными стали проблемы учета РОО, поэтому система отчетности требует оптимизации. Соображения безопасности не могут не учитываться на самых ранних стадиях проектирования РОО, поэтому соответствующие требования должны предъявляться к конструктивным системам и программно-аппаратным средствам обеспечения безопасной эксплуатации РОО. При условии соблюдения всех объективных параметров безопасности субъективный фактор приобретает первостепенную важность в соблюдении мер безопасности, бесперебойности функционирования систем эксплуатации, и организационно-технических мер предотвращения несанкционированных действий.
    Немаловажное значение имеет обучение мерам предупреждения и снижения аварийности и последствий аварий, для чего персонал обязан уметь работать во всеобъемлющей системе контроля, оперативно и квалифицированно действовать при локализации произошедших аварий, проводить комплекс первоочередных и последующих мероприятий по ликвидации последствий аварий.
    Список используемой литературы.
    1.Сеть Интернет.
    2.Белоусова И.М. Естественная радиоактивность. М. Медгиз, издание 2, 1999 г.
    3.Максимов М.Т. Ожагов Г.О. Радиоактивные загрязнения и их измерения. 1997г.
    4.Радиация. Дозы, эффекты, риск. М., Мир. 2003г.
    5.Трифонов Д.И. Радиоактивность вчера, сегодня, завтра.
и т.д.................

Радиационно-опасными (РОО) называют объекты народного хозяй­ства, использующие в своей деятельности источники ионизирующего из­лучения. Это около 450 атомных энергоблоков почти в 30 странах мира, из них 46 в РФ и странах ближнего зарубежья. За всю историю атомной энергетики известно более 300 аварийных ситуаций. Наиболее серьезные по загрязненной площади и последствиям для людей- на 110 «Маяк» (Южный Урал, 1957) и на Чернобыльской АЭС (Украина, 1986).

Радиационную аварию можно определить как неожиданную ситуацию на радиационно-опасном объекте, следствием которой является облу­чение людей и нарушения норм радиационной безопасности населения. Обычно это тепловой взрыв мощностью не более 1% атомной энергии.

Кроме аварий, источниками загрязнений могут быть предприятия всего ядерного цикла: добыча урана, его обогащение, переработка, транс­портировка, хранение и захоронение отходов. Опасными являются раз­личные отрасли науки и промышленности, использующие изотопы: изо­топная диагностика, рентгеновское обследование больных, рентгеновская оценка качества технических изделий. Радиоактивными могут быть раз­личные строительные материалы.

Существует практика международных норм радиационной безопас­ности. Наиболее авторитетной организацией является Международное агентство по атомной энергии (МАГАТЭ). Между тем, при защите насе­ления РФ от радиации руководствуются федеральными законами. Это за­коны «Об охране окружающей среды» от 19.12.91 г., «Об использовании атомной энергии» от 21.11.95г., «О радиационной безопасности населе­ния» от 09.01.96г., «О санитарно-эпидемиологическом благополучии на­селения» от 30.03.99 г.

По масштабам радиационные аварии бывают локальными (в преде­лах одного здания), местными (в пределах территории предприятия) и общими.

Основные поражающие факторы радиационных аварий следующие:

Воздействие внешнего облучения;

Внутреннее облучение от попавших внутрь организма человека ра­дионуклидов;

Комбинированное воздействие радиационных и нерадиационных факторов (механическая травма, термическая травма, химический ожог, интоксикацияи т.п.).

Сразу после аварии основной опасностью является внешнее облуче­ние. При правильном поведении поступление радионуклидов внутрь ор­ганизма исключено. Основное внимание должно быть обращено на изо­топы йода, которые дают до 85% поглощенной дозы, накапливаясь в щи­товидной железе. Наибольшая концентрация изотопов йода обнаружи­вается в молоке, что особенно опасно для детей.

Через 2-3 месяца после аварии основным агентом внутреннего об­лучения становятся радиоактивный цезий и стронций, находящиеся в продуктах питания. Другие радионуклиды имеют значительно меньшее значение, особенно при коротком периоде полураспада.

В целом характер распределения радионуклидов в организме челове­ка следующий:

Накопление в скелете (кальций, стронций, радий, плутоний);

Концентрация в печени (церий, лантан, плутоний);

Щитовидная железа (йод);

Мышцы, особенно сердце (цезий);

Равномерно распределены по органам (тритий, углерод, инертные газы).

В качестве предельно допустимой дозы (ПДД) разового облуче­ния персонала международная комиссия по радиационной защите ре­комендовала дозу до 0.25 Зв, а при профессиональном хроническом облучении - до 0,05 3В в год. Для населения дозы рекомендованы в 10 раз меньшие. Известно, что доза в 1 Зв на поколение удваивает частоту мутаций. Мутагенный эффект принято отсчитывать с дозы в 0,07 мЗв (0,55 мЗв) в год. При общем внешнем облучении человека дозой 0,5 Зв развивается хроническая лучевая болезнь, а с дозы 1Зв - острая. Тяжесть болезни зависит от дозы и при облучении в дозе свыше 6 Зв человек без лечения обречен, как и при лечении после до­зы свыше 10 Зв. Смерть здесь- лишь вопрос времени. Возможна смерть при облучении (смерть «под лучом») при дозе порядка 200 Зв. Локальное облучение человек переносит значительно лучше, поэтому в онкологической практике нередко применяются метод облучения злокачественного новообразования в теле человека с дозой порядка 20 - 40 Зв, которую новообразование получает в течение одного - полутора месяцев. Интересно отметить, что для стерилизации мяса на длительное хранение используют дозы до 60 000 Зв, для стерилиза­ции хирургических инструментов - до 45 000 Зв. Это обеспечивает 100%-ную гибель бактерий и их спор.


Мероприятия по ограничению облучения населения в условиях радиационной аварии могут быть сведены к следующим:

Необходимо максимально быстро, но с учетом возможных по­следствий для персонала, восстановить контроль над источником ра­диоактивного загрязнения;

Польза от защитных мероприятий должна превышать вред, на­носимый ими;

Срочные меры защиты следует применять, если ожидаемая доза за 2 суток составит 1 Зв;

При хроническом облучении защитные мероприятия становятся обязательными, если годовые поглощенные дозы могут превысить 0,1 Зв.

При аварии, повлекшей за собой загрязнение обширной террито­рии, устанавливаются следующие зоны:

- чрезвычайно опасного заражения, или санитарно-защитная (ра­диус - 3 км, мощность излучения - до 0,14 Зв/час);

- опасного заражения, или опасного загрязнения (радиус - 30 км, мощность излучения - до 0,042 Зв/час);

- сильного заражения, или зона наблюдения (радиус - 50 км, мощность излучения - до 0,014 Зв/час или до 14 мЗв/час);

-умеренного заражения, или зона проведения защитных меро­приятий (радиус - 100 км, мощность излучения-до 1,4 мЗв/час).

Для защиты персонала. и населения на радиационно-опасном объекте должны быть:

Автоматизированная система контроля радиационной обстанов­ки;

Система оперативного оповещения персонала и населения в пределах 30 км зоны, наличие здесь же встроенных защитных соору­жений;

Наличие перечня населенных пунктов (населения), подлежащих эвакуации при аварии;

Создание запаса медикаментов, средств индивидуальной защи­ты для обеспечения безопасной жизнедеятельности населения;

Обучение населения действиям до и после аварии, проведение учений на РОО и прилегающих территориях;

Наличие средств и обученного персонала для проведения ра­диационной разведки.

Действия населения в зоне радиационного заражения (загрязне­ния) всецело зависят от рекомендаций ГОЧС. Однако возможны раз­личные нарушения в системе оповещения, особенно в условиях чрез­вычайных ситуаций, поэтому первое время можно руководствоваться следующим. В зоне умеренного заражения следует находиться в ук­рытии несколько часов, после чего можно перейти в помещение. Из дома первые сутки можно выходить не более чем на 4 часа. В зоне сильного заражения люди должны находиться в укрытиях до 3-х су­ток, при острой необходимости можно выходить из них, но не более чем на 3 часа в сутки. В зоне опасного заражения после 3-х суток на­хождения в убежищах люди должны перейти в дома и находиться там не менее 4-х суток, после чего можно будет выходить на улицу на срок не боле 4 часов в сутки. В зоне чрезвычайно опасного заражения находиться можно только в тех укрытиях, которые обеспечивают ко­эффициент ослабления не менее 1 000. Передвигаться по зоне можно не ранее чем через 3 суток, лучше на технике и под прикрытием ра­диопротекторов из индивидуальной аптечки (АИ-2).

6. Радиационная разведка местности

Сбор данных. Данные разведки обеспечивают начальнику штаба ГОЧС объекта принятие наиболее целесообразного решения на ведение спасательных и неотложных аварийно-восстановительных работ в оча­ге поражения, позволяют обеспечить выбор путей движения эвакуируе­мых при преодолении ими зон радиоактивного заражения и определить возможность пребывания невоенизированных формирований (свобод­ных от работы смен) в районах отдыха, определить время пребывания людей в укрытиях. Измеренные уровни радиации на местности являются.^исходными данными для оценки радиационной обстановки. Замеры можно делать либо стационарно, либо при движении разведгрупп.

Посты радиогенного наблюдения из 2-3 человек выставляют на объектах народного хозяйства в загородной зоне и в районах отдыха свободных от работы смен, в районах размещения невоенизированных формирований гражданской обороны. Посты оснащаются ренттенометрами, средствами оповещения и связи, индивидуальными дозиметрами, средствами защиты, указательными знаками. Основной задачей постов наблюдения является своевременное обнаружение радиоактивного зара­жения и оповещение об опасности рабочих, служащих и личного соста­ва невоенизированных формирований гражданской обороны объекта. С этой целью наблюдение ведут непрерывно и периодически в установ­ленные сроки включают дозиметрические приборы. При обнаружении радиоактивного заражения старший поста немедленно докладывает в штаб ГОЧС и подает сигнал «Внимание всем». Учитывая, что выпаде­ние радиоактивных веществ из облака ядерного взрыва может длиться несколько часов, наблюдатели обязаны определять момент, когда пре­кращается выпадение радиоактивных осадков. С этой целью они перио­дически выходят из укрытия и производят замеры уровней радиации. Стабилизация показаний прибора при двух очередных замерах или не­которое уменьшение уровня радиации при последнем замере свиде­тельствует о прекращении выпадения РВ.

На территории объекта народного хозяйства радиационная раз­ведка определяет уровни радиации на дорогах, ведущих к объекту, в местах проведения спасательных и неотложных аварийно-восстанови­тельных работ, а также осуществляет контроль за изменением радиаци­онной обстановки в ходе ведения спасательных работ. Исходный пункт для разведки намечается вблизи территории объекта. На нем командир группы ставит подчиненным задачи на разведку объекта. При этом разведчики определяют уровни радиации в районах цехов, убежищ и укрытий и в других местах, где предстоит проведение спасательных и неотложных аварийно-восстановительных работ. Результаты разведки докладываются начальнику штаба ГОЧС. Полученные штабом сведе­ния от разведывательных групп или от вышестоящего штаба ГОЧС об уровнях радиации и времени их измерения заносят в журнал радиацион­ной разведки.

Задачи мобильной радиационной разведки более сложные, особен­но при действиях в очагах ядерного поражения. Разведгруппы устанав­ливают границы зон радиоактивного заражения, определяют уровни радиации в местах проведения спасательных работ, на маршрутах дви­жения, выявляют в зонах радиоактивного заражения маршруты и участки с наименьшими уровнями радиации, осуществляют радиационный мони­торинг. При необходимости они могут осуществлять контроль облуче­ния рабочих, служащих и личного состава формирований ГОЧС, а также степени зараженности людей, техники, транспорта и других объектов. Разведывательные группы оснащают наравне с постами наблюдения, кроме того, обеспечивают транспортом и схемой маршрута движения.

В зависимости от характера радиоактивного заражения и степени разрушения объекта разведывательные группы могут действовать пе­шим порядком. Пешие разведывательные группы ведут разведку, как правило, до границ с уровнями радиации не более 30 Р/ч (0,3 Гр/ч). Разведка местности с уровнями радиации от 30 Р/ч до 100 Р/ч прово­дится на автомашинах. При разведке маршрута движения разведыва­тельные группы действуют на автомашинах. Разведчики по указанию командира группы периодически включают приборы радиационной раз­ведки. Обнаружив радиоактивное заражение, разведывательная группа продолжает движение до рубежа уровня радиации 0,5 Р/ч (0,005 Гр/ч).

При достижении границы заражения с уровнем радиации 0,5 Р/ч устанавливают знак ограждения с указанием вида заражения, уровня радиации и времени измерения. Командир группы отмечает на схеме (карте) маршрута место, уровень радиации и время обнаружения и со­общает об этом в штаб ГОЧС. После обозначения начала зараженного участка разведывательная группа продолжает движение по заданному маршруту, измеряя уровни радиации в движении и на кратковремен­ных остановках. При обнаружении на маршруте высоких уровней ра­диации командир разведгруппы докладывает об этом начальнику шта­ба ГОЧС и при необходимости разведывает пути обхода зоны с опас­ными уровнями радиации, обозначая их установленными знаками и указателями. Вследствие того, что при движении измерение уровней ра­диации производится с машины, необходимо учитывать коэффициент ос­лабления радиоактивных излучений корпусом автомашины. Например, при измерении внутри машины уровень радиации составил 4 Р/ч, а вне ее - 8 Р/ч. Разделив второе значение на первое, получают коэффициент ослабления, равный 2.

Обработка данных. Защита населения от радиоактивных ве­ществ и их излучений организуется на основе данных о характере, районах и масштабах радиоактивного заражения местности. Однако ра­диационная разведка может проводиться лишь после завершения выпа­дения радиоактивных веществ. Поскольку процесс длится несколько ча­сов, штабы гражданской обороны производят оценку радиационной об­становки путем прогнозирования, т.е. до подхода радиоактивного обла­ка к населенному пункту. Точность прогнозирования радиоактивного за­ражения, как и всякого прогнозирования вообще, весьма относительна. Трудно учесть ошибки, которые имеют место при определении коорди­нат, мощности взрыва, направления и скорости ветра. Прогноз дает только приближенные данные о размерах и степени радиоактивного заражения и наиболее вероятном местоположении зон радиоактивного заражения на местности. Поэтому по результатам прогнозирования нельзя заранее, т.е. до выпадения радиоактивных веществ на местности, определить с необходимой точностью уровни радиации на том или ином объекте, в том или ином населенном пункте, которым угрожает заражение. При оценке влияния радиоактивного заражения на жизнедея­тельность населения и действия невоенизированных формирований граж­данской обороны обязательно учитывают степень защищенности людей от радиоактивных излучений, которая характеризуется защитными свойствами укрытий, зданий, сооружений, транспортных средств.

Опасность поражения людей радиоактивными веществами требует быстрого выявления и оценки радиационной обстановки, учитывая ее влияние на организацию спасательных и неотложных аварийно-восстановительных работ, а также на производственную деятельность объекта народного хозяйства в условиях заражения. Радиационная об­становка складывается на территории административного района, насе­ленного пункта или объекта в результате радиоактивного заражения ме­стности и всех расположенных на ней предметов и требует принятия определенных мер защиты, исключающих или способствующих уменьшению радиационных потерь среди населения.

К мероприятиям по защите населения, рабочих, служащих и личного состава невоенизированных формирований относят:

Оповещение об угрозе радиоактивного заражения,

Подготовку предприятий к переводу на режим работы в чрезвы­чайных условиях,

Завершение подготовки противорадиационных укрытий к разме­щению в них людей,

Подготовку к использованию индивидуальных средств защиты ор­ганов дыхания (противогазов, респираторов, ватно-марлевых повязок),

Завершение работ по защите продовольствия, фуража, водных источников.

Кроме того, по результатам прогнозирования производится оценка последствий влияния радиоактивного заражения на жизнедеятельность населения с учетом его обеспеченности убежищами и противорадиационными укрытиями. Вследствие этого конкретные действия личного состава невоенизированных формирований ГОЧС, рабочих и служащих объектов народного хозяйства и населения в условиях радиоактивного заражения устанавливаются на основе оценки радиационной обстановки по данным разведки, т.е. по фактически замеренным уровням радиации на местности. Поэтому штабы гражданской обороны объектов народно­го хозяйства оценку радиационной обстановки и разработку мероприя­тий по защите рабочих и служащих при их действиях на местности, за­раженной радиоактивными веществами, производят, как правило, по данным радиационной разведки. Принятие решения на ведение спаса­тельных и неотложных аварийно-восстановительных работ, а также раз­работка режима работы объекта в условиях радиоактивного заражения осуществляются только на основе оценки радиационной обстановки по данным.радиационной разведки. Поэтому радиационная разведка - одна из важнейших задач штаба гражданской обороны.

Под оценкой радиационной обстановки понимают решение ос­новных задач по различным вариантам действий формирований, а также производственной деятельности объекта в условиях радиоактивного за­ражения, анализу полученных результатов и выбору наиболее целесо­образных вариантов действий, при которых исключаются радиационные потери. Оценка радиационной обстановки производится по результа­там прогнозирования последствий применения ядерного оружия и по данным радиационной разведки. Прогностические данные позволяют заблаговременно, т.е. до подхода радиоактивного облака к объекту, провести мероприятия по защите населения, рабочих, служащих и личного состава формирований, подготовке предприятия к переводу на режим работы в условиях радиоактивного заражения, подготовке противорадиационных укрытий и средств индивидуальной защиты. Для объекта народного хозяйства, размеры территории которого незначи­тельны по сравнению с зонами радиоактивного заражения местности, возможны только два варианта прогноза: персонал объекта подвергается или не подвергается облучению. Поэтому для случая радиоактивного заражения территории объекта берут самый неблагоприятный вариант, когда ось следа радиоактивного облака ядерного взрыва проходит че­рез середину территории предприятия. Степень опасности и возможное влияние последствий радиоактивного заражения оцениваются путем расчета экспозиционных доз излучения, с учетом которых определяют­ся: возможные радиационные потери; допустимая продолжительность пребывания людей на зараженной местности; время начала и продолжи­тельность проведения спасательных и неотложных аварийно-восстановительных работ на зараженной местности; допустимое время начала преодоления зон (участков) радиоактивного заражения; режи­мы защиты рабочих, служащих и производственной деятельности объ­ектов, и т.д.


МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №4 им. В.В.КЛОЧКОВА

"Аварии на радиационно-опасных объектах и их последствия"

Экзаменационный реферат

по Основам Безопасности Жизнедеятельности

Выполнил ученик 9А класса Ильичев Олег

Чкаловск 2011 г.

План

1. Вступление

2. Радиация вокруг нас

3. Радиационно-опасные объекты (РОО)

4. Виды аварий на РОО

5. Последствия аварий на РОО

5.1 Радиационное заражение местности

5.2 Радиационные эффекты облучения людей

6. Правила безопасного поведения

7. Защита людей при авариях на РОО

8. Из истории радиационных аварий

8.2 Чернобыль

8.3 Фукусима-1

9.Заключение

вступление

Экологическая катастрофа... Данное словосочетание страшное даже (или особенно) для обывательского сознания. И все же специалисты оказываются или наиболее чувствительными, или наиболее толстокожими, оперирующими цифрами о катастрофах и катаклизмах с таким спокойствием в языковых средствах, что начинаешь и их подозревать в антиэкологическом сознании. Известно, что экологические проблемы возникают из-за антиэкологического характера общества,а в конечном счете - всего человечества. Вспомним Ф.Ницше: “Безумие единиц - исключение, а безумие групп, партий, народов, времен - правила”. И я очень слабо верю в излечение времен и народов именно в этом плане экологического сознания. Как еще слабее - в совесть и моральные тормоза. Остается одно - закон. И здесь я, возможно, выскажу крамольную мысль: нужен закон, провозглашающий природу, окружающую среду, высшим по отношению к человеку субъектом права. Только при такой постановке вопроса можно говорить о спасении человечества, спасая природу. Только при таком подходе к решению экологических проблем можно надеяться, что безумие времен и народов станет исключением.

Эта тема выбрана на основе актуальности проблемы радиационной безопасности в целом и участившихся в последнее время техногенных и природных аварий на современных атомных объектах, начиная с 1 сентября 1944 года в США (техногенная) и до 11 марта 2011(природная) года в Японии. Все это говорит о том, что проблема радиационной безопасности напрямую начинает угрожать жизни и здоровью наций.

Радиация вокруг нас

Ионизирующее излучение, в частности радио­активное, занимает особое место среди многочисленных факторов среды обитания человека, так или иначе вли­яющих на его здоровье и жизнь.

Ионизирующее излучение было обнаружено сравнительно недавно. В 1895 г. известный немецкий физик В. Рентген от­крыл излучение, названное его именем. Чуть позже, в 1896 г., А. Беккерель обнаружил излучение солей урана, а в 1898 г. М. Кюри и П. Кюри установили излучение полония и радия, а также факт превращения радионуклидов в другие химиче­ские элементы (была открыта цепочка распадов). С этого времени изучение ионизирующего излучения и ядерных реакций – стало одним из приоритетных направлений физики. Исследования дорого обошлись научному миру - около 4000 ученых отдали свои жизни, изучая эти явления.

Ионизирующее излучение представляет собой потоки заряженных и нейтральных частиц, а также электромаг­нитных волн. При прохождении через вещество ионизи­рующее излучение вызывает в нем ионизацию, т. е. пре­вращение нейтральных, устойчивых атомов и молекул вещества в электрически заряженные, возбужденные неустойчивые частицы. Это сложное излучение, вклю­чающее в себя излучения нескольких видов.

Альфа-излучение - ионизирующее излучение, со­стоящее из альфа-частиц (ядер гелия), испускаемых при ядерных превращениях. Альфа-частицы распрост­раняются на небольшие расстояния: в воздухе - не бо­лее 10 см, в био - ткани (живой клетке) - до 0,1 мм. Они полностью поглощаются листом бумаги и не пред­ставляют опасности для человека, за исключением слу­чаев непосредственного контакта с кожей.

Бета-излучение - электронное ионизирующее излу­чение, испускаемое при ядерных превращениях. Бе­та-частицы распространяются в воздухе до 15 м, в био - ткани - на глубину до 15 мм, в алюминии - до 5 мм. Одежда человека почти наполовину ослабляет их дейст­вие. Они практически полностью поглощаются оконны­ми стеклами и любым металлическим экраном толщи­ной в несколько миллиметров. Но при контакте с кожей они также опасны.

Гамма-излучение - фотонное (электромагнитное) ионизирующее излучение, испускаемое при ядерных превращениях и распространяющееся со скоростью све­та. Гамма - частицы распространяются в воздухе на сотни метров и свободно проникают сквозь одежду, тело чело­века и значительные толщи материалов. Это излучение считают самым опасным для человека.

Главной характеристикой степени опасности ионизи­рующих излучений служит доза излучения: количество энергии ионизирующего излучения, поглощаемое 1 г ве­щества.

Дозу излучения принято измерять в рентгенах (Р). А для оценки последствий облучения человека различ­ными видами излучений применяют специальную еди­ницу измерения дозы облучения - бэр (биологический эквивалент рентгена).

Радиационно-опасные объекты (РОО)

Под радиационно-опасными понимаются объекты, использующие в технологических процессах или имеющие на хранении радиоактивные вещества, которые в случае аварии вызывают опасные для здоровья людей и окружающей среды загрязнения.

Радиационная авария - происшествие, приведшее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) в количествах, превышающих установленные нормы безопасности.

Основным показателем степени потенциальной опасности РОО при прочих равных условиях (надежность технологических процессов, качество профессиональной подготовки специалистов и т.д.) является общее количество радиоактивных веществ, находящихся на каждом из них.

К радиационно-опасным объектам относятся:

атомные станции различного назначения;

2) предприятия по регенерации отработанного топлива и

3) временному хранению радиоактивных отходов;

4) научно-исследовательские организации, имеющие

5) исследовательские реакторы или ускорители частиц; морские

6) суда с энергетическими установками;

7) хранилища ядерных боеприпасов; полигоны, где проводятся

8) испытания ядерных зарядов.

Кроме того, ионизирующее излучение, опасное для здоровья людей, может исходить и от таких широко распространенных техногенных источников, как медицинская рентгенодиагностическая аппаратура и приборы, основанные на использовании радиоактивных изотопов, применяемые в строительной индустрии, геологии и т.д.

Из перечисленных радиационно-опасных объектов наибольшим количеством радиоактивности обладают работающие ядерные реакторы. Чем больше мощность реактора, тем больше количество продуктов деления накапливается в нем за одно и то же время работы. Грозную опасность для жизни и здоровья населения несут чрезвычайные ситуации, связанные с возможностью радиационного заражения. Достаточно сказать, что период полураспада, т.е. времени снижения мощности радиоактивного излучения на 50%, урана-235 и плутония-239 составляет около 25 тыс. лет, а именно эти элементы используются в ядерном оружии. Ядерное топливо активно применяется для производства электроэнергии. В 26 странах мира на атомных электростанциях насчитывается 430 энергоблоков (строятся еще 48). Они вырабатывают энергии: во Франции - 75% (от производимой в стране), в Швеции - 51, в Японии - 40, в США - 24, в России - 15%.

В Российской Федерации имеется 33 энергоблока на 10 АЭС, 113 исследовательских ядерных установок, 13 промышленных предприятий топливного цикла, а также около 13 тыс. других предприятий и объектов, осуществляющих деятельность с использованием радиоактивных веществ и изделий на их основе.

Для обеспечения надежной работы АЭС и радиационной безопасности персонала и населения проектами предусматриваются соответствующие системы безопасности. Например, на АЭС с водно-паровым энергетическим реактором имеется пять барьеров безопасности. Это независимые друг от друга препятствия на пути ионизирующих излучений от топлива до окружающей среды. В результате ослабления ионизирующих излучений барьерами безопасности облучение населения, проживающего вблизи от АЭС типа ВПЭР, при ее безаварийной работе не превышает 0,2 мбэра в год.

Виды аварий на РОО

Радиационные аварии подразделяются на:

Локальные - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующих излучений за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения;

Местные - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно-защитной зоны и в количествах, превышающих установленные нормы для данного предприятия;

Общие - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно-защитной зоны и в количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

Классификация аварий на радиационно-опасных объектах проводится с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной их ликвидации.

Возможные аварии на АЭС и других радиационно-опасных объектах классифицируют по двум признакам:

по типовым нарушениям нормальной эксплуатации;

по характеру последствий для персонала, населения и окружения среды.

При анализе аварий используют цепочку "исходное событие - пути протекания - последствия".

Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные, проектные с наибольшими последствиями и за проектные. Под нормальной эксплуатацией АЭС понимается ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощности, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.

Причинами проектных аварий, как правило, являются исходные события, связанные с нарушением барьеров безопасности, предусмотренных проектом каждого реактора. Именно в расчете на эти исходные события и строится система безопасности АЭС.

Первый тип аварий - нарушение первого барьера безопасности, а проще - нарушение герметичности оболочек твэлов (тепловыделяющих элементов) из-за кризиса теплообмена или механических повреждений. Кризис теплообмена - это нарушение температурного режима (перегрев) твэлов.

Второй тип аварий - нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нарушения первого барьера дальнейшее их распространение останавливается вторым, который образует корпус реактора.

Третий тип аварий - нарушение всех барьеров безопасности. При нарушенных первом и втором барьерах теплоноситель с радиоактивными продуктами деления удерживается от выхода в окружающую среду третьим барьером - защитной оболочкой реактора. Под ним понимается совокупность всех конструкцией, систем и устройств, которые должны с высокой степенью надежности обеспечить локализацию выбросов.

Ядерную аварию может вызвать также образование критической массы при перегрузке, транспортировке и хранении твэлов. всех барьеров безопасности.-опасным объектам ... разрушений аварии на радиационно -опасных объектах подразделяют на проектные, проектные с наибольшими последствиями (...

  • Характеристика аварий на радиационно опасных объектах

    Тесты >>

    Защиты. Предметом исследования стали последствия от аварий на радиационно -опасных объектах . Объект исследования – радиационная опасность . Методом исследования стал... . В биосфере живые организмы и среда их обитания органически связаны и взаимодействуют друг...

  • Радиационно опасные объекты (2)

    Реферат >> Безопасность жизнедеятельности

    Установки; Военные объекты ; Во избежание аварий на радиационно опасных объектах необходимо соблюдать... или использованием ядерных материалов, их учёт и контроль осуществляет... последующих мероприятий по ликвидации последствий аварий . Нельзя обойти вопросы...

  • Аварии на химически опасных объектах . Медико-тактическая характеристика очага химического пораже

    Реферат >> Безопасность жизнедеятельности

    Введение Химическая авария - авария на химически опасном объекте (ХОО), ... возможные аварии на объектах химической промышленности, их последствия , меры... объектов от возможных террористических актов. Список используемой литературы 1. Кузьмина И.В. Радиационные ...



  • Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ