Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Навигация по статье:

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.

Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения , иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

    0,57 мкЗв/час

  • В последующие года, радиационный фон должен быть не выше  0,12 мкЗв/час


  • предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников , является

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м 2)

Для оценки влияния радиации на вещество (не живые ткани) , применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани , применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется - поглощенной дозой .

Поглощенная доза - это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется - Грей (Гр).

1 Грей - это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза - это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется - Кулон/кг (Кл/кг) .

1 Кл/кг= 3,88*10 3 Р

Используемая внесистемная единица экспозиционной дозы - Рентген (Р):

1 Р = 2,57976*10 -4 Кл/кг

Доза в 1 Рентген - это образование 2,083*10 9 пар ионов на 1см 3 воздуха

Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения . То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза - это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется - Зиверт (Зв) .

Используемая внесистемная единица эквивалентной дозы - Бэр (бэр) : 1 Зв = 100 бэр.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение "эквивалентной дозы радиации":

Эквивалентная доза радиации - это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).



В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу , которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм.

Наиболее объективная характеристика это - эквивалентная доза радиации , измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах - мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год .

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения , величиной 5 мЗв/год . Используемая формулировка в документах - "приемлемый уровень" , очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый .

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников . Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час . Это подробно рассмотрено в статье . Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год , а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются .

Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 - 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час .
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа - радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников , является 1 мЗв/год.

Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час , действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь , по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.

Для справки:

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода - это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.

Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

Государственная система санитарно-эпидемиологического нормирования Российской Федерации

2.6.1. Ионизирующее излучение, радиационная безопасность

Проведение радиационно-гигиенического обследования жилых
и общественных зданий

Методические указания

МУ 2.6.1.715-98

Санкт-Петербург

1998

1. Методические указания разработаны Федеральным радиологическим центром Санкт-Петербургского Научно-исследовательского института радиационной гигиены Минздрава РФ (Крисюк Э.М.. Терентьев М.В., Стамат И.П. и Барковский А.Н.) и Департаментом Госсанэпиднадзора Минздрава Российской Федерации (Иванов СИ.. Перминова Г.С. и Соломонова Е.П.)

2. Утверждены и введены в действие Главным Государственным санитарным врачом Российской Федерации 24 августа 1998 года

3. Введены впервые

в которой приняты обозначения:

t 0,95 - значение коэффициента Стьюдента для доверительной вероятности Р = 0,95 (принимают по Приложению 5 в зависимости от числа повторных измерений N в данной точке);

s i - среднеквадратичное отклонение результата измерения от среднего, i которое рассчитывается по результатам всех N повторных измерений в i -той точке по формуле:

(3)

- n -ое измерение МЭД гамма излучения в i -той точке.

При использовании дозиметров интегрального типа EL-1101 (EL-1119) время измерения должно выбираться таким, чтобы случайная составляющая погрешности оценки значения результата измерения не превышала 20%. В этом случае значение считывается со шкалы приборов, а Δ 0 i определяется как произведение на статистическую погрешность измерений, считываемую со шкалы прибора.

С поисковым радиометром (дозиметром) производят обход всех помещений обследуемого здания по периметру каждой комнаты, производят замеры на высоте 1 м от пола на расстоянии 5 - 10 см от стен, и по оси каждой комнаты, производя замеры на высоте 5 - 10 см над полом. При обнаружении локальных повышений показаний используемого прибора, производят поиск максимума и фиксируют в журнале его положение и показания прибора в точке максимума. Кроме того, в журнал заносят максимальные показания прибора в каждом помещении.

Конкретные помещения (квартиры), подлежащие обследованию по , выбираются с учетом результатов проведенного предварительного обследования. При этом обязательно должны обследоваться те из них, в которых зафиксированы максимальные показания поисковых радиометров (дозиметров), а также обнаруженные точки локальных максимумов.

2.7. Измерения МЭД внешнего гамма-излучения в каждом обследуемом помещении выполняют в точке, расположенной в его центре на высоте 1 м от пола, а также в выявленных участках с максимальным значением МЭД гамма- излучения ().

Число повторных измерений N выбирают из условия, чтобы случайная составляющая относительной погрешности оценки среднего значения результата измерения на превышала 20%:

(5)

Здесь: - оценка среднего значения результата измерения в помещении, а случайную составляющую погрешности результата измерения дельта для доверительной вероятности P = 0.95 рассчитывают по формуле:

Δ = t 0.95 × s , мкЗв / ч (6)

в которой приняты такие же обозначения, как и в выражении ()

Результат измерения МЭД гамма-излучения в данном помещении представляют в форме:

МкЗв/ч.(7)

Результаты всех измерений заносятся в рабочий журнал.

где: - измеренное по - значение МЭД гамма-излучения на открытой местности, мкЗв/ч;

Δ σ - суммарная погрешность оценки разности двух величин - и (мкЗв/ч), определяемая из выражения

δ - предел относительной погрешности дозиметра, значение которого принимают по паспорту или свидетельству о поверке;

t 0.95 (ν )- значение коэффициента Стьюдента для доверительной вероятности P = 0.95 при числе наблюдений ν ;

ν - число степеней свободы, рассчитываемое по формуле:

,(10)

в которой n - число повторных наблюдений при измерении и S 0 , а m - то же для и S , соответственно.

При использовании дозиметров типа EL-1101 суммарная погрешность Δ σ определяется по формуле:

,(11)

где s 0 и s - случайные составляющие погрешности результатов измерения и , соответственно, для доверительной вероятности P = 0.95, рассчитываемые дозиметрами EL-1101 и EL-1119.

2.11. Для эксплуатируемого здания вопрос о перепрофилировании его или отдельных его помещений решается в установленном законом порядке (с согласия жильцов или домовладельца и т.п.) местными органами власти по согласованию с территориальным центром госсанэпиднадзора, если максимальное значение измеренной мощности дозы превышает мощность дозы на открытой местности более, чем на 0.6 мкЗв/ч (п. 7.3.4. НРБ-96).

3. Контроль эквивалентной равновесной объемной активности изотопа радона

3.1. Контролируемой величиной в зданиях и сооружениях, согласно НРБ-96 , является среднегодовое значение эквивалентной равновесной объемной активности (ЭРОА ) изотопов радона ( - радона и - торона) в воздухе помещений, равное:

,(12)

где

(13)

(14)

где A RaA , A RaB , A RaC , A ThB , A ThC - объемная активность в воздухе RaA (), RaB (), RaC (), ThB (), ThC (), соответственно, в Бк/м 3 .

3.2. Допускается проводить оценку ЭРОА Rn по результатам измерений объемной активности радона (A Rn ). В этом случае для пересчета измеренных значений А Rn в значении ЭРОА Rn используется коэффициент F Rn , характеризующий сдвиг радиоактивного равновесия между радоном и его дочерними продуктами в воздухе:

.(15)

Значения F Rn определяют экспериментальным путем по результатам одновременных измерений A Rn и ЭРОА Rn . В расчетах по формуле (15) используют значения F Rn , характерные для данного региона, периода года и типа здания. При отсутствии экспериментальных данных о значении F Rn , его принимают равным 0.5.

3.3. В соответствии с пп. 7.3.3 и 7.3.4 НРБ-96 , среднегодовое значение ЭРОА изотопов радона в воздухе помещений проектируемых и сдаваемых в эксплуатацию зданий жилищного и общественного назначения не должно превышать 100 Бк/м 3:

Бк/м 3 ;(16)

а в эксплуатируемых зданиях критерием необходимости проведения защитных мероприятий является невыполнение условия:

Бк/м 3 (17)

3.4. При приемке в эксплуатацию зданий, как правило, не имеется возможности проводить измерения среднегодового значения ЭРОА изотопов радона, поэтому проводят оценку его верхней границы по результатам измерений за период до 1 - 2 недель с учетом коэффициента вариации во времени значения ЭРОА радона V Rn (t) и основных погрешностей применяемых средств измерений:

Бк/м 3 ,()

где Δ Rn и Δ Tn - погрешности определения ЭРОА радона и торона в воздухе соответственно, значения которых рассчитываются по формуле:

Бк/м 3 (19)

в которой ЭРОА i - измеренное значение ЭРОА радона (торона) в воздухе, а δ 0 - основная погрешность измерения, принимаемая по свидетельству о поверке (метрологической аттестации) средства измерения.

Значение коэффициента вариации зависит от геолого-геофизических характеристик грунта под зданием, климатических особенностей региона, типа здания, сезона года, в течение которого проводились измерения, а также от продолжительности измерения (продолжительность пробоотбора) в используемой методике контроля.

В качестве расчетных значений коэффициента вариации при проверке выполнения соотношения () принимают среднее значение V Rn (t) , определенное в процессе специальных исследований в данном регионе в зданиях различного типа, выполненных в разные сезоны года.

При отсутствии данных о фактических значениях V Rn (t) их принимают по таблице 1 в зависимости от продолжительности измерения.

Таблица 1

Продолжительность измерения

≤ 1 час

1 - 3 суток

1 - 2 недели

1 - 3 месяца

Значение V Rn ( t )

Теплый сезон

Холодный сезон

0.95

0.75

то в остальных выбранных для обследования помещениях измерения ЭРОА Tn не проводятся, а проверка выполнения условия () осуществляется с использованием среднего значения ЭРОА торона, вычисленного из сделанных измерений.

Если условие (20) не выполняется, то во всех выбранных для обследования помещениях следует проводить измерения ЭРОА торона, а результаты этих измерений использовать при проверке выполнения условия ().

3.6. В качестве средств контроля ЭРОА радона и торона принимаются инспекционные и интегральные радиометры альфа-активных аэрозолей. Для контроля ЭРОА радона по величине объемной активности радона используются интегральные радиометры радона или мониторы объемной активности радона. При этом следует применять методы и средства измерений, позволяющие определять средние значения объемной активности радона за периоды времени не менее 3 суток. Технические и метрологические характеристики рекомендуемых типов приборов приведены в .

3.8. Измерения в выбранных для обследования помещениях вновь строящихся и реконструированных зданий проводятся после их предварительной выдержки (не менее 12 - 24 часов) при закрытых окнах и дверях (как в помещениях, так и в подъездах) и штатном режиме принудительной вентиляции (при ее наличии). Измерения рекомендуется проводить при наиболее высоком для данной местности барометрическом давлении и слабом ветре.

Измерения с использованием интегральных средств измерений и мониторов радона допускается начинать одновременной с закрытием окон и дверей и запуском вентиляции в штатном режиме.

Установку пассивных интегральных средств измерений ОА радона, мониторов радона и отбор проб воздуха при инспекционных измерениях следует производить в местах с минимальной скоростью воздухообмена, чтобы полученные результаты, по возможности, характеризовали максимальные значения ОА или ЭРОА радона и торона в данном помещении. При измерениях приборы следует располагать: не ниже 50 см от пола, не ближе 25 см от стен и 50 см от нагревательных элементов, кондиционеров, окон и дверей.

В каждом обследуемом помещении (квартире) проводится, как правило, одно измерение ЭРОА изотопов радона. При больших размерах обследуемого помещения количество измерений увеличивается из расчета: одно измерение на каждые 50 квадратных метров.

3.9. В зависимости от результатов измерений и основанной на них оценке верхней границы среднегодового значения ЭРОА изотопов радона принимаются следующие решения:

Помещения отвечают требованиям НРБ-96 ;

Необходимо провести дополнительные исследования (при этом указывается, какие и в каком количестве);

Необходимо проведение защитных мероприятий (по снижению гамма-фона, по снижению ЭРОА радона или оба мероприятия одновременно);

Здание (часть помещений здания) следует перепрофилировать (или снести).

3.9.1. Если во всех обследованных помещениях (не считая подвальных помещений) выполняется условие (), то здание можно считать радонобезопасным и удовлетворяющим нормативу, приведенному в НРБ-96 .

3.9.2. Если в некоторых обследованных помещениях (исключая подвальные) не выполняется условие (), но при этом во всех них выполняется соотношение:

Бк/м 3 ()

то в этих помещениях проводят повторные измерения ОА радона с использованием интегральных средств при большем времени экспозиции (не менее 2 недель) для уменьшения коэффициента вариации V Rn (t) и ЭРОА торона (при заметном его вкладе) с использованием приборов, имеющих меньшее значение основной погрешности, или многократно повторяя измерения (желательно в разное время суток) с последующим усреднением результатов измерений. При этом объем измерений для каждого помещения, как минимум, утраивается.

3.9.2.1. Если в результате повторного обследования оказалось, что в данных помещениях выполнено условие (), то здание считается радонобезопасным.

3.9.3. Если в результате первичного обследования выбранных помещений оказалось, что в ряде из них (исключая подвальные помещения) не выполняются одновременно условия () и (), то проводятся мероприятия по .

3.9.4. После реализации защитных мероприятий в помещениях, где они проводились, осуществляется повторная серия измерений, оценивается верхняя граница среднего значения ЭРОА изотопов радона в данных помещениях (квартирах) и проверяется выполнение для них условия ().

Примечание: Если в качестве одной из защитных мер принято дополнительное оборудование здания специальными вентиляторами или устройствами, то повторная серия измерений проводится при включенных дополнительных устройствах, работающих в штатном режиме.

3.9.5. Если после реализации защитных мероприятий в сдаваемом в эксплуатацию здании условие () не выполняется в ряде помещений (квартир), то решается вопрос о перепрофилировании или реконструкции в целом здания или отдельных его помещений (квартир).

3.10. При проведении обследования в эксплуатируемых зданиях выбор помещений (квартир) для проведения измерений зависит от конкретной ситуации, требований Заказчика (домовладельца, администрации и т.п.) и должен согласовываться с территориальным центром госсанэпиднадзора. При отсутствии каких-либо чрезвычайных ситуаций (наличие информации о локальных источниках радона, прогнозируемом превышении норматива и т.п.) и требований Заказчика обследовать конкретные помещения выбор (в случае обследования здания) подлежащих обследованию помещений (квартир) проводится также, как и при приемке их в эксплуатацию ().

3.11. В эксплуатируемых зданиях, как правило, определение среднегодового значения ЭРОА изотопов радона в выбранных помещениях (квартирах) производится на основе двукратных измерений ОА радона в холодный и теплый сезоны года общей продолжительностью 4 - 6 месяцев с использованием интегральных (трековых или электретных) средств. Учет дочерних продуктов торона производится согласно В том случае, если не выполняется условие (), в данных помещениях проводят многократные измерения ЭРОА торона в разное время суток и время года и оценивают среднее арифметическое значение, которое в дальнейшем используют в качестве оценки среднегодового значения. При этом измерения проводятся при обычном режиме функционирования обследуемых помещений, а при наличии принудительной вентиляции - при штатном режиме ее работы.

3.12. При двукратных измерениях ОА радона по п. 3.11 среднегодовое значение ЭРОА изотопов радона вычисляется как среднее арифметическое. При этом должно соблюдаться условие:

Бк/м 3 (22)

где Δ Rn и Δ Tn - погрешности среднегодовых значений ЭРОА радона и торона, соответственно, учитывающие основную погрешность использованных средств измерений.

В случае однократных измерений ОА (ЭРОА ) радона и ЭРОА торона производят, как и при приемке зданий в эксплуатацию, оценку верхней границы среднегодового значения ЭРОА изотопов радона, используя соотношение (), правая часть которого заменена на 200 Бк/м 3 , и .

Приложение 1

Форма протокола радиационного обследования

(Наименование организации и лаборатории)

_______________________________________________________________________________

(N Аттестата об аккредитации и срок его действия)

Протокол

радиационного обследования N ___ от "___" _______________ 199_ г.

Наименование объекта, его адрес __________________________________________________

_______________________________________________________________________________

Назначение объекта (жилое или общественное здание) ________________________________

Цель обследования объекта:

Приемка в эксплуатацию после завершения строительства;

Приемка в эксплуатацию после реконструкции или капремонта;

Обследование эксплуатируемого здания.

Заказчик_______________________________________________________________________

Проект здания (тип, серия) _______________________________________________________

Характеристика объекта:

Год постройки (реконструкции, капремонта) __________. Количество этажей ______

Тип фундамента ____________________________ Использованные стройматериалы

_________________________________________________________________________

Система вентиляции в здании:

Система вентиляции помещений:

Естественная,- принудительная,- кондиционирование.

Средства измерения:

№ п/п

Тип прибора

Зав. №

№ свидетельства о госпроверке

Срок действия свидетельства

Кем выдано свидетельство

Основная погрешность измерения

Нормативно-методическая документация, использованная при проведении измерений

(МВИ, номер и дата утверждения, кем утверждено) __________________________________

_______________________________________________________________________________

Условия проведения измерений:

Состояние принудительной вентиляции (кондиционеров):

Подвал:- штатный режим работы,- нештатный режим работы.

Остальные помещения здания:

Штатный режим работы,- нештатный режим работы.

Окна, двери помещений и подъездов закрыты,- открыты.

Указывать не обязательно:

Температура воздуха: в помещениях - _________°С, вне здания - ________°С

Барометрическое давление, скорость ветра _______________________________

Результаты измерений:

1. МЭД внешнего гамма-излучения на открытой местности

№ п/п

Место измерения

Зав. № дозиметра

Дота измерения

Среднее значение Н 0, i , мкЗв/ч

Минимальное значение Н 0 , мкЗв/ч

Погрешность Δ 0 , мкЗв/ч

2. МЭД внешнего гамма-излучения в помещениях

№ п/п

Зав. № дозиметра

Дата измерения

Показания поискового прибора *

Результат измерения Н , мкЗв/ч

Погрешность Δ , мкЗв/ч

Н-Н 0 +Δ t , мкЗв/ч.

* приводится без указания погрешности.

3. ЭРОА изотопов радона в воздухе помещений

№ п/п

Место измерения: этаж, № помещения, назначение

Дата (период) измерения

Бк/м 3

Бк/м 3

Максим. среднегодовая С max , Бк/м 3

ЭРОА± Δ Rn

ЭРОА± Δ Tn

Использованное при расчетах C max значение V Rn ( t ) = ___________________________________.

Примечание: .

Лицо, ответственное за проведение обследования:

Должность _____________________

Ф.И.О. ____________________________ Подпись _____________________________

Зав. лабораторией

Ф.И.О. ____________________________ Подпись _____________________________

Приложение 2

(справочное)

Перечень дозиметрических приборов, рекомендуемых для проведения измерений мощности экспозиционной дозы гамма-излучения

N п/п

Тип прибора

Тип детектора

Фирма (страна)

Измеряемые величины

Пределы измерений

Диапазон энергий МэВ

мкР/ч

ДРГ-01Т

Счетчики Гейгера

Россия

МЭксД

0.01-100 мР/ч

0.05-3.0

8 ¸ 9

ДБГ-06Т

Счетчики Гейгера

Россия

МЭквД

0.1-1000 мкЗв/ч

0.05-3.0

8 ¸ 9

МЭксД

0.01-100 мР/ч

1101

Nal (Т l ) сцинтиллятор

АТОМТЕХ (Беларусь)

МЭксД

0.005-100 мР/ч

0.04-3.0

1.5 ¸ 2

МЭквД

0.05-1000 мкЗв/ч

Еср

0.06-1.5 МэВ

1119

Пластиковый сцинтиллятор

АТОМТЕХ (Беларусь)

МэксД

0.005-10(6) мР/ч

0.05-10.0

1.5 ¸ 2

МПД

0.05-10 (7) мкГр/ч

0.05-10.0

МэквД

0.05-10 (7) мкЗв/ч

0.02-10.0

ЭксД

5 мкР-1000 Р

0.05-10.0

пд

0.05 мкГр/ч - 10 Гр

0.05-10.0

ЭквД

0.05 мкЗв/ч - 10 Зв

0.02-10.0

МЭксД - мощность экспозиционной дозы

МЭквД - мощность эквивалентной дозы

МПД- мощность поглощенной дозы в воздухе

ЭксД- экспозиционная доза

ЭквД- эквивалентная доза

ПД- поглощенная доза в воздухе

Еср.- средняя энергия фотонного излучения

Собственный фон и отклик на космическое излучение в единицах МЭксД

Гамма-монитор EL-1101 является высокочувствительным гамма-дозиметром с микропроцессорной обработкой результатов измерений. Он позволяет измерять как мощности экспозиционной и эквивалентной доз, так и среднюю энергию гамма-излучения. Он представляет собой 9-ти канальный сцинтилляционный Na l гамма-спектрометр, откалиброванный как дозиметр с неравномерностью чувствительности во всем энергетическом диапазоне менее 10%. Дозиметр позволяет запомнить до 100 результатов измерений и передавать их непосредственно в ПЭВМ по последовательному интерфейсу RS-232. Прибор имеет поисковый режим, позволяющий использовать его и в качестве поискового радиометра.

Гамма-дозиметр EL-1119 отличается от EL-1101 тем, что имеет пластиковый сцинтиллятор и позволяет измерять мощность экспозиционной, поглощенной в воздухе и эквивалентной дозы рентгеновского и гамма-излучений в диапазоне энергий 0.02 - 10 МэВ. Кроме того, он позволяет измерять и соответствующие дозы. По набору сервисных функций он аналогичен прибору EL-1101.

Приложение 3

(справочное)

Таблица

Перечень средств измерений, рекомендуемых для измерений ОА и ЭРОА радона в воздухе зданий и сооружений

N п/п

Наименование и тип прибора

Тип детектора

Фирма (страна)

Измеряемая величина

Диапазон и погрешность измерений

Автоматизация обработки

1

Интегральные средства измерений ОА и ЭРОА радона в воздухе

Трековый Комплекс "КСИРА 2010Z"

"Радон-Сервис" (Россия)

Интегральная ОА радона в воздухе

Диапазон экспозиций

200 ¸ 3×10 5

Бк×м (-3) ×сутки

с погрешностью ≤ 25%

есть

Трековый Комплекс "ТРЕК-РЭИ-1"

Нитрат-целлюлозный пленочный трековый детектор

НИИЦ РБ КО (Россия)

Интегральная ОА радона в воздухе

Диапазон экспозиций

200 ¸ 3×10 5

Бк×м (-3) ×сутки

с погрешностью ≤ 25%

нет

2

Квазиинтегральные средства измерений ОА и ЭРОА радона в воздухе

Угольные адсорберы

"НИТОН" (Россия)

Квазиинтегральная ОА радона в воздухе

Диапазон измерения ОА радона при экспозиции 1-6 суток от 10 Бк/м 3

нет

Радиометр радона РГГ-01Т

Угольные адсорберы

НИИ ПММ (Россия)

Квазиинтегральная ОА радона в воздухе

Диапазон измерения ОА радона

40 ¸ 2×10 5

Бк/м 3 , с погрешностью ≤ 30%

нет

Радиометр радона РМ-2000 (RTM-2010)

ППД с электростатическим осаждением Ро-218 (Ро-218//Ро-212)

SARAD (Германия) (ЗАО КПЦЕ)

Квазиинтегральная ОА радона и торона в воздухе

Диапазон измерения ОА радона

1 ¸ 1×10 7

есть

3

Средства измерений ОА и ЭРОА радона мгновенного типа

3.1

Радиометры аэрозолей ДПР и ДПТ

3.1.1

Радиометр "РАМОН-01"

Спектрометрический ППД

"Соло" (Казахстан)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ЭРОА радона

4 ¸ 2×10 5

Бк/м 3 ,с погрешностью ≤30%

есть

3.1.2

Многофункциональный комплекс "Камера", аэрозольный модуль

"НИТОН" (Россия)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ОА ДПР от 1 Бк/м 3 и более;

АО ДПТ от 0,1 Бк/м 3 и более

нет

3.1.3

Радиометр "РАА-02"

Спектрометрический ППД

СПб НИИРГ (Россия)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ЭРОА радона

15 ¸ 2×10 5

Бк/м 3 , с погрешностью ≤25%

есть

3.1.4

Радиометр "РГА-01Т"

Сцинтилляционный детектор

НИИ ПММ (Россия)

ОА аэрозолей ДПР и ДПТ

Диапазон измерения ЭРОА радона

15 ¸ 2×10 5

нет

3.2

Радиометры радона

3.2.1

Радиометр радона РРА-01М (и более поздние модификации - 03, О3М)

ППД с электростатическим осаждением

МТМ "Защита" (Россия)

ОА радона в воздухе

Диапазон измерения ОА радона

от 20 до 2×10 5

Бк/м 3 , с погрешностью 40 - 20%

(есть в более поздних моделях)

3.2.2

Многофункциональный комплекс "Камера"

Угольные адсорберы

"НИТОН" (Россия)

ОА радона в воздухе

Диапазон измерения ОА радона от 10 Бк/м 3 и более

нет

3.2.3

Радиометр радона РГГ-01Т

Угольные адсорберы

НИИ ПММ (Россия)

ОА радона в воздухе

Диапазон измерения ОА радона

40¸ 2×10 5

Бк/м 3 , с погрешностью ≤30%

нет

3.2.4

Радиометр радона RM-2000 (RTM-2010)

ППД с электростатическим осаждением

SARAD (Германия) (ЗАО КПЦЕ)

Квазиинтегральная OA радона и торона в воздухе

Диапазон измерения ОА радона

1 ¸ 1×10 7

Бк/м 3 , погрешность зависит от времени измерения

есть

4

Мониторы радона и аэрозолей ДПР в воздухе

Радон-монитор " Alpha GUARD PQ 2000"

Импульсная ионизационная камера с 3d-спектрометрической обработкой сигнала

Непрерывное измерение ОА

Диапазон измерения ОА радона

2¸ 2×10 6

Бк/м 3 , с погрешностью ≤10% (время измерения на уровне 2 Бк/м 3 – не менее 24 ч)

есть

Радон-монитор " Alpha GUARD PQ 2000- T & N "

Детектор по п. 3.1 с TTL -входом и аэрозольным модулем "WLM-02T&N"

"Genitron Instrument" (Германия )

Непрерывное измерение ОА радона, температуры, давления и относит. влажности воздуха

Диапазон измерения по ОА в соответствии с п. 4.1. Диапазон измерения ЭРОА радона

5¸ 2×10 5

Бк/м 3 , с погрешностью ≤10%

есть

Радон-монитор " Alpha GUARD PQ 2000- S " в комплекте с почвенным зондом "Soil-Kit", глубина отбора проб 20 - 100 см

Импульсная ионизационная камера с 3d-спектрометрической обработкой сигнала

"Genitron Instrument" (Германия )

Непрерывное измерение ОА радона, температуры, давления и относит. влажности воздуха

Диапазон измерения ОА радона в почвенном воздухе

1000 ¸ 2×10 6

Бк/м 3 , с погрешностью ≤10% (время 1 измерения не более 15 – 20 минут)

есть

Монитор радона и ДПР серии EQF-30хх

р адон ППД с электростатическим осаждением ; связанная и свободная фракции ДПР

SARAD (Германия) (ЗАО КПЦЕ)

ОА радона и ДПР в воздухе; возможно также измерение ОА торона

Диапазон измерения ОА радона и каждого из ДПР

5 ¸ 1×10 7

Бк/м 3 , с погрешностью, зависящей от времени измерения

есть

Средства измерений данного типа, кроме основной, могут иметь дополнительную погрешность, значение которой зависит главным образом от относительной влажности воздуха в контролируемом помещении. Кроме того, на результаты измерений может оказывать существенное влияние характер измерения ОА радона в помещении, причем связанная с этим дополнительная погрешность контролю практически не поддается.

Приложение 4

Оценка потенциала радоноопасности территорий

Оценка потенциальной радоноопасности территории застройки вблизи обследуемого здания определяется следующими факторами, перечисленными ниже в порядке убывания своей значимости:

- ЭРОА или ОА изотопов радона в принимаемых в эксплуатацию или эксплуатируемых зданиях, расположенных на данной территории застройки вблизи обследуемого здания;

Плотностью потока (интенсивностью эксхаляции) j (мБк/с × м 2) радона с поверхности земли;

- ОА радона С Rn в почвенном воздухе на глубине 1 метра от поверхности земли;

Удельной активностью радия-226 С Ra в слоях пород геологических разрезов.

В таблице 1 дана приближенная оценка потенциальной радоноопасности территорий, разбитой на 3 категории. Допускается производить оценку потенциальной радоноопасности

Таблица 1

ЭРОА изотопов радона, Бк/м 3

Плотность потока радона j , мБк/с×м 2

ОА радона С Rn , кБк/м 3

С Ra , Бк/кг

< 25

< 20

< 10

< 100

25 - 100

20 - 80

10 - 40

100 - 400

> 100

> 80

> 40

> 400

В таблице 1 дана приближенная оценка потенциальной радоноопасности территорий, разбитой на 3 категории. Допускается производить оценку потенциальной радоноопасности территории застройки на основе известного значения одного из четырех факторов, приведенных в таблице 1. Если известны значения двух и более факторов, приведенных в таблице 1, то потенциальную радоноопасность территории вблизи обследуемого здания оценивают по значению, соответствующему наибольшей степени потенциальной радоноопасности.

В таблице 2 приведен минимальный объем радиационного контроля в зависимости от степени потенциальной радоноопасности территории вблизи обследуемого здания, содержания 226 Ra в стройматериалах и засыпке, конструкции фундамента, наличия вентиляции в подвальном пространстве, назначения здания.

Таблица 2

Число помещений на различных этажах (в процентах от их общего числа на каждом этаже), подлежащих обследованию. Для подвального помещения приведено количество точек измерений, которое также зависит и от общей площади подвала.

Факторы, определяющие объем контроля

Подвал

Первый этаж

Верхний этаж

Другие этажи

Столбчатый фундамент без ограждающих подполье конструкций;

Принудительная вентиляция подполья и помещений

Сплошная монолитная фундаментная железобетонная плита;

Отсутствие вентиляции подполья

Отсутствие подпольного пространства;

Обследуются школьные и дошкольные учреждения, односемейные дома и коттеджи

5-10

Приложение 5

(справочное) 1

63.657

13

2.160

3.012

25

2.060

2.787

2

4.303

9.925

14

2.145

2.977

26

2.056

2.779

3

3.182

5.841

15

2.131

2.947

27

2.052

2.771

4

2.776

4.604

16

2.120

2.921

28

2.048

2.763

5

2.571

4.032

17

2.110

2.898

29

2.045

2.756

6

2.447

3.707

18

2.101

2.878

30

2.043

2.750

7

2.365

3.499

19

2.093

2.861

40

2.021

2.704

8

2.306

3.355

20

2.086

2.845

60

2.000

2.660

9

2.262

3.250

21

2.080

2.831

120

1.980

2.617

10

2.228

3.169

22

2.074

2.819

>120

1.960

2.576

11

2.201

3.106

23

2.069

2.807

12

2.179

3.055

24

2.064

2.797

где: N 0 и N k - число повторных измерений на открытой местности (в пункте с наименьшим средним значением МЭД) в k -ом помещении, соответственно.


В я попробовал внести ясность в путаницу среди обилия дозиметрических единиц измерения. Теперь же я хочу в доступном виде объяснить как расшифровывать показания дозиметра.

В дозиметрии используются только показатели поглощённой эквивалентной эфективной дозы. Она измеряется в зивертах. Среди важных режимов измерений выделяют определение накопленной поглощённой дозы.

Дело в том, что организм способен накоплять всю поглощённую за свою жизнь радиацию в виде необратимых изменений тканей и органов а так же радионуклидов, оседающих во внутренних тканях. Поскольку в природе постоянно присутствует некоторое фоновое излучение, то человек за свою жизнь накопляет дозу от 100 до 700 мЗв (милизивертов). Этот показатель рассчитан на 70 лет жизни. При таком раскладе совсем не трудно рассчитать норму полученой накопленой дозы за год или в сутки. Получается, что в год мы «должны» собрать норму в 1,43 - 10 мЗв, а за сутку, соответственно 0,004 - 0,027 мЗв. Накопленый эквивалент дозы измерятся после включения дозиметра и до тех пор, пока его не выключат или пока не обнулят результаты измерений.

Согласно показаниям моего дозимерта, за 32 часа и 48 минут я поймал 0,005 мЗв (мили зиверта) радиации, что вполне даже соответствует норме.

Но при некоторых «нестандартных ситуациях» бывает, что человек может поймать дозу излучения, во многие разы превышающую естественные фоновые показатели. Эту дозу можно накопить за раз (разовое облучение), кратковременно (облучение до 4-х суток подряд) или на протяжении многих лет.

Облучение малыми дозами но длительное время считается намного опаснее, чем облучение большой дозой, но за короткий промежуток времени.
3 мЗв/год - считается абсолютно безопасной нормальной дозой радиационного фона.

20 мЗв/год - предел годовой дозы облучения для работников ядерной и других видов радиационно-опасных работ.

150 мЗв/год - увеличивает вероятность возникновения онкологических заболеваний.

250 мЗв - после достижения этого порога накопленной дозы ликвидатора аварии на ЧАЭС больше не допускали до опасной работы и отправляли из Чернобыля.

Это были варианты получения накопленных доз за длительное время.
При кратковременном облучении граница предельно допустимой накопленой дозы поднимается.

До 0,01 мЗв - эту дозу можно не учитывать.

Если за одну смену рабочий имеет риск превысить порог в 0,2 мЗв , такая работа относится к радиационно опасным и предполагает ношение дозиметра.

До 100 мЗв - допустимое разовое (!) аварийное облучение населения. Медицинскими методами каких-либо заметных отклонений в строении тканей и органов не наблюдается.

Разовое облучение свыше 200 мЗв считается потенциально опасным, критическим для здоровья.

Облучение дозой 500-1000 мЗв вызывает чувство усталости, наблюдаются умеренные изменения в составе крови. Состояние нормализуется через некоторое время. Но появляется вероятность появления в будущем онкологических заболеваний.

1000-1500 мЗв (1-1,5 Зв) за раз могут вызвать симптомы, указывающие на реакцию органов и систем - тошнота, рвота, нарушение работспособности. Возникают различные формы лучевой болезни.

После значения доз 1500 мЗв (1,5 Зв) и выше (высокие уровни облучения) принято измерять поглощённую дозу в грэях (1 Зв = 1 Гр). Очевидно, что облучённый объект уже не воспринимают как «биологический» (вот такой у нас, медиков, чёрный юмор).

1,5-2,5 Гр (1500-2500 мЗв) - наблюдается кратковременная лёгкая форма лучевой болезни, которая появляется в виде выраженной, продолжающейся длительное время лейкопении (снижения числа лейкоцитов). В 30-50% случаев может наблюдаться рвота в первые сутки после облучения. При дозах больше 2 грэй - высок риск летального исхода.

2,5-4 Гр (2500-4000 мЗв) - возникает лучевая болезнь средней степени тяжести. У всех облученных в первые сутки после облучения наблюдается тошнота и рвота, резко снижается содержание лейкоцитов и появляются подкожные кровоизлияния. Такие дозы - вызывают существенный, непоправимый ущерб здоровью, облысение и белокровие.

Смертельные дозы проникающей радиации:

3-4 Гр (3000-4000 мЗв) - повреждение костного мозга, в течение месяца после облучения смертельный исход возможен у 50% облученных (без медицинского вмешательства).

4-7 Гр (4000-7000 мЗв) - развивается тяжелая форма лучевой болезни и высока смертность.

Свыше 7 Гр (7000 мЗв) - крайне тяжелая форма острой лучевой болезни. В крови полностью исчезают лейкоциты. Появляются множественные подкожные кровоизлияния. Смертность 100%. Причиной смерти, чаще всего являются инфекционные заболевания и кровоизлияния.

10Гр (10 зВ) - смерть в течение 2-3 недель.

15 Гр - 1-5 суток и всё.

Таким образом, накопленная эквивалентная эфективная доза является числом "показательным ". Она уже имеется и ничего с ней не сделаешь. Но есть ещё и показатель "предсказательный ". Он называется мощностью дозы эквивалентного эфективного облучения . Он тоже измеряется в зивертах/час, но показывает «будущее».

На моём дозиметре состоянием на 21:42 (29.01.2012) видно, что мощность эквивалентной эфективной дозы гамма-излучения на текущий момент составляет 0,16 мкЗв/час (микро зиверта в час) с погрешностью 20% (измерить настолько непостоянную величину, как радиоактивный распад можно лишь с погрешностью). Порог срабатывания сигнализации установлен на значение 0,3 мкЗв/час. Это значит, что можно быть увереным в том, что при текущем положении дел через один час я поймаю дозу в 0,16 мкЗв = 0,00016 мЗв . Этот показатель является в пределах допустимого фонового излучения.

0,2 мкЗв/час (~20 микрорентген/час) - наиболее безопасный уровень мощности фонового излучения.

0,3 мкЗв/час (~30 мкР/час) - предел безопасного фонового излучения, установленый санитарными нормами в Укранине.

0,5 мкЗв/час (~50 мкР/час) - верхний предел допустимой безопасной мощности дозы фонового излучения.

Сократив время непрерывного нахождения до нескольких часов - люди могут без особого вреда своему здоровью перенести излучение мощностью в 10 мкЗв/час , а при времени экспозиции до нескольких десятков минут - относительно безвредно облучение с интенсивностью до нескольких миллизивертов в час (при медицинских исследованиях - флюорография, небольшие рентгеновские снимки и др.).

В качестве базовой использовалась эта статья. В ней ещё очень много интересного. Описаны методы защиты от радиации а так же способ создания радиометра «из подручных средств».

Спасибо за внимание.

Наблюдения за радиоактивностью объектов окружающей среды города выполняются согласно программам и постановлениям Правительства Москвы «О мерах по повышению радиационной безопасности населения г. Москвы».

Система радиационно-экологического мониторинга (РЭМ) охватывает всю территорию г. Москвы (в старых границах по 10 административным округам и территорию «Новой Москвы» Троицкого и Новомосковского административных округов), постоянно совершенствуется и состоит из следующих основных блоков: стационарные средства контроля, мобильные средства контроля, аналитический центр.

Стационарные средства контроля включают в себя наземную режимную сеть наблюдения, сеть стационарных постов контроля воздушного и водного бассейнов, сеть измерителей радиационного фона (рис. 1).

Мобильные средства радиационно-экологического контроля включают автомобильный комплекс для проведения автомобильной гамма съемки по магистралям и улицам города, а также мобильный водный комплекс, который проводит оценку радиационных параметров поверхностных вод и донных отложений реки Москвы.

Ежегодно анализируется более 2500 проб объектов окружающей среды.

Атмосферный воздух. На стационарных постах радиационного контроля (6 постов) контролировалась радиоактивность атмосферных аэрозолей и их выпадений на подстилающую поверхность в течение всего года. Пробы аэрозолей отбирались с помощью ВФУ типа «Тайфун-4» производительностью до 1200 м 3 /ч и «Тайфун-5» производительностью до 3000 м 3 /ч, с осаждением аэрозолей на фильтр ФПП-15-1,5. Атмосферные выпадения собирались в высокобортные кюветы. После недельной экспозиции пробы поступали на радиометрический и γ-спектрометрический анализы.

В таблице 1 представлены результаты измерений объемных активностей радионуклидов в атмосферном воздухе г. Москвы.

Таблица 1. Средние объемные активности радионуклидов в атмосферном воздухе г. Москвы, Бк/м 3

3,3 . 10 -3

3,7 . 10 -7

1,7 . 10 -5

8,9 . 10 -7

8,4 . 10 -7

8,3 . 10 -7

Значения величин объемной активности радионуклидов 226 Ra, 232 Th, 40 К объясняются процессами вторичного пылеподъема (ресуспензии) с поверхности земли.

Объемная активность радионуклида йода 131 I регистрировалась в каждом месяце, но не каждую неделю. Диапазон изменения величин объемной активности 131 I составил от 1,4.10 -7 до 2,8.10 -5 Бк/м 3 при среднем значении 1,9.10 -6 Бк/м 3 .

В таблице 2 представлены результаты измерений плотности радиоактивных выпадений в г. Москве.

Таблица 2. Плотность радиоактивных выпадений в г. Москве, Бк/(м 2 ·год)

Поверхностные воды и донные отложения. Стационарные посты гидросферы (7 постов) расположены на створах рек Москвы, Сетуни, Сходни и Яузы, а также в устье Соболевского ручья, как наиболее вероятного места поступления антропогенных загрязнений.

В таблице 3 представлены результаты измерений объемной активности радиоактивных веществ в воде открытых водоемов г. Москвы.

Таблица 3. Средняя объемная активность радиоактивных веществ в воде открытых водоемов, Бк/л

В таблице 4 представлены результаты измерений средней удельной активности радиоактивных веществ в донных отложениях открытых водоемов г. Москвы.

Таблица 4. Средняя удельная активность радиоактивных веществ в донных отложениях открытых водоемов г. Москвы, Бк/кг

Мощность эквивалентной дозы контролируется сетью измерителей радиационного фона (ИРФ) - 66 датчиков. ИРФ размещены с учетом охвата всех административных округов на магистралях, на крупных предприятиях, в местах большого скопления людей. Получение данных от датчиков проводится круглосуточно.

Кроме того, носимыми приборами в 2014 г. выполнено более 3000 измерений мощности эквивалентной дозы гамма-излучения. Средняя годовая мощность эквивалентной дозы гамма-излучения на территории Москвы составила 0,12 мкЗв/ч, при максимальном значении 0,20 мкЗв/ч (Котельническая наб., 1/15), что соответствует фоновым значениям. В 134 точках режимной сети термолюминесцентными датчиками (ТЛД) определялась интегральная поглощенная доза облучения от внешних источников облучения, которая в 2014 г. составила 0,86 мГр/год.

Радиоактивность почвы определялась в каждом из 134 пунктов контроля по пробам, отобранным с площадок 10х10 м 2 методом “конверта” из 5 см верхнего слоя.

В таблице 5 представлены результаты измерений средней плотности загрязнения техногенными радионуклидами почвы г. Москвы.

Таблица 5. Средняя плотность загрязнения техногенными радионуклидами почвы г. Москвы, Бк/м 2

В таблице 6 представлены результаты измерений удельной активности естественных радионуклидов в почве г. Москвы.

Таблица 6. Средняя удельная активность естественных радионуклидов в почвах г. Москвы, Бк/кг

Радиационные обследования объектов

Проведено обследование на содержание эквивалентной равновесной объемной активности (ЭРОА) радона 215 жилых зданий, 283 зданий детских образовательных учреждения (ДОУ) и зданий школ. Среднегодовые значения ЭРОА изотопов радона в обследованных квартирах и служебных помещениях находилась в пределах от 6 до 104 Бк/м 3 , в подвалах – от 6 до 295 Бк/м 3 .

Результаты радиационно-экологического мониторинга в Троицком и Новомосковском округах («Новая Москва»)

На рис. 2 представлена схема расположения пунктов отбора проб на временной режимной сети радиационного контроля и временной режимной сети наблюдения за водными объектами в Троицком и Новомосковском административных округах г. Москвы

Условные обозначения:

Результаты контроля содержания радионуклидов в пробах почвы и снежного покрова

Основные результаты радиационных параметров отобранных проб почвы и снежного покрова, отобранных в пунктах регулярной режимной сети радиационного контроля, представлены в таблицах 7-8.

Таблица 7. Средняя удельная активность радионуклидов в почвах (грунта), Бк/кг

Территория

отбора проб

А эфф

г. Москва

Таблица 8. Средняя радиоактивность радионуклидов снежного покрова, МБк/км 2

Территория отбора проб

г. Москва

Фактически полученные и приведенные в таблицах величины радиационных параметров проб почвы (грунта) и снежного покрова не превышают значений контрольных уровней, установленных для города Москвы.

Результаты контроля содержания радионуклидов в пробах воды и донных отложениях открытых водоёмов

Основные результаты радиационных параметров отобранных проб поверхностной воды и донных отложений, отобранных в пунктах радиационного контроля на режимных створах водного бассейна ТиНАО города Москвы, представлены в таблице 9.

Таблица 9. Средние значения удельных активностей радионуклидов в поверхностной воде и донных отложениях открытых водоемов

Территория отбора проб

Поверхностные

воды, мБк/кг

Донные отложения, Бк/кг

А эфф

г. Москва

Фактически полученные и приведенные в таблицах величины радиационных параметров проб поверхностной воды и донных отложений открытых водоемов не превышают значений контрольных уровней, установленных для города Москвы.

Результаты контроля содержания радионуклидов в пробах растительности травянистого яруса

Основные результаты радиационных параметров отобранных проб растительности травянистого яруса (трава, листва кустарников и деревьев), отобранных в пунктах регулярной режимной сети радиационного контроля представлены в таблице 10.

Таблица 10. Средняя удельная активность радионуклидов растительности травянистого яруса, Бк/кг

Территория отбора проб

г. Москва

Фактически полученные и приведенные в таблице величины радиационных параметров проб растительности травянистого яруса находятся в пределах значений многолетних наблюдений характерных для города Москвы.

Результаты контроля мощности эквивалентной дозы гамма-излучения и интегральной поглощенной дозы

Мощность эквивалентной дозы гамма-излучения (МЭД ГИ) и интегральные поглощенные дозы на территории округа контролировались:

  • носимыми дозиметрами (дозиметрами - радиометрами) при отборе проб окружающей среды;
  • автоматизированными измерителями радиационного фона (ИРФ) в пунктах АСКРО круглосуточно в режиме реального времени на протяжении всего года;
  • термолюминесцентными дозиметрами (ТЛД) с экспозицией равной шести месяцам для каждой группы дозиметров.

Результаты среднегодовых значений радиационного фона представлены в таблице 11.

Таблица 11. Среднегодовые значения МЭД ГИ, радиационного фона и интегральной поглощенной

Фактически полученные и приведенные в таблицах величины радиационных параметров не превышают значений контрольных уровней, установленных для города Москвы и многолетних наблюдений.

Контроль эквивалентной равновесной объемной активности (ЭРОА) дочерних продуктов радона в помещениях

Обследование помещений государственных бюджетных образовательных учреждений (ГБОУ) в городских округах «Троицк» и «Щербинка» осуществлялось с целью определения в них показателей радиационной безопасности.

В городском округе Троицк обследованы 30 ГБОУ и 30 жилых помещений. Получены следующие результаты: величина измеренной ЭРОА дочерних продуктов радона в воздухе помещений варьируется от 4 до 85 Бк/м 3 ; в подвалах – от 7 до 235 Бк/м 3 . МЭД ГИ в обследованных помещениях изменялась от 0,08 до 0,15 мкЗв/ч.

В городском округе Щербинка обследованы 30 жилых помещений. Получены результаты: величина измеренной ЭРОА радона в воздухе помещений варьируется от 6 до 44 Бк/м 3 ; в подвалах – от 6 до 80 Бк/м 3 . МЭД ГИ в обследованных помещениях изменялась от 0,07 до 0,11 мкЗв/ч. В районе расположения этих зданий произведены замеры содержания радона в атмосфере и МЭД ГИ на прилегающей местности. В атмосферном воздухе на прилегающей к зданиям территории ЭРОА радона не превышает 6 Бк/м 3 , а значения МЭД ГИ изменяются от 0,07 до 0,10 мкЗв/ч.

Фактически полученные величины значений МЭД ГИ и ЭРОА дочерних продуктов радона не превышают нормативных данных и данных многолетних наблюдений.

Результаты автомобильной гамма съемки улично-дорожной сети округа

Методом АГС были обследованы транспортные магистрали и дороги в крупных населённых пунктах ТиНАО, а также городские и сельские поселения, находящиеся на территории этих округов. Полученные результаты обследования транспортных магистралей ТиНАО представлены в таблице 12.

Таблица 12. Результаты обследования транспортных магистралей, находящихся на территории ТиНАО

Значения МЭД ГИ на транспортных магистралях ТиНАО находились в диапазоне 0,08 – 0,27 мкЗв/ч. Среднее значение МЭД ГИ по данным АГС составляет 0,12 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Полученные результаты обследования методом АГС дорог в крупных населённых пунктах ТиНАО представлены в таблице 13.

Таблица 13. Результаты обследования дорог в крупных населённых пунктах, находящихся на территории ТиНАО

Значения МЭД ГИ на дорогах в обследованных населённых пунктах находились в диапазоне 0,08 – 0,30 мкЗв/ч. Среднее значение МЭД ГИ по данным АГС составляет 0,14 мкЗв/ч. Значения превышающие 0,20 мкЗв/ч обусловлены спецификой дорожных материалов.

Автомобильная гамма-съёмка в Новомосковском АО проводилась по основным транспортным магистралям в пределах населённых пунктов округа.

Значения МЭД ГИ на маршрутах находились в пределах от 0,08 до 0,28 мкЗв/ч, при среднем значении 0,14 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Результаты работ по обследованию методом АГС дорог городских и сельских поселений округа представлены в таблице 14.

Таблица 14. Результаты обследования городских и сельских поселений в Новомосковском АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям в пределах населённых пунктов округа и на подъездных дорогах к радиационно-опасным объектам округа.

Значения МЭД ГИ на маршрутах находились в пределах от 0,08 до 0,30 мкЗв/ч, при среднем значении - 0,14 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Результаты обследования методом АГС городских и сельских поселений округа приведены в таблице 15.

Таблица 15. Результаты обследования городских и сельских поселений по Троицкому АО

№ п/п

Название поселений, находящихся на территории Троицкого АО

СП Михайлово-Ярцевское

СП Первомайское

СП Новофёдоровское

ГП Киевское

ГО Троицк

СП Щаповское

СП Клёновское

В целом по округу:

Превышений допустимых значений МЭД ГИ и участков техногенного радиоактивного загрязнения на подъездных дорогах к радиационно-опасным предприятиям округа не обнаружено.

Результаты обследования методом АГС подъездных дорог к радиационно-опасным предприятиям приведены в таблице 16.

Таблица 16. Результаты обследования подъездных дорог к радиационно-опасным предприятиям

№ п/п

Наименование предприятий

Максимальные значения МЭД ГИ, мкЗв/ч

Институт земного магнетизма им. Н.В. Пушкова (ИЗМИРАН)

Институт физики высоких давлений им. Л.Ф. Верещагина (ИФВД)

Филиал Физического института РАН (ФИАН) ОКБ (ФИАН)

Контроль мощности эквивалентной дозы и интегральной поглощенной дозы

Мощность эквивалентной дозы и интегральной поглощенной дозы на территории округа контролируется следующими методами:

  • мощность эквивалентной дозы гамма-излучения (МЭД ГИ) - носимыми радиометрами при отборе проб окружающей среды;
  • методом термолюминесцентной дозиметрии (ТЛД) с непрерывной экспозицией по шесть месяцев (интегральная поглощенная доза - Д).

Результаты среднегодовых значений радиационного фона даны в таблице 17.

Таблица 17. Мощность эквивалентной дозы и интегральная поглощенная доза

Территория

МЭД ГИ, мкЗв/ч

Д, мГр/год

г. Москва

Автомобильная гамма-съёмка территории Новомосковского АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям, на территориях в пределах населённых пунктов округа и на подъездных путях к радиационно-опасным объектам округа. Значения МЭД ГИ на обследованных маршрутах находились в пределах естественного радиационного фона от 0,06 до 0,25 мкЗв/ч. Значения МЭД ГИ около радиационно-опасных объектов определялись в фиксированных контрольных точках (КТ), расположенных в местах наибольшей потенциальной радиационной опасности. Результаты обследования объектов и магистралей приведены в таблице 18.

Таблица 18. Результаты АГС

Название магистралей и объектов, находящихся на территории НАО

Значения МЭД ГИ, мкЗв/ч

макс.

Киевское ш.

Калужское ш.

Варшавское ш.

Боровское ш.

Трасса между Калужским ш. и Киевским ш. через деревню Летово, Валуево, свхз. Московский

Завод «Мосрентген»

Автомобильная гамма-съёмка территории Троицкого АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям, на территориях в пределах населённых пунктов округа и на подъездных путях радиационно-опасным объектам округа. Значения МЭД ГИ на обследованных маршрутах находились в пределах естественного радиационного фона от 0,06 до 0,25 мкЗв/ч. Значения МЭД ГИ около радиационно-опасных объектах определялись в фиксированных контрольных точках (КТ), расположенных в местах наибольшей потенциальной радиационной опасности. Результаты обследования объектов и магистралей приведены в таблице 19.

Таблица 19. Результаты АГС

Название магистралей и объектов, находящихся на территории ТАО

Значения МЭД ГИ, мкЗв/ч

макс.

Киевское ш.

Калужское ш.

Подольское ш.

Боровское ш.

Трасса между Калужским ш. и Киевским ш. через д. Птичное, Первомайское

Трасса между Калужским ш. и Подольским ш. через Щапово, Шаганино

Бетонное кольцо (часть) (трасса А107)

Троицкий институт инновационных и термоядерных исследований (ТРИНИТИ)

Институт земного магнетизма имени Н.В.Пушкова (ИЗМИРАН)

Институт физики высоких давлений имени Л.Ф.Верещагина, Троицкий филиал (ИФВД)

Филиал Физического института РАН (ФИАН), ОКБ ФИАН

Институт спектроскопии РАН (ИСАН)

Институт ядерных исследований РАН (ИЯИ РАН)

Пешеходный радиационный контроль территорий ТиНАО

Проведен пешеходный радиационный контроль территорий, прилегающих к радиационно-опасным объектам, определенным распоряжением Правительства РФ от 14.09.2009 №1311-р (в ред. от 11.04.2011 г.).

Проведен поисковый (пешеходный) радиационный контроль территорий Троицкого и Новомосковского административных округов в городе Москве на площадях 225 000 м 2 и 275 000 м 2 соответственно, общей площадью - 500 000 м 2 .

В Троицком административном округе в ГО Троицк обследованы территории микрорайона Солнечный (между улицами Физическая, Солнечная и Октябрьским проспектом), парка усадьбы Троицкое, территория по Октябрьскому проспекту вокруг Детской школы искусств им. М.И. Глинки. В СП Краснопахорское обследована территория спортивного парка «Красная Пахра».

В Новомосковском административном округе в поселке Мосрентген обследована территория вокруг прудов между улицей Мосрентген (напротив завода Мосрентген) и проездом Героя России Соломатина и территория городского парка по улице Мосрентген.

В ГП Московский обследована территория вблизи деревни Саларьево в 1,2 км от полигона ТБО «Саларьево» рядом с площадкой под строительство электродепо метро «Саларьево».

Максимальное значение МЭД ГИ на обследованной территории равно 0,23 мкЗв/ч, что не превышает допустимых значений по ОСПОРБ 99/2010 п.5.1.6. Источников ионизирующих излучений и локальных радиационных аномалий на обследованной территории не выявлено.

Выводы

  1. Контролируемые радиационные параметры объектов окружающей среды в 2014 году находились в пределах значений, соответствующих радиационному фону, характерному для города Москвы, и не превышали установленных контрольных уровней («Контрольные уровни обеспечения радиоэкологической безопасности населения г. Москвы» М., 2008).
  2. Значения интегральных поглощенных доз находятся в пределах естественных вариаций и не превышают средних доз по городу Москве.
  3. Наличие в Москве большого количества радиационно-опасных объектов и предприятий-владельцев радиоактивных веществ (РВ) и радиоактивных отходов (РАО) создает потенциальную опасность радиационного инцидента.

Заключение

Анализ радиационно-экологической обстановки в Москве за 2014 г. показал, что значения контролируемых радиационных параметров объектов окружающей среды находились в пределах многолетних колебаний техногенного фона столицы.

Мощность экспозиционной дозы, рассчитанной по гамма-излучению - устаревший критерий дозы. Интенсивность потока ионов (собственно, физическая суть радиации) теперь считают иначе. По современным критериям применяют мощность эквивалентной дозы. Ее основа - замер биологических последствий ионизирующего излучения на организм за темпоральный промежуток (час, сутки и т. д.). МЭД считается более адекватным нуждам медицины, нежели более абстрактный замер «гаммы», не учитывающий многих параметров. Современные же требования экологии и радиобезопасности по работе в местах с повышенным излучением намного строже и должны быть направленными на отслеживание и ликвидацию возможных последствий превышения значений ионизирующего излучения.

Старые методики замеров до 1990 года

Существенным отличием от МЭД, основой «чернобыльских» нормативов, была экспозиционная доза, считавшая поток фотонов, ионизирующих воздух. Физиками этот процесс отлично исчисляется, однако сведения о мощности дозы не могли точно покрыть требования по медицинским анализам.

В формуле дозу рассчитывали в качестве электрозаряда ионов, которые образуются тормозящим излучением в сухом воздухе при делении на массу объема воздуха. В физических величинах это ампер в секунду, т. е. обоснование количества энергии, поглощенной объектом под потоком радиации.

В качестве же хрестоматийной системной единицы используется рентген в секунду. Рентген - устаревшая мера излучения, в наше время используют зиверты. Причина, почему именно с 1990 года совершена реформа - выход новых комплексных методичек по дозиметрам. Тем самым полностью обновлен модельный ряд детекторов и внедрены более современные стандарты радиобезопасности. На основе кумулятивного опыта радиационных аварий были установлены фундаментальные изъяны использования рентгенов в час в качестве единиц измерения:

  • Слишком грубые замеры. «Формально» ионизирующий поток по формуле просчитан корректно. Однако недостаточно раскрыты второстепенные физические явления, показывающие изменения в итоговых масштабах облучения.
  • Нет соотношения с воздействием в биологическом плане: экспозиционная доза в разных условиях плотности ионизации имеет весьма вариативные последствия.
  • Старым методом было нереально проверить накопленное облучение за определенный период, также упускались многие биологические параметры.

Каковы современные методы, чтобы проверить мощность дозы гамма излучения?

Современная оценка ионизации базируется на измерении мощности дозы гамма излучения в виде эквивалентной дозы за фиксированный темпоральный промежуток. Именно так исследователи оценивают долгосрочные биологические изменения от ионизирующего излучения. Суммарная мощность складывается из суммы бета-фона, гамма-излучения, рентгеновских лучей, соответственно, принятым поправочным коэффициентам.

Измеряется мощность зивертами в единицу времени. Один зиверт - гигантская доза (например, шесть зивертов - это летальная лучевая болезнь), поэтому для расчета практики постоянного и временного облучения практикуют миллизиверты.

Однако даже новейший подход не справляется со всеми факторами, касающимися человеческого метаболизма под ионизирующим облучением. Ткани разной плотности и химического состава, кости, жидкости внутри организма по-разному радиопроницаемы и выводят нуклиды также специфически. Радиобиология сегодня учитывает как направление пучка лучей, так и расположение их внешнего источника, возрастные показатели, метеорологию и так далее.

Занимается дифференцированной дозиметрией и тем самым помогает определять мощность дозы согласно современным рекомендациям. В компании представлены наиболее чувствительные измерительные приборы, а также опытный персонал, занимающийся постановкой точных диагнозов. Заказать услуги инженеров «Радэк» можно по номеру телефона, указанному на сайте.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ