Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Введение

В настоящее время эксплуатируются и строятся тепловые, гидравлические, атомные, газотурбинные и дизельные электростанции, теплоэлектроцентрали, которые объединены в единую энергосистему с общим режимом и непрерывностью процесса производства и распределения электроэнергии. Наиболее распространенными из них являются тепловые турбинные электростанции. Они имеют развитое топливное хозяйство, отделения подготовки топлива к сжиганию, котлоагрегаты, где сжигают топливо и получают пар под давлением до 12,74 МПа (130 кгс/см2) и температурой до 560 град. С и более. Пар подают на турбогенераторы, где вырабатывается электрический ток и по подвесным проводам или шинам передается на распределительные устройства или непосредственно на повышающие трансформаторы, а затем распределяется по линиям дальних электропередач.

Агрегаты и установки энергетических предприятий размещают в специально спроектированных зданиях I и II степеней огнестойкости. В главном корпусе электростанции размещают котельный цех, машинный зал, служебные помещения. В этом же корпусе или на небольшом расстоянии от него располагают главный щит управления и распределительные устройства генераторного напряжения. Закрытые или открытые распределительные устройства высокого напряжения (35, 110; 220; 500 кВ) располагают отдельно от главного корпуса.

Организация и тактика тушения пожаров электроустановках, электростанциях и подстанциях

пожар электроустановка тушение

Особенности развития пожаров на объектах энергетики

Машинные залы имеют большую пожарную нагрузку в виде машинного масла, систем смазки генераторов, а также электроизоляции обмоток генераторов и другой электроаппаратуры и устройств. Турбогенераторы в машинных залах располагают на специальных площадках высотой 8- 10 м и более от нулевой отметки. Системы смазки генераторов состоят из емкостей с маслом вместимостью 10-15 т, расположенных на нулевой отметке, насосов и маслопроводов, где давление масла может достигать 1,4 МПа (14 кгс/см2). Поэтому при повреждении масляных систем смазки огонь может быстро распространиться как по площадкам, так и на сборники масла, находящиеся на нулевой отметке. При разрушении трубопроводов систем смазки масло под высоким давлением может выходить и образовывать мощный горящий факел, который создает угрозу быстрой деформации и обрушения металлических ферм бесчердачного покрытия машинного зала и других металлоконструкций. Во время пожара в машинном зале при наличии водородного охлаждения генераторов возможны взрывы, которые приводят к разрушению маслопроводов и растеканию масла по площадкам и на нулевую отметку, соседние агрегаты, в кабельные туннели и полуэтажи. В условиях пожаров создают опасность взрыва сосуды и трубопроводы, находящиеся под высоким давлением.

Все кабельные помещения энергопредприятий подразделяют на кабельные полуэтажи, туннели, каналы и галереи. Кабельные галереи и полуэтажи, как правило, могут быть на электростанциях, а кабельные туннели и каналы на электростанциях и других энергетических предприятиях. Кабельные туннели бывают горизонтальные и наклонные, сечением 2X2 м и более. По длине их разделяют на отсеки противопожарными перегородками и дверьми. Длина одного отсека кабельного туннеля, расположенного под зданием, не должна превышать 40 м, а за пределами зданий 100-150 м. Каждый отсек туннеля должен иметь не менее двух люков диаметром 70-90 см, а также систему вентиляции и канализацию. В кабельных туннелях пожарная нагрузка (изоляция кабелей) может достигать 30-60 кг/м2.

Для тушения пожаров в кабельных помещениях устраивают стационарные водяные и пенные установки, а также могут применять водяной пар и инертные газы. Стационарные водяные и пенные установки имеют устройства для подачи огнетушащих средств от пожарных машин.

Рис. 11.1. Принципиальная схема подачи трансформатора распыленной воды при тушении пожара

Пожары в кабельных помещениях сопровождаются высокой температурой, разлетом искр расплавленного металла при коротком замыкании, большой скоростью распространения огня и дыма. В горизонтальных кабельных туннелях линейная скорость распространения огня по кабелям при снятом напряжении составляет 0,15-0,3, под напряжением 0,5-0,8, а в кабельных полуэтажах по кабелям под напряжением 0,2- 0,8 м/мин. Скорость роста температуры в кабельных помещениях по опытным данным составляет в среднем 35-50 °С за минуту.

В туннелях с маслонаполненными кабелями кроме изоляции может гореть трансформаторное масло, которое находится в трубах при температуре 35-40 °С и избыточном давлении. В этих туннелях, особенно при аварии, горящее масло быстро растекается по уклонам, где значительно увеличивается площадь пожара.

Пожары из кабельных помещений могут распространяться в здания и распределительные устройства энергопредприятий, создавать угрозу возникновения пожара и на других участках энергосетей.

Опасность представляют и подстанции.

Пожары на подстанциях могут возникать на трансформаторах, масляных выключателях и в кабельном хозяйстве. Крупные районные подстанции имеют специальные масляные станции, где находится большое количество трансформаторного масла. Трансформаторы и выключатели распределительных устройств устанавливают на фундаменты, под которыми располагают маслоприемники, соединенные с аварийными емкостями (рис. 11.1). Каждый трансформатор, как правило, помещают в отдельной камере, которая соединяется монтажными проемами с помещением распределительного щита и кабельными каналами.

Особенности развития пожаров трансформаторов зависят от места его возникновения. При коротком замыкании в результате воздействия электрической дуги на трансформаторное масло и разложения его на горючие газы могут происходить взрывы, которые приводят к разрушению трансформаторов и масляных выключателей и растеканию горящего масла. Пожары из камер, где установлены трансформаторы, могут распространяться в помещение распределительного щита и кабельные каналы или туннели, а также создавать угрозу соседним установкам и трансформаторам. О размерах возможного очага пожара можно судить по тому, что в каждом трансформаторе или реакторе содержится до 100 т масла.

Необходимо помнить, что пожары на электростанциях и подстанциях могут приводить к остановке не только энергетического объекта, но и других народнохозяйственных объектов из-за недостатка электрической энергии.

Все электростанции и подстанции снабжены надежной системой аварийной защиты и сигнализации. При возникновении пожаров поврежденное оборудование и аппараты автоматически отключаются устройствами релейной защиты.

Боевые действия по тушению пожаров

Успешное тушение пожаров на объектах энергетики во многом зависит от заблаговременной подготовки к тушению. Весь начальствующий состав, привлекаемый к тушению пожаров на этих объектах, должен тщательно изучить оперативно-тактические особенности и вместе с личным составом всех караулов, участвующих в тушении пожаров, не реже одного раза в год проходить специальный инструктаж под руководством инженерно-технического персонала энергообъекта по заранее разработанной программе.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Организация и тактика тушения пожаров электроустановках, электростанциях и подстанциях

1.1 Особенности развития пожаров на объектах энергетики

1.2 Боевые действия по тушению пожаров

1.3 Тушение трансформаторов, реакторов и масляных выключателей

1.4 Требование безопасности при тушении электроустановок

Заключение

Литература

Введение

В настоящее время эксплуатируются и строятся тепловые, гидравлические, атомные, газотурбинные и дизельные электростанции, теплоэлектроцентрали, которые объединены в единую энергосистему с общим режимом и непрерывностью процесса производства и распределения электроэнергии. Наиболее распространенными из них являются тепловые турбинные электростанции. Они имеют развитое топливное хозяйство, отделения подготовки топлива к сжиганию, котлоагрегаты, где сжигают топливо и получают пар под давлением до 12,74 МПа (130 кгс/см2) и температурой до 560 град. С и более. Пар подают на турбогенераторы, где вырабатывается электрический ток и по подвесным проводам или шинам передается на распределительные устройства или непосредственно на повышающие трансформаторы, а затем распределяется по линиям дальних электропередач.

Агрегаты и установки энергетических предприятий размещают в специально спроектированных зданиях I и II степеней огнестойкости. В главном корпусе электростанции размещают котельный цех, машинный зал, служебные помещения. В этом же корпусе или на небольшом расстоянии от него располагают главный щит управления и распределительные устройства генераторного напряжения. Закрытые или открытые распределительные устройства высокого напряжения (35, 110; 220; 500 кВ) располагают отдельно от главного корпуса.

1 . Организация и тактика тушения пожаров электроустановках, электростанциях и подстанциях

1 .1 Особенности развития пожаров на объектах энергетики

Машинные залы имеют большую пожарную нагрузку в виде машинного масла, систем смазки генераторов, а также электроизоляции обмоток генераторов и другой электроаппаратуры и устройств. Турбогенераторы в машинных залах располагают на специальных площадках высотой 8-- 10 м и более от нулевой отметки. Системы смазки генераторов состоят из емкостей с маслом вместимостью 10--15 т, расположенных на нулевой отметке, насосов и маслопроводов, где давление масла может достигать 1,4 МПа (14 кгс/см 2). Поэтому при повреждении масляных систем смазки огонь может быстро распространиться как по площадкам,так и на сборники масла, находящиеся на нулевой отметке. При разрушении трубопроводов систем смазки масло под высоким давлением может выходить и образовывать мощный горящий факел, который создает угрозу быстрой деформации и обрушения металлических ферм бесчердачного покрытия машинного зала и других металлоконструкций. Во время пожара в машинном зале при наличии водородного охлаждения генераторов возможны взрывы, которые приводят к разрушению маслопроводов и растеканию масла по площадкам и на нулевую отметку, соседние агрегаты, в кабельные туннели и полуэтажи. В условиях пожаров создают опасность взрыва сосуды и трубопроводы, находящиеся под высоким давлением.

Все кабельные помещения энергопредприятий подразделяют на кабельные полуэтажи, туннели, каналы и галереи. Кабельные галереи и полуэтажи, как правило, могут быть на электростанциях, а кабельные туннели и каналы на электростанциях и других энергетических предприятиях. Кабельные туннели бывают горизонтальные и наклонные, сечением 2X2 м и более. По длине их разделяют на отсеки противопожарными перегородками и дверьми. Длина одного отсека кабельного туннеля, расположенного под зданием, не должна превышать 40 м, а за пределами зданий 100--150 м. Каждый отсек туннеля должен иметь не менее двух люков диаметром 70--90 см, а также систему вентиляции и канализацию. В кабельных туннелях пожарная нагрузка (изоляция кабелей) может достигать 30--60 кг/м 2 .

Для тушения пожаров в кабельных помещениях устраивают стационарные водяные и пенные установки, а также могут применять водяной пар и инертные газы. Стационарные водяные и пенные установки имеютустройства для подачи огнетушащих средств от пожарных машин.

Рис. 11.1. Принципиальная схема подачи трансформатора распыленной воды при тушении пожара

Пожары в кабельных помещениях сопровождаются высокой температурой, разлетом искр расплавленного металла при коротком замыкании, большой скоростью распространения огня и дыма. В горизонтальных кабельных туннелях линейная скорость распространения огня по кабелям при снятом напряжении составляет 0,15--0,3, под напряжением 0,5--0,8, а в кабельных полуэтажах по кабелям под напряжением 0,2-- 0,8 м/мин. Скорость роста температуры в кабельных помещениях по опытным данным составляет в среднем 35--50 °С за минуту.

В туннелях с маслонаполненными кабелями кроме изоляции может гореть трансформаторное масло, которое находится в трубах при температуре 35--40 °С и избыточном давлении. В этих туннелях, особенно приаварии, горящее масло быстро растекается по уклонам, где значительно увеличивается площадь пожара.

Пожары из кабельных помещений могут распространяться в здания и распределительные устройства энергопредприятий, создавать угрозу возникновения пожара и на других участках энергосетей.

Опасность представляют и подстанции.

Пожары на подстанциях могут возникать на трансформаторах, масляных выключателях и в кабельном хозяйстве. Крупные районные подстанции имеют специальные масляные станции, где находится большое количество трансформаторного масла. Трансформаторы и выключатели распределительных устройств устанавливают на фундаменты, под которыми располагают маслоприемники, соединенные с аварийными емкостями (рис. 11.1). Каждый трансформатор, как правило, помещают в отдельной камере, которая соединяется монтажными проемами с помещением распределительного щита и кабельными каналами.

Особенности развития пожаров трансформаторов зависят от места его возникновения. При коротком замыкании в результате воздействия электрической дуги на трансформаторное масло и разложения его на горючие газы могут происходить взрывы, которые приводят к разрушению трансформаторов и масляных выключателей и растеканию горящего масла. Пожары из камер, где установлены трансформаторы, могут распространяться в помещение распределительного щита и кабельные каналы или туннели, а также создавать угрозу соседним установкам и трансформаторам. О размерах возможного очага пожара можно судить по тому, что в каждом трансформаторе или реакторе содержится до 100 т масла.

Необходимо помнить, что пожары на электростанциях и подстанциях могут приводить к остановке не только энергетического объекта, но и других народнохозяйственных объектов из-за недостатка электрической энергии.

Все электростанции и подстанции снабжены надежной системой аварийной защиты и сигнализации. При возникновении пожаров поврежденное оборудование и аппараты автоматически отключаются устройствами релейной защиты.

1 .2 Боевые действия по тушению пожаров

Успешное тушение пожаров на объектах энергетики во многом зависит от заблаговременной подготовки к тушению. Весь начальствующий состав, привлекаемый к тушению пожаров на этих объектах, должен тщательно изучить оперативно-тактические особенности и вместе с личным составом всех караулов, участвующих в тушении пожаров, не реже одного раза в год проходить специальный инструктаж под руководством инженерно-технического персонала энергообъекта по заранее разработанной программе.

На каждом энергопредприятии хранят необходимое количество диэлектрической обуви, перчаток и заземляющих устройств. Определяют порядок их выдачи прибывающим пожарным подразделениям и оказание им помощи по заземлению пожарной техники и проверки надежности заземления. Заземлители должны быть выполнены из гибких медных проводов сечением не менее 10 мм 2
и иметь струбцины для подключения к заземленным конструкциям.

Дежурный персонал (начальник смены станции, диспетчер или дежурный подстанции, предприятия энергосети) при пожаре немедленно сообщает в пожарную охрану, руководству энергообъекта и диспетчеру энергосистемы. Старший по сменеопределяет место пожара, возможные пути его распространения, а также угрозу электрооборудованию, установкам и конструкциям" здания, находящимся в зоне пожара. Он проверяет включение автоматических установок пожаротушения, производит действия по аварийному режиму, своими силами приступает к тушению пожара, выделяет представителя для встречи пожарных подразделений и до их прибытия руководит тушением пожара.

Старший начальник, возглавляющий пожарные подразделения, по прибытии на пожар немедленно связывается со старшим по смене и получает от него необходимые сведения о пожаре. Старший из числа технического персонала или оперативной выездной бригады (ОВБ) проводит с личным составом пожарных подразделений тщательный инструктаж и выдает письменное разрешение на проведение работ по тушению пожара. При этом на месте пожара представитель энергообъекта устанавливает и обозначает указателями зону, где могут проводить пожарные подразделения боевые действия по тушению.

В разрешении на проведение тушения пожара указывают наименование объекта, место проведения тушения пожара, какие установки разрешается тушить, обесточенные и не обесточенные электроустановки и кабели, места их расположения и максимальное напряжение, а также дату, часы и минуты, когда выдано разрешение.

По прибытии на пожар пожарных подразделений независимо от их количества во всех случаях организуют штаб пожаротушения, в состав которого обязательно включают старшего представителя администрации энергопредприятия.

В процессе тушения пожара все боевые действия подразделений осуществляют с учетом указаний старших руководителей администрации или оперативно-выездной бригады. В свою очередь, старший из числа инженерно-технического персонала или оперативно-выездной бригады согласовывает свои действия с РТП и информирует его об изменениях в работе электроустановки и другого оборудования.

Разведку пожара на энергообъектах организуют и проводят несколькими разведывательными группами в различных направлениях. Группы разведки газодымозащитников целесообразно создавать в составе 4-- 5 чел. под руководством лиц начальствующего состава. В обязательном порядке организуются контрольно-пропускные пункты и резервныезвенья.

При разведке пожара необходимо постоянно поддерживать связь со старшим по смене энергообъекта. Кроме общих задач в разведке пожара определяют: какие стационарные системы целесообразно привести в действие, возможность взрыва и растекания горючих жидкостей; участки и помещения, где невозможно пребывание и действия пожарных; работа каких агрегатов может способствовать распространению огня и продуктов сгорания; какие установки и аппараты будут опасны для пожарных в процессе тушения; наличие и горение жидкометаллического теплоносителя, а также опасных уровней радиации и какие мерыбезопасности необходимособлюдать личному составу при тушении и др. В ходе разведки пожара личному составу входить в помещения, где есть установки под высоким напряжением, разрешается только по согласованию с дежурным персоналом. В процессе тушения разведку необходимо проводить в помещениях главного пункта управления и релейных пунктов.

При тушении пожаров на объектах энергетики необходимо строго соблюдать требование: если об отключении электрооборудования или кабелей не указано в разрешении на проведение тушения, то их считают под напряжением. пожар энергетика тушение безопасность

Согласно рекомендациям «Тактика тушения электроустановок, находящихся под напряжением», ГУПО МВД СССР, 1986 г., тушение пожаров на энергообъектах может проводиться на отключенном электрооборудовании и на электроустановках, находящихся под напряжением, используют воду в виде компактных струй из стволов РСК-50 (d cn = 11,5 мм) РС-50 (d cn =13 мм) и распыленных из стволов с насадками НРТ-5, а также негорючие газы, хла-дон, порошковые составы и комбинированные составы (углекислота с хладоном или распыленная вода с порошком). Подача любой пены ручными средствами при тушении электроустановокпод напряжением категорически запрещается. Минимальные безопасные расстояния от насадков стволов до электроустановок под напряжением приведены в табл. 11.1. Эти расстояния приняты из условия прохождения через ствольщика тока силой до 0,5 мА, который не является опасным для человека. Ток силой 100 мА и более представляет опасность для жизни людей, ток от 50 до 80 мА может вызвать паралич дыхания, от 20 до 25 мА -- паралич рук (человек не может самостоятельно оторваться от токонесущей части под напряжением), от 0,6 до 1,5 мА -- дрожание пальцев. Чтобы избежать поражения током, личный состав не должен заходить за ограждения, где расположены распределительные устройства, аппараты и другое электрооборудование под высоким напряжением.

Таблица 11.1. Минимальные безопасные расстояния, м, от насадков стволов до токоведущих частей электроустановок, находящихся под напряжением

Напряжение на

установках, кВ

Компактная струя

воды при 4 МПа из

РСК-50 (11,5) и

Распыленная струя воды при 4 МПа из стволов с насадком

Огнетушащие порошки и одновременная подача распыленной воды и огнетушащих порошков

Не допускается

Примечания: 1. Все пожарные, непосредственно участвующие в тушении, обеспечиваются индивидуальными изолирующими лектрозащитными средствами (диэлектрические перчатки, боты или сапоги). 2. Ручные пожарные стволы и насосы пожарных автомобилей должны быть надежно заземлены отдельными заземлителями с сечением гибкихмедных проводов не менее 10 мм 2 .

Расстояние от насадков стволов до электрооборудования под напряжением определяют с учетом удельного сопротивления воды, равного 1000 Ом*см. Сильно загрязненная и морская вода по сравнению с водопроводной имеет меньшее сопротивление, поэтому применять ее для тушения электроустановок под напряжением запрещается.

Тушение небольших пожаров и загораний на электроустановках под напряжением можно осуществлять с помощью ручных и передвижных огнетушителей. Так, хладоновые огнетушители допускается применять на электроустановках с напряжением до 0,38 кВ, порошковые -- до 1,0 кВ и углекислотные -- до 10 кВ. При этом расстояние от насадка должно быть не менее 1 м.

Одновременно с организацией разведки по прибытии на пожар РТП с дежурным персоналом энергопредприятия согласует маршруты движения к очагу пожара и определяет боевые позиции ствольщиков. После этого РТП инструктирует личный состав, участвующий в тушении, и отдает распоряжения на боевое развертывание подразделений.

При боевом развертывании соблюдают необходимую последовательность действий, которая обеспечивает безопасные условия для личного состава при подаче огнетушащих средств на токоведущие части электроустановок и кабелей. Боевое развертывание проводят в следующем порядке: РТП определяет расстановку сил и средств с учетом обстановки на пожаре и маршрутов движения к очагу пожара, позиций ствольщиков и мест заземления стволов и пожарных машин; ствольщики заземляют ручные пожарные стволы лодсоединением струбцин и гибких заземлителей к стационарному контуру заземления в указанном месте и выходят на боевые позиции, подствольщики прокладывают рукавные линии от пожарных машин к боевым позициям ствольщиков по указанному РТП маршруту; водители пожарных машин с пожарными заземляют насосы подключением струбцин и гибких заземлителей к стационарному контуру заземления или заземленным конструкциям (гидрантом водопроводных сетей, опорам линий электропередачи, обсадным трубам скважин и др.), командиры отделений следят за качеством выполнения перечисленных работ и докладывают начальнику караула (РТП) об их окончании. Начальник караула (РТП) проверяет правильность расстановки сил и средств с учетом безопасных расстояний, а также заземление приборов тушения и насосов, и отдает команду на подачу огнетушащих средств в зону горения.

Работы по свертыванию сил и средств после ликвидации пожара проводят в обратном порядке: прекращают подачу огнетушащих средств; отсоединяют струбцины от контура заземления и заземляющих устройств; пожарные уходят с позиций по установленному маршруту и убирают пожарно-техническое вооружение.

Тушение пожаров на электроустановках под напряжением во всех случаях должно осуществляться с соблюдением обязательных условий: надежного заземления ручных стволов и насосов пожарных автомобилей; применения личным составом, участвующим в тушении, индивидуальных изолирующих электрозащитных средств (ИИЭС); соблюдения минимальных безопасных расстояний от электроустановок под напряжением до пожарных, работающих со стволами или огнетушителями; применения для тушения только тех ручных пожарных стволов, какие указаны в табл. 11.1; применения эффективных огнетушащих средств, способов и приемов их подачи.

Все вышеуказанные действия по боевому развертыванию и свертыванию сил и средств должны тщательно отрабатываться во время проведения пожарно-тактических учений и тренировок на энергетических объектах совместно с обслуживающим персоналом.

1 .3 Тушение трансформаторов, реакторов и масляных выключателей

Горящие трансформаторы отключают со всех сторон и заземляют. На развившихся пожарах организуют защиту от высокой температуры соседних трансформаторов, реакторов, оборудования и установок. Пожары трансформаторов, реакторов и масляных выключателей тушат пеной средней кратности с интенсивностью подачи раствора пенообразователя 0,2 л/(м 2
-с), а также тонкораспыленной водой с интенсивностью 0,1 л/(м 2
-с). В процессе разведки определяют характер повреждения трансформаторов, реакторов и трубопроводов, содержащих трансформаторное масло, направления растекания горящей жидкости в сторону соседних трансформаторов и другого оборудования, опасность взрыва расширительных бачков, наличие стационарных пенных или водяных установок пожаротушения и при необходимости возможность приведения их в работу.

Если масло горит над крышкой трансформатора и ниже ее масляный бак не поврежден, то на тушение вводят один-два ручных водяных ствола с насадками НРТ-5, которые обеспечивают оптимальный расход воды при интенсивности подачи 0,2-- 0,24 л/(м 2 -с). Если расширительный бачок на трансформаторе оказывается в огне, часть масла, равную его объему (примерно 10 % объема масла в баке трансформатора), сливают в аварийную емкость. Больше сливать масла из трансформатора (реактора) запрещается, так как это может привести к повреждению внутренних обмоток и усложнению пожара.

Если в условиях пожара крышка трансформатора сорвана, то масло может гореть в баке и вокруг трансформатора. В этом случае вначалеликвидируют горение масла вокруг трансформатора распыленной водой, воздушно-механической пеной средней кратности или в комбинации распыленной водой и огнетушащими порошками одновременно. Если тушение масла производят распыленными струями, стволы целесообразно располагать по периметру пожара равномерно (рис. 11.2), а при тушении пеной или комбинированным способом огнетушащие средства подают в сопутствующем потоке воздуха (рис. 11.3). Это наиболее эффективный прием, обеспечивающий поступление порошка и распыленной воды в зону горения одновременно. Тушение масла в баке при сорванной крыше осуществляют пеной средней кратности, которую подают с помощью пеноподъемников или выдвижных лестниц.

Рис. 11.2. Схема подачи в зону горения распыленной воды и огнетушащего порошка

Рис. 11.3. Схема размещения пеногенераторов в отсеках кабельного туннеля:/ -- пеногенераторы; 2--задвижка; 3--обратный клапан

При разрушении масляных баков, трубопроводов или выбросе масла происходит растекание его по территории. Для предотвращения растекания горящего масла в ходе тушения создают заградительные валы из земли или песка, или отводные каналы с учетом рельефа местности. Одновременно готовят необходимое количество сил и средств для тушения горящего трансформатора, а для охлаждения баков соседних трансформаторов по мере готовности вводят струи воды с интенсивностью 0,5-- 1 л/с на 1 м периметра бака трансформатора. В процессе тушения РТП не должен допускать распространения огня по вентиляционным каналам, в помещениях трансформаторных и распределительных устройств принимать меры по защите щитов управления. При подаче стволов избегать попадания воды на нагретые фарфоровые части аппаратов, изоляторы и разрядники.

Тушение пожаров в кабельных сооружениях. Пожары в кабельных туннелях, как правило, продолжительные, сложные и приносят большие материальные потери. Пожары в кабельных туннелях, продолжающиеся более 1 ч, составляют 43,6 % ежегодно, а убытки от них составляют 80--90 % общей суммы убытков при пожарах на объектах энергетики.

Тушение пожаров в кабельных туннелях осуществляют воздушно-механической пеной средней кратности, распыленной водой, водяным паром, диоксидом углерода (углекислым газом), составом 3,5, которые подают от стационарных установок автоматического пуска, а также от передвижных средств. Стационарные установки пенного и водяного тушения имеют устройства для подключения пожарных машин и подачи от них огнетушащих средств в туннели через стационарные пеногенераторы и распылители.

При выходе из строя или отсутствии стационарных, систем тушения пожаров в кабельных туннелях осуществляют пожарные подразделения от передвижных средств. В практике наиболее широко используют воздушно-механическую пену средней кратности, получаемую от пеногенераторов типа ГПС.

При возникновении пожаров в кабельных помещениях для предотвращения быстрого распространения огня в соседние отсеки и помещения целесообразно сразу закрыть двери в межсекционных перегородках и отключить систему вентиляции. Для защиты кабельных полуэтажей, помещений релейных щитов и щитов управлений вводят пеногенераторы ГПС-600 или стволы-распылители с насадками НРТ-5 и НРТ-10. При тушении пожаров в вертикальных кабельных шахтах эффективным является подача воды из верхней части шахты с помощью стволов с насадками НРТ-5 и НРТ-10.

Приемы подачи пены средней кратности в горящие кабельные отсеки зависят от расстояния от очага пожара, от входов или люков в отсеки, уклона туннеля, наличия маслонаполненных кабелей и направления движения воздуха по туннелю. Если горение происходит между люками, то пену подают в ближайший люк, а второй вскрывают для удаления дыма. При наличии в кабельном отсеке трех люков или двух входов и люка в крайние люки (входы) подают пену, а средний люк вскрывают для выпуска дыма.

При пожаре в наклонном кабельном туннеле пену целесообразнее подавать в люк отсека, расположенный выше очага пожара, так как он будет лучше заполняться пеной. Если горение происходит в наклонном туннеле с маслонаполненными кабелями, пену подают в люк отсека, расположенный ниже очага горения, чтобы предотвратить быстрое распространение горения по уклону, а второй люк вскрывают для выпуска дыма.

Опыты показывают, что в горизонтальном туннеле сечением 2X2 м предельное расстояние продвижения пены, подаваемой одним ГПС-600 в течение расчетного времени тушения, не превышает 30--35 м. Если расстояние от места подачи пены до очага пожара превышает предельное растекание пены, в этих случаях дополнительно вводят 1--2 ГПС в этот же люк. Тогда предельное растекание пены увеличивается примерно на 10 м из расчета на каждый дополнительный генератор. В отдельных случаях для подачи пены или выпуска дыма и снижения температуры с помощью инженерной техники или автомобилей технической службы вскрывают плиты, перекрытия кабельного туннеля.

Количество ГПС для тушения пожаров в туннелях определяют так же, как и при тушении пожаров в подвалах. Если количество сил и средств, сосредотачиваемых на пожаре, ограничено, то нормативное время тушения принимают равным 15 мин, а при. достаточном их количестве -- 10 мин. Количество пены принимают равным трем объемам кабельного отсека.

При возникновении пожаров в кабельных туннелях, не разделенных на отсеки, в первую очередь пену подают в люки, расположенные по обе стороны предполагаемого места очага пожара, а в следующие люки или проемы подают резервные генераторы (ПГУ). После этого вводят расчетное количество ГПС (ПГУ) в люки или проемы, расположенные между граничными люками.

Для хорошего заполнения отсеков пеной, чтобы не создавалось давление ее продвижению, необходимо обеспечить выпуск продуктов горения и воздуха через люки или проемы. Для увеличения продвижения пены по кабельному туннелю можно использовать дымососы, которые наряду с удалением дыма одновременно улучшают условия ее растекания.

При объемном заполнении кабельных помещений воздушно-механической пеной средней (высокой) кратности предварительно закрепляют пеногенераторы (ПГУ) и насосы пожарных машин и заземляют их. При подаче пены через дверные проемы кабельных помещений пеногенераторы закрепляют в верхней части дверной коробки. После установки пеногенераторов (ПГУ) и их заземления личный состав отходит в безопасное место и наблюдает за их работой, а водители пожарных машин должны подавать пену в диэлектрических ботах и перчатках.

После заполнения горящего отсека кабельного туннеля пеной продолжают ее подачу в течение 7, 8 мин для полного дотушивания отдельных возможных очагов горения.

Для тушения пожаров на котлоагрегатах в зависимости от вида топлива могут использоваться вода, воздушно-механическая пена средней кратности и водяной пар. Для защиты оборудования чаще используют распыленные струи воды, а конструкций здания -- компактные. Подача компактных струй воды для охлаждения нагретого оборудования не допускается, так как это может привести к его быстрой деформации. Интенсивность подачи воды на тушение пожаров в котельных отделениях принимают равной 0,2, а в галереях топливоподачи--0,1 л/(м 2 -с).

1 .4 Требование безопасности при тушении электроустановок

При ликвидации горения в помещениях с электроустановками, в помещениях с взрывоопасной средой, а также в подземных сооружениях метрополитенов личному составу подразделений ГПС, участвующему в тушении пожара, запрещается самовольно проводить какие-либо действия по обесточиванию электролиний и электроустановок, а также применять огнетушащие вещества до получения, в установленном порядке, письменного допуска от администрации организации на тушение пожара.

Во время ликвидации пожара в помещении с наличием большого количества кабелей и проводов с резиновой и пластмассовой изоляцией должностные лица обязаны принять меры по предупреждению возможного отравления личного состава подразделений ГПС веществами, выделяемыми в процессе горения. Личный состав подразделений ГПС должен работать в СИЗОД.

При постановке в боевой расчет на пожарные автомобили генераторов аэрозольного пожаротушения (типа СОТ-5М) необходимо провести с личным составом соответствующую подготовку по правилам их применения.

До начала их проведения необходимо провести отключение (или ограждение от повреждения) имеющихся на участке электрических сетей (до 0,38 кВ), газовых коммуникаций, подготовить средства тушения возможного (скрытого) очага.

Электрические сети и установки под напряжением выше 0,38 кВ отключают представители энергослужбы (энергонадзора) с выдачей письменного разрешения (допуска), пожарные автомобили и стволы должны быть заземлены при подаче пены или воды на тушение.

Отключение электропроводов путем резки допускается при фазном напряжении сети не выше 220 В и только тогда, когда иными способами нельзя обесточить сеть.

Работа личного состава подразделений ГПС по отключению проводов, находящихся под напряжением, должна выполняться в присутствии представителя администрации организации, а при его отсутствии - под наблюдением оперативного должностного лица с использованием комплекта электрозащитных средств.

При отключении проводов, находящихся под напряжением, необходимо:

определить участок сети, где резка электрических проводов наиболее безопасна и обеспечивает обесточивание на требуемой площади (здание, секция, этаж и т.п.);

обрезать питающие наружные провода только у изоляторов со стороны потребления электроэнергии с расчетом, чтобы падающие (обвисающие) провода не оставались под напряжением. Резку проводов производить начиная с нижнего ряда.

Запрещается обрезать одновременно многожильные провода и кабели, а также одножильные провода и кабели, проложенные группами в изоляционных трубах (оболочках) и металлических рукавах.

Электрозащитные средства применяемым в подразделениях ГПС, относятся:

перчатки резиновые диэлектрические; галоши (боты) резиновые диэлектрические; коврики резиновые диэлектрические размерами не менее 50 x 50 см с рифленой поверхностью; ножницы для резки электропроводов с изолированными ручками (требования к указанным электрозащитным средствам определены ГОСТ); переносные заземлители из гибких медных жил произвольной длины, сечением не менее 12 мм2 для пожарных автомобилей, у которых основная система защиты - защитное заземление.

Для подготовки рабочего места при работах с частичным или полным снятием напряжения следует:

провести необходимые отключения на главном распределительном щите и принять меры, препятствующие подаче напряжения к месту работы вследствие ошибочного или самопроизвольного включения коммутационной аппаратуры;

вывесить предупреждающие знаки и установить ограждения;

применять электрозащитные средства - диэлектрические перчатки, коврики и т.п., убедиться в исправности приборов и проверить отсутствие напряжения на части установки, предназначенной для работы.

При работах с частичным снятием напряжения отключенные токоведущие части, доступные случайному прикосновению, должны быть ограждены временными ограждениями.

При поражении электротоком следует как можно скорее освободить пострадавшего от действия тока и немедленно отключить ту часть электропроводки, которой он касается.

Оказывающий помощь не должен прикасаться к пострадавшему без надлежащих мер предосторожности.

Заключение

Наиболее доступным, дешевым и безвредным средством тушения пожаров является вода. Водой тушат более 80 % всех пожаров в стране. В том числе на долю водных растворов смачивателей приходится до 12% потушенных пожаров.

Применение фторсодержащих композиций коренным образом изменило взгляд на противопожарные пены. Изменились критерии оценки качества пены и технология их применения для тушения пожаров. Несмотря на высокую стоимость этих пенообразователей, они приняты на вооружение пожарной охраны США, ФРГ, Италии и Японии.

В зависимости от специфики защищаемого объекта используются различные виды пенообразователей и пены различной кратности.

Для получения пены высокой кратности применяют углеводородные синтетические пенообразователи, а для формирования низкократной пены используют фтор синтетические составы, которые не смешиваются с углеводородами и придают водному раствору необычайно низкое поверхностное натяжение.

Отдельная группа пенообразователей предназначена для тушения пламени водорастворимых горючих жидкостей, которые получили название «полярные», это спирты, кетоны, эфиры и т.д.

Порошками тушится около 1% всех пожаров. Газовыми составами тушится около 0,1…0,2% пожаров - в основном это вычислительные центры и установки под напряжением.

Литература

1. Приказ МЧС РФ № 630 от 31.12.02, инструкции, рекомендации.

2. Я.С. Повзик и др. «Пожарная тактика» «Тактика тушения пожаров вэнергетических предприятиях и в помещениях с электроустановками».

Размещено на Allbest.ru

Подобные документы

    Особенности развития пожаров на объектах энергетики. Боевые действия работников электроустановок и спасателей в случае возникновения пожара на трансформаторах, реакторах и масляных выключателях. Требования безопасности при тушении электроустановок.

    реферат , добавлен 09.03.2011

    Особенности организации и тушения пожаров на объектах энергетики. Действия работников органов подразделений по чрезвычайным ситуациям при тушении пожаров в электроустановках. Организация проведения аварийно-спасательных работ, связанных с тушением пожара.

    реферат , добавлен 13.02.2016

    Обстановка на пожаре в зданиях музеев и выставок. Исследование вариантов развития пожаров. Характеристика действий подразделений пожарной охраны по тушению пожаров. Разведка пожара. Эвакуация материальных ценностей. Особенности тушения локальных пожаров.

    реферат , добавлен 21.10.2014

    Причины возникновения пожаров. Меры пожарной безопасности при эксплуатации электроустановок, проведении техпроцессов, использовании горючих веществ. Огнегасительные средства и техника тушения пожаров. Системы оповещения людей и пожарной сигнализации.

    реферат , добавлен 04.06.2011

    Виды пожаров, особенности их возникновения на открытой местности. Изучение процесса развития пожаров на складах лесоматериалов, объектах транспортировки нефти и газа. Организация тушения пожаров торфяных полей, месторождений, газовых и нефтяных фонтанов.

    дипломная работа , добавлен 30.05.2014

    Совершенствование тактического мастерства работников органов и подразделений по чрезвычайным ситуациям Республики Беларусь. Предварительное планирование боевых действий по тушению пожаров и спасанию людей на объектах. Выбор огнетушащего вещества.

    курсовая работа , добавлен 15.11.2012

    Тушение пожаров на предприятиях деревообрабатывающей, целлюлозно-бумажной и текстильной промышленности на примере ОАО "Братсккомплексхолдинг". Особенности развития пожаров в сушильных камерах. Основные причины, приведшие к пожару и его распространению.

    реферат , добавлен 24.09.2013

    Общие сведения о резервуарах и парках хранения ЛВЖ и ГЖ и пожарах в них. Требования техники безопасности при тушении нефтепродуктов в наземных резервуарах. Нормативная интенсивность подачи пены низкой кратности для тушения пожаров нефтепродуктов.

    курсовая работа , добавлен 20.01.2011

    Причины и возможные последствия пожаров. Основные поражающие факторы: горение, возгорание, воспламенение. Методы тушения пожаров. Классификация средств и характеристика огнегасительных веществ. Основные меры пожарной безопасности в быту и первая помощь.

    реферат , добавлен 04.04.2009

    Разработка методов повышения эффективности управления силами и средствами пожарной охраны при тушении пожаров и спасании людей. Рекомендации по совершенствованию управления силами ОАО "Юргахлеб" в г. Юрга. Примеры решения пожарно-тактических задач.

Т У Ш Е Н И ЕП О Ж А Р А.

Электростанции и крупные подстанции с дежурным персоналом имеют дистанционное управление,все объекты снабжены надежной системой ава-рийной защиты и сигнализации. При возникновении пожаров поврежденное оборудование аварийно отключается устройствами релейной защиты.Дежур-ный обслуживающий персонал станций и подстанций обязан до прибытия по-жарного подразделения отключить или переключить присоединения,на кото-рых возник пожар,и заземлить их.Обязательно также обесточить и зазем-лить присоединение электрооборудование,на которые могут попасть вода и пена.Прибыв на место,РТП немедленно устанавливает связь со старшим де-журным персонала (деж.инженером станции,нач.смены электроцеха и т.п.) и требует отключить электрооборудование на участке пожара.

В некоторых случаях невозможно в короткий срок обесточить элект-рооборудование на участке пожара.Поэтому при тушении пожара РТП всегда организует работу в соответствии с указаниями старшего из числа персо-нала электроустановки,который выдает РТП письменный допуск на проведе-ние работ по тушению.Принято считать,что в отсутствии технического персонала электроустановки находятся под напряжением.В этих случаях допускается подача водяных струй на тушение электрооборудования,нахо-дящегося под напряжением до 10 000 кв.в открытых для обзора ствольщика установках при длине компактной водяной струи 4-8 метров в зависимости от напряжения.Ствольщик должен быть в диэлектрических сапогах и пер-чатках,ствол у спрыска и пожарный насос заземлены гибким медным прово-дом сечением не мене 12 мм.с использованием одиночного заземлителя и общего контура.Расстояния приняты из условия прохождения через стволь-щика тока силой не более 0,5 мА.,который совершенно безопасен для че-ловека.Удельное сопротивление воды принято 1500 Ом/см.кв.Ток силой 100 мА опасен для человека,ток 0,6-1,5 мА вызывает дрожание пальцев рук,ток 20-25 мА-паралич рук (потерпевший не может самостоятельно оторваться от проводов),ток 50-80 мА-паралич дыхания.

Чтобы избежать поражение током на участках,которые могут оказать-ся под напряжением,недопустимо заходить за ограждение токоведущих час-тей,находящихся под напряжением.

Пожары разлившегося масла,трансформаторов и кабельных тунелей ре-комендуется тушить пеной.Но надо помнить,что добавка к воде пенообра-зователя понижает ее сопротивление и в необесточенных электроустанов-ках увеличивает опасность поражения током.

Первые действия при тушении пожара на электростанциях до прибытия пожарных обычно выполняет дежурный персонал.После отключения агрегатов от сети вводят в действие стационарные установки пожаротушения (если они не включаются автоматически).

Загорание обмоток генераторов с воздушным охлаждением и гидроге-нераторов ликвидируется путем пуска в работу стационарной системы во-дяного тушения,встроенной в генератор,или заполнение генератора диок-сидом углерода (углекислотой) из имеющихся на станции баллонов.Как до-полнительную меру используют подачу пара в корпус машины.Песок для ту-шения не применяют.При повреждении стационарных установок пожаротуше-ния эффективной может оказаться подача в остановленный генератор пены средней кратности.

Пожары трансформаторов,реакторов и масляных выключателей рекомен-дуется тушить пеной средней кратности с интенсивнстью подачи 0,2 л/(с*кв.м) (по раствору) или распыленной водой интенсивностью 0,3-0,4л/(с*кв.м).При пожарах масляных трансформаторов и реакторов в ходе разведки выясняют характер повреждения аппаратов и трубопрово-дов,содержащих трансформаторное масло,опасность растекания горящей жидкости в сторону соседних трансформаторов и другого оборудова-ния,опасность взрыва расширительного бачка трансформаторов.РТП уста-навливает наличие стационарных водяных или воздушно-пенных установок пожаротушения и при необходимости обеспечивает их пуск.

При горении масла над крышкой трансформатора без повреждения мас-ляного бака ниже крышки и если расширительный бачок может оказаться в огне,часть масла,равную объему масла в расширителе (примерно 10% объ-ема масла в баке трансформатора),сливают через нижние спусковые краны в дренажное устройство.Если сорвана крышка бака,пену на горящую по-верхность подают с помощью пеноподъемников или с использованием выд-вижных лестниц.При этом в начале ликвидируют очаги пожара на подступах к трансформатору.

Для предупреждения растекания горящего масла по территории транс-форматорной подстанции в ходе тушения создают загродительные земляные обвалования или отводные канавы,одновременно подготавливая на возмож-ных направлениях растекания масла резервные стволы для тушения и для охлаждения баков соседних трансформаторов.Металлические поверхност го-рящих трансформаторов охлаждают струями воды с интенсивностью 0,5-1 л. на 1 м периметра бака трансформатора.

При пожарах в закрытых распределительных устройствах электроуста-новок РТП при помощи

Тушение пожаров в кабельных тунелях и в полуэтажах электростанций и подстанций организуют в таком же порядке,как и при пожарах в кабель-ных помещениях металлургических предприятий.Во всех случаях проводят тщательную разведку в помещениях блочных щитов,главного щита управле-ния,релейных щитов,куда огонь может распространиться по кабелям или вследствии образования новых очагов пожара при коротких замыкани-ях,происходящих в процессе пожара на необесточенных кабелях.

Успешному тушению пожаров на электростанциях и подстанциях спо-собствует проведение на энергообъектах совместных противопожарных тре-нировок персонала электростанций,подстанций и пожарных подразделе-ний.На тренировках отрабатывают также взаимодействие РТП и руководите-лей дежурных смен энергитических объектов,чтобы действия пожарных под-разделений не расходились с требованиями техники безопасности и техни-ческой эксплуатации электрооборудования.В ходе тренировок с личным составом пожарных частей отрабатывают правила оказания помощи постра-давшим при поражении электрическим током

Тушение пожаров на электроустановках, электростанциях и подстанциях

2.1 Особенности развития пожаров на объектах энергетики

Машинные залы имеют большую пожарную нагрузку в виде машинного масла, систем смазки генераторов, а также электроизоляции обмоток генераторов и другой электроаппаратуры и устройств. Турбогенераторы в машинных залах располагают на специальных площадках высотой 8-- 10 м и более от нулевой отметки. Системы смазки генераторов состоят из емкостей с маслом вместимостью 10--15 т, расположенных на нулевой отметке, насосов и маслопроводов, где давление масла может достигать 1,4 МПа (14 кгс/см 2). Поэтому при повреждении масляных систем смазки огонь может быстро распространиться как по площадкам, так и на сборники масла, находящиеся на нулевой отметке. При разрушении трубопроводов систем смазки масло под высоким давлением может выходить и образовывать мощный горящий факел, который создает угрозу быстрой деформации и обрушения металлических ферм бесчердачного покрытия машинного зала и других металлоконструкций. Во время пожара в машинном зале при наличии водородного охлаждения генераторов возможны взрывы, которые приводят к разрушению маслопроводов и растеканию масла по площадкам и на нулевую отметку, соседние агрегаты, в кабельные туннели и полуэтажи. В условиях пожаров создают опасность взрыва сосуды и трубопроводы, находящиеся под высоким давлением.

Все кабельные помещения энергопредприятий подразделяют на кабельные полуэтажи, туннели, каналы и галереи. Кабельные галереи и полуэтажи, как правило, могут быть на электростанциях, а кабельные туннели и каналы на электростанциях и других энергетических предприятиях. Кабельные туннели бывают горизонтальные и наклонные, сечением 2X2 м и более. По длине их разделяют на отсеки противопожарными перегородками и дверьми. Длина одного отсека кабельного туннеля, расположенного под зданием, не должна превышать 40 м, а за пределами зданий 100--150 м. Каждый отсек туннеля должен иметь не менее двух люков диаметром 70--90 см, а также систему вентиляции и канализацию. В кабельных туннелях пожарная нагрузка (изоляция кабелей) может достигать 30--60 кг/м 2 .

Для тушения пожаров в кабельных помещениях устраивают стационарные водяные и пенные установки, а также могут применять водяной пар и инертные газы. Стационарные водяные и пенные установки имеют устройства для подачи огнетушащих средств от пожарных машин.

Рис. 11.1. Принципиальная схема подачи трансформатора распыленной воды при тушении пожара

Пожары в кабельных помещениях сопровождаются высокой температурой, разлетом искр расплавленного металла при коротком замыкании, большой скоростью распространения огня и дыма. В горизонтальных кабельных туннелях линейная скорость распространения огня по кабелям при снятом напряжении составляет 0,15--0,3, под напряжением 0,5--0,8, а в кабельных полуэтажах по кабелям под напряжением 0,2-- 0,8 м/мин. Скорость роста температуры в кабельных помещениях по опытным данным составляет в среднем 35--50 °С за минуту.

В туннелях с маслонаполненными кабелями кроме изоляции может гореть трансформаторное масло, которое находится в трубах при температуре 35--40 °С и избыточном давлении. В этих туннелях, особенно при аварии, горящее масло быстро растекается по уклонам, где значительно увеличивается площадь пожара.

Пожары из кабельных помещений могут распространяться в здания и распределительные устройства энергопредприятий, создавать угрозу возникновения пожара и на других участках энергосетей.

Опасность представляют и подстанции.

Пожары на подстанциях могут возникать на трансформаторах, масляных выключателях и в кабельном хозяйстве. Крупные районные подстанции имеют специальные масляные станции, где находится большое количество трансформаторного масла. Трансформаторы и выключатели распределительных устройств устанавливают на фундаменты, под которыми располагают маслоприемники, соединенные с аварийными емкостями (рис. 11.1). Каждый трансформатор, как правило, помещают в отдельной камере, которая соединяется монтажными проемами с помещением распределительного щита и кабельными каналами.

Особенности развития пожаров трансформаторов зависят от места его возникновения. При коротком замыкании в результате воздействия электрической дуги на трансформаторное масло и разложения его на горючие газы могут происходить взрывы, которые приводят к разрушению трансформаторов и масляных выключателей и растеканию горящего масла. Пожары из камер, где установлены трансформаторы, могут распространяться в помещение распределительного щита и кабельные каналы или туннели, а также создавать угрозу соседним установкам и трансформаторам. О размерах возможного очага пожара можно судить по тому, что в каждом трансформаторе или реакторе содержится до 100 т масла.

Необходимо помнить, что пожары на электростанциях и подстанциях могут приводить к остановке не только энергетического объекта, но и других народнохозяйственных объектов из-за недостатка электрической энергии.

Все электростанции и подстанции снабжены надежной системой аварийной защиты и сигнализации. При возникновении пожаров поврежденное оборудование и аппараты автоматически отключаются устройствами релейной защиты.

Аварии на химических объектах России

Атомные электростанции

Как было показано выше, тип реактора является определяющим для любой ядерной энергетической установки. Исходя из перспектив глобального преобразования мировой энергетики, наиболее перспективными можно считать По данным Кащеева В.П.,1989г....

Безопасность населения при техногенных чрезвычайных ситуациях, связанных с выбросами радиоактивных веществ

Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором...

Исследование системы пожаротушения и разработка мероприятий по пожаробезопасности на примере муниципального бюджетного учреждения культуры "Юрлинская централизованная библиотечная система"

Успехи, достигнутые наукой в XVIII в., оказали огромное влияние на развитие средств пожаротушения. В XIX -начале XX вв. создаются принципиально новые составы, намного превосходящие по эффективности воду. Большинство из них было разработано в России...

Наводнения: виды, причины, примеры. Проблема "Невской дамбы"

Спасательные работы при ликвидации последствий наводнений, затоплений...

Обеспечение безопасности производственного оборудования и технологических процессов (основные требования)

Производственные объекты отличаются повышенной пожарной опасностью, так как характеризуется сложностью производственных процессов; наличием значительных количеств ЛВЖ и ГЖ, сжиженных горючих газов...

Организация и тактика тушения пожара на объекте "Волгоградский областной клинический кардиологический центр"

Здания лечебных учреждений, как правило, строят по типовым проектам не ниже I и II степеней огнестойкости на отдельных озелененных участках. Больничные корпуса нередко объединяют между собой закрытыми переходами и галереями...

Организация и тушение пожаров в театрах и культурно-зрелищных учреждениях

Тушение пожаров в культурно-зрелищных учреждениях, особенно в период их работы, связано с проведением сложных работ по эвакуации и спасанию людей...

Радиационная, химическая и медико-биологическая защита населения в чрезвычайных ситуациях

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Радиация...

Радиационные аварии (виды, основные опасности и источники радиационной опасности, как действовать во время и после аварии)

Тушение пожаров газовых нефтяных пожаров

1. При авариях на открытых технологических установках пары нефтепродукта и горючие газы могут образовать загазованные зоны. Размер этих зон ориентировочно можно определить по таблице 1.1. Таблица 1...

При обнаружении пожара в вагоне груженом хлопко-волокном и другими аналогичными грузами, локомотивная бригада после остановки поезда организует тушение пожара на месте первичными средствами пожаротушения. Как правило...

Тушение пожаров на железнодорожном транспорте

Пожары, возникающие в подвижном составе на электрифицированных участках железных дорог, представляют особую опасность, так как провода и арматура контактной сети находятся под напряжением 27,5 кВ переменного тока и 3,3 кВ постоянного тока...

Химически опасные объекты РФ и аварии на них

Химически опасные объекты РФ, аварии на них

Пожарная и взрывная безопасность - это система организационных и технических средств, направленная на профилактику и ликвидацию пожаров и взрывов...

Разведку пожара на энергообъектах организуют и проводят несколь­кими разведывательными группами в различных направлениях. Группы раз­ведки газодымозащитников создаются в составе 3-4 человек под руководс­твом лиц начальствующего состава. В обязательном порядке организуются КПП и резервные звенья.

При разведке пожара постоянно поддерживается связь со старшими по смене энергообъекта. Кроме общих задач в разведке пожара определяют:

Какие стационарные системы целесообразно привести в действие;

Возможность взрыва и растекания горючей жидкости;

Участки и помещения, где невозможно пребывания и действия по­жарных;

Работа, каких агрегатов может способствовать распространению ог­ня и продуктов сгорания;

Наличие и горение жидкометаллического теплоносителя;

Наличие опасного уровня радиации и какие меры безопасности надо соблюдать личному составу при тушении и др.;

Входить в помещения, где есть электроустановки под высоким напря­жением можно только после согласования с дежурным персоналом. Если об отключении электрооборудования или кабелей не указано в разрешении на проведении тушения, то их считать под напряжением.

Тушение пожаров на энергообъектах может проводиться на отключен­ном электрооборудовании и под напряжением. При этом может использо­ваться:

Вода в воде компактных струй из стволов РСК-50, РС-50 при 4 МПа, только до 110 к/вольт включительно;

Вода из распыленных струй из стволов с насадками НРТ-5;

Негорючие газы, хладон;

Порошковые составы и комбинированные (углекислота с хладоном или распыленная вода с порошком).

Подача любой пены ручными средствами при тушении электроустановок под напряжением категорически запрещается.

Во всех случаях подачи огнетушащих составов необходимо соблюдать минимальное расстояние от насадков стволов до токоведущих частей с учетом наличия индивидуальных изо­лирующих средств и заземление стволов и пожарных насосов.

Тушение небольших пожаров и загораний на электроустановках под напряжением можно осуществить с помощью ручных и передвижных огнетуши­телей:

Хладоновые огнетушители применяются на электроустановках с нап­ряжением до 0,38 кВ;

Порошковые - до 1,0 кВ;

Углекислотные - до 10 кВ;

При этом расстояние от насадка должно быть не менее 1,0 м. Одновременно с организацией разведки по прибытие на пожар РТП с

дежурным персоналом согласует маршруты движения к очагу пожара и опре­деляет позиции ствольщиков. После этого РТП инструктирует лич­ный состав, участвующий в тушении, и отдает распоряжение на развертывание СиС подразделений.

Развертывание сил и средств проводят в следующем порядке:

РТП определяет расстановку сил и средств с учетом обстановки на пожаре и маршрутов движения к очагу пожара, позиции ствольщиков и мест заземления стволов и пожарных машин;

Ствольщики заземляют ручные пожарные стволы подсоединением струбцин и гибких заземлителей к стационарному контуру заземления в указанном месте и выходят на позиции;

Ствольщики прокладывают рукавные линии от пожарных машин к позициям ствольщиков по указанному РТП маршруту;

Водители пожарных машин заземляют насосы подключением струбцин и гибких заземлителей к стационарному контуру заземления или заземлен­ным конструкциям (гидранты, опоры электропередач и др.);

Командиры отделений следят за качеством выполнения перечислен­ных работ и докладывают начальнику караула (РТП) об их окончании;

Начальник караула (РТП) проверяет правильность расстановки сил и средств с учетом безопасных расстояний, а также заземление приборов тушения и насосов наличие ИЗС и отдает команду на подачу огнетушащих средств в зону горения.

Работы по свертыванию сил и средств после ликвидации пожара про­водят в обратном порядке:

Прекращают подачу огнетушащих средств;

Отсоединяют струбцины от контура заземления с заземляющих уст­ройств;

Пожарные уходят с позиций по установленному маршруту и убирают пожарно-техническое вооружение;

Все эти действия по развертыванию и свертыванию сил и средств должны тщательно отрабатываться во время проведения пожар­но-технических учений и тренировок совместно с обслуживающим персона­лом.

      Тушение пожаров в машинных залах

При пожаре в машинных залах предусматривают подачу стволов мини­мум на трех уровнях:

На уровне 0.00 для защиты кабелей тоннелей, маслобаков и обору­дования;

На уровне +6.00 - 12.00 для тушения и охлаждения оборудования;

На уровень покрытия для тушения и защиты конструкций.

Горение обмоток генераторов с воздушным охлаждением, а также гид­рогенераторов ликвидируют включая:

Стационарную систему водяного тушения (воду и в ней подают от водопровода, или от передвижных средств);

Подачу углекислоты от передвижных огнетушителей;

Использование водяного пара.

Тушение обмоток в генераторе с водородным охлаждением осуществля­ют:

Углекислотой;

То же делают и для защиты.

Во время пожара в машинном зале останавливают все турбины и гене­раторы и осуществляют их защиту с помощью:

Стационарных систем тушения;

Передвижных средств.

Для тушения горящего масла используют:

Распыленные струи воды;

Пену средней кратности.

Эти же средства используют для защиты оборудования, металлических форм покрытий, маслобаков, кабелей полуэтажей, туннелей и смежных по­мещений.

Маслобаки кроме всего охлаждают распыленными струями воды.

Интенсивность подачи воды в машинных залах составляет 0,2 л/(м 2 с). Для подачи пены на тушение пожара используют внутренние системы

для подачи раствора пенообразователя и ГПС-600, а также передвижные средства тушения пеной, химическими огнетушителями, песком горящих об­моток генераторов не допускается.

При горении покрытий машинных залов подают воду соответствующей интенсивностью и в первую очередь используют сухотрубы, к которым при­соединяются рукавные линии со стволами.

Пожары в маслогаллереях машинных залов гидроэлектростанций ликви­дируют с помощью воздушно-механической пены, подаваемой от стационар­ных автоматических систем или передвижной пожарной техники.

Обстановка может осложнится при взрыве турбин, водородных систем охлаждения, котлоагрегатов.

Решающее направление определяется в зависимости от степени угрозы оборудованию в данный момент времени (отм. +85 ЩУ).

Разведка на всех высотах и направлениях.

      Тушение трансформаторов, реакторов и масляных выключателей

Горящие трансформаторы отключают со всех сторон и заземляют. На развивающихся пожарах организуют защиту от высокой температуры сосед­них трансформаторов, реакторов, оборудования, установок. Тушат же по­жары трансформаторов, реакторов, масляных выключателей:

Пеной средней кратности с интенсивностью подачи раствора пено­образователя 0.2л/(м 2 с);

Тонко распыленной водой - 0.1 л/(м 2 с).

В ходе разведки:

Определяют характер повреждения оборудования, содержащего масло;

Направление растекания горящей жидкости;

Опасность взрыва расширительных бачков;

Наличие стационарных, пенных или водяных установок пожаротуше­ния и при необходимости возможность приведения их в работу.

Если масло горит над крышей трансформатора и ниже и масляный бак не поврежден, то тушат:

Ручными водяными стволами (1-2) с насадкой НРТ-5, которые обес­печивают оптимальный расход воды при интенсивности подачи 0.2-0.24 л/(м 2 с).

Если расширительный бачек на трансформаторе оказывается в огне, то часть масла (<10% объема масла в баке трансформатора) сливают в аварийную емкость.

Если в условиях пожара крышка трансформатора сорвана, то масло может гореть в баке и вокруг трансформатора. В этом случае вначале ликвидируют горение масла вокруг трансформатора распыленной водой, воздушно-механической пеной средней кратности или в комбинации распы­ленной водой и огнетушащими порошками одновременно.

При тушении масла распыленными струями, стволы целесообразно располагать по периметру пожара равномерно, а при тушении пе­ной или комбинированным способом огнетушащие средства подаются в со­путствующем потоке воздуха.

Тушение масла в баке при сорванной крышке осуществляется пеной средней кратности, которую подают с помощью пеноподъемников и выдвиж­ных лестниц.

Для предотвращения растекания масла по территории в ходе тушения создают заградительные валы из земли или песка.

Для охлаждения баков соседних трансформаторов вводят струи с ин­тенсивностью 0.5-1.0 л/с на 1 метр периметра бака трансформатора.

РТП не должен допустить распространения огня по вентиляционным каналам, в помещениях трансформаторных и распределительных устройств, принять меры по защите щитов управления (ЩУ).

      Тушение пожаров в кабельных сооружениях

Пожары в кабельных туннелях, как правило, продолжительные, сложные и приносят большие материальные потери. Пожары в кабельных туннелях, продолжающиеся более одного часа, составляют 43,6% ежегодно, а убытки от них 80-90% общей стоимости убытков от пожаров на объектах энергети­ки.

Тушение осуществляется:

ВМП средней кратности;

Распыленной водой;

Водяным паром;

Диоксидом углерода (углекислым газом);

Составом 3,3.

Подача огнетушащих веществ:

От стационарных установок автоматического пуска;

От передвижных средств.

Стационарные установки имеют устройства для подключения пожарных машин и подачи от них огнетушащих средств через стационарные генерато­ры если тушение ВМП или через распылители, если тушение водой.

При выходе из строя или отсутствии стационарных систем тушения пожаров в кабельных туннелях осуществляют пожарные подразделения от пе­редвижных средств. Чаще всего это ВМП средней кратности, получаемая от пеногенераторов типа ГПС.

Для предотвращения распространения огня в соседние отсеки и поме­щения целесообразно сразу закрыть двери в межсекционных перегородках и отключить систему вентиляции.

Для защиты кабельных полуэтажей, помещений релейных щитов и щитов управления вводят пеногенераторы ГПС-600 или стволы-распылители тур­бинным насадком НРТ-5 и НРТ-10.

При тушении пожара в вентиляционных каналах эффективной является подача воды из верхней части шахты с помощью стволов НРТ-5 и НРТ-10.

Примеры подачи пены средней кратности в горящие небольшие отсеки зависят:

От входов или люков в отсеки;

Уклона туннеля;

Наличие маслонаполненных кабелей;

Направление движения потока воздуха по туннелю.

Если горение происходит между люками, то пены подают в ближайшие люки, а второй открывают для выпуска дыма.

При подачи в отсеки трех люков или двух входов и люка в крайние люки подают пену (или входы), а средний люк вскрывают для выпуска дыма.

При пожаре в наклонном туннеле пену целесообразно подавать в люк отсека, расположенный выше очаг пожара, т.к. он будет лучше заполнять­ся пеной.

Если горение происходит в наклонном туннеле с маслонаполненными кабелями, пену подают в люки отсека, расположенный ниже очага горения, чтобы предотвратить быстрое распространение горения по уклону, а вто­рой люк вскрывают для выпуска дыма.

Опыты показывают, что в горизонтальном туннеле сечением 2х2 метра предельное расстояние распространение пены, подаваемой одним ГПС-600 в течение расчетного времени тушения не превышает 30-35 метров. Если расстояние от места подачи пены до очага пожара превышает предельное расстояние распространения пены, в этих случаях дополнительно вводят 1-2 ГПС в этот же люк. Тогда предельное расстояние пены увеличивается примерно на 10 метров из расчета на каждый дополнительный генератор.

Количество ГПС для тушения пожаров в туннелях определяется так же, как и при тушении пожаров в подвалах. Если количество сил и средств, сосредотачиваемых на пожаре ограничено, то нормативное время тушения пожара принимают равным 15 минут, а при достаточном их количестве 10 минут. Количество пены принимают равным трем объемом ка­бельного отсека.

Для тушения пожаров в кабельных помещениях эффективно используют ВМП высокой кратности, которую получают с помощью пеногенераторных ус­тановок (ПГУ) на базе дымососов ПД-7 и ПД-30. Высокократная пена спо­собна лучше продвигаться по кабельному туннелю. Так, при высоте столба пены до 3 метров он может продвигаться по горизонтальному туннелю от ПГУ на базе ПД-7 до 60 метров, а от ПГУ на базе ПД-30 до 160 метров. Интенсивность подачи высокократной пены по расчету равна 0.6 л/(м 3 мин). Необходимое количество ПГУ для тушения пожаров в кабельных помещениях определяют аналогично, как и при тушении пожаров в подвалах.

При возникновении пожаров в кабельных туннелях, не разделенных на отсеки, в первую очередь пену подают в люки, расположенные по обе сто­роны предполагаемого места очага пожара, а следующие люки или проемы подают резервные генераторы (ПГУ). После этого вводят расчетное коли­чество ГПС (ПГУ) в люки или проемы, расположенные между граничными лю­ками.

Для хорошего заполнения отсеков пеной, чтобы не создавалось дав­ление ее продвижению, необходимо обеспечить выпуск продуктов горения и воздуха через граничные люки или проемы. При этом можно использовать дымососы, которые наряду с удалением дыма одновременно улучшают усло­вия ее растекания.

При объемном заполнении пеной средней кратности (высокой) крат­ности кабельных помещений предварительно закрепляют ПГУ (пеногенерато­ры), а насосы пожарных машин заземляют.

При подачи пены через дверные проемы кабельных помещений пеноге­нераторы закрепляют в верхней части дверной коробки. После установки пеногенераторов (ПГУ) и их заземления личный состав отходит в безопас­ное место и наблюдает за их работай, а водители пожарных машин должны подавать пену в диэлектрических ботах и перчатках.

После заполнения горящего отсека кабельного туннеля пеной, про­должают ее подачу в течении 7-8 минут для полного дотушивания отдель­ных очагов горения.

      Тушение разлившегося натрия.

Натрий воспламеняется и горит при 5% кислорода в воздухе. Сильно реагируют с водой, выделяя при этом водород, который образует взрывоо­пасную смесь с воздухом.

Натрий взрывается при соприкосновении с веществами, насыщенными хлором и фтором, при нормальной температуре. Двуокись углерода (СО 2) при горении натрия разлагается. Смесь твердой СО 2 с натрием взрывоо­пасна при ударе.

С сухим паром натрий реагирует, образуя гидроокись и водород. При температуре 800 °С и более натрий вступает в реакцию с азотом, образуя соль азотистоводородной кислоты и нитриды. В виде капель жидкий ме­талл воспламеняется на воздухе.

Тушение натрия представляет собой сложный процесс в виду ограни­ченности огнетушащих средств, способных эффективно прекращать горение. У нас в стране тушение натрия осуществляется пассивными или активными способами.

К пассивным способам относится: слив натрия в приемные емкости, находящиеся вне аварийного помещения; слив натрия в поддоны, находящи­еся в аварийном помещении; предварительное размещение под оборудовани­ем с натрием брикетов, которые способны тушить попадающий на них нат­рий. Для этих целей ВНИИПО разработало состав "РС", который при кон­такте с горячим натрием превращается в рыхлую объемную массу (подобно твердой пене), закрывающей натрий от доступа воздуха. Вещество способ­но лежать без изменения свойств в течение длительного времени, не под­вержено воздействию радиации и поэтому наиболее целесообразно исполь­зовать в помещениях первого контура, куда вход персонала недопустим.

Активные способы пожаротушения в использовании огнетушителей или иных средств, подающих в помещение огнетушащее вещество. До недавнего времени в качестве средств пожаротушения на АЭС с натрием применяется глинозем или порошок ПС-1. Они могут тушить натрий слоем до 5 санти­метров с расходом 40-60 кг/м 2 . В настоящее время ВНИИПО разработан но­вый состав - порошок МГС, который тушит натрий независимо от слоя с расходом до 8 кг/м 2 , даже на наклонных и вертикальных поверхностях. Они хорошо транспортируются по трубам и шлангам, длительное время хра­нятся, не меняя своих свойств, поэтому их можно использовать в стацио­нарных системах пожаротушения.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ