Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

1) 03.03.1949. СССР.
В результате массового сброса комбинатом «Маяк» в реку Теча высокоактивных жидких радиоактивных отходов облучению подверглись около 124 тысяч человек в 41 населенном пункте . Наибольшую дозу облучения получили 28 100 человек, проживавших в прибрежных населенных пунктах по реке Теча. У части из них были зарегистрированы случаи хронической лучевой болезни.

2) 12.12.1952. Канада. АЭС Чолк-Ривер (штат Онтарио).
Техническая ошибка персонала АЭС Чолк-Ривер привела к перегреву и частичному расплавлению активной зоны. Тысячи кюри продуктов деления попали во внешнюю среду, а около 3800 кубических метров радиоактивно загрязненной воды было сброшено прямо на землю, в мелкие траншеи неподалёку от реки Оттавы.

3) 29.09.1957. СССР. Комбинат "Маяк" в Челябинской области.
Авария, получившая название «Кыштымская». В хранилище радиоактивных отходов ПО «Маяк» взорвалась ёмкость, содержавшая 20 миллионов кюри радиоактивности. Специалисты оценили мощность взрыва в 70-100 тонн в тротиловом эквиваленте. Радиоактивное облако от взрыва прошло над Челябинской, Свердловской и Тюменской областями , образовав так называемый Восточно-Уральский радиоактивный след площадью свыше 20 тысяч кв. км. По оценкам специалистов, в первые часы после взрыва, до эвакуации с промплощадки комбината, подверглись разовому облучению до 100 рентген более пяти тысяч человек . В ликвидации последствий аварии в период с 1957 по 1959 год участвовали от 25 тысяч до 30 тысяч военнослужащих. В советское время катастрофа была засекречена.

4) 10.10.1957. Великобритания. Реактор в Виндскейле.
Авария на одном из двух реакторов по наработке оружейного плутония. Вследствие ошибки, допущенной при эксплуатации, температура топлива в реакторе резко возросла, и в активной зоне возник пожар, продолжавшийся в течение 4 суток. Получили повреждения 150 технологических каналов, что повлекло за собой выброс радионуклидов. Всего сгорело около 11 тонн урана. Радиоактивные осадки загрязнили обширные области Англии и Ирландии; радиоактивное облако достигло Бельгии, Дании, Германии, Норвегии .

5) Апрель 1967.СССР. Комбинат "Маяк" в Челябинской области.
Озеро Карачай, которое ПО «Маяк» использовало для сброса жидких радиоактивных отходов, сильно обмелело; при этом оголилось 2-3 гектара прибрежной полосы и 2-3 гектара дна озера. В результате ветрового подъема донных отложений с оголившихся участков дна водоема была вынесена радиоактивная пыль около 600 Ku активности. Была загрязнена территория в 1 тысячу 800 квадратных километров, на которой проживало около 40 тысяч человек.

6) 28.03.1979. США. АЭС Тримайл-Айленд в штате Пенсильвания.
В результате серии сбоев в работе оборудования и грубых ошибок операторов на втором энергоблоке АЭС произошло расплавление 53% активной зоны реактора. Произошел выброс в атмосферу инертных радиоактивных газов – ксенона и йода Кроме того, в реку Сукуахана было сброшено 185 кубических метров слаборадиоактивной воды. Из района, подвергшегося радиационному воздействию, было эвакуировано 200 тысяч человек.

7) 10.08.1985. СССР . АПЛ К-431 в бухте Чажма.
Авария произошла при перезагрузке ядерного топлива в реакторы. Из-за нарушений технологии проведения операции произошел взрыв с выбросом радиоактивного содержимого. В результате взрыва на АПЛ образовалась трещина в корпусе. 10 человек погибли на месте. В ликвидации аварии были задействованы более 2 тыс. человек, но в последствии пострадавшими от радиации признали только 239. Радиоактивному загрязнению подверглось около 30% территории завода, стоящие возле объекта корабли, пирсовая зона. Сформировался след радиоактивного заражения шириной 600-1500 м и длиной 6-8 км. След пролёг по лесистой местности в направлении Уссурийского залива.

8) 25.04.1986. СССР. Чернобыльская АЭС.
Крупнейшая ядерная авария в мире, с частичным разрушением активной зоны реактора и выходом осколков деления за пределы зоны. По свидетельству специалистов, авария произошла из-за попытки проделать эксперимент по снятию дополнительной энергии во время работы основного атомного реактора. В атмосферу было выброшено 190 тонн радиоактивных веществ. 8 из 140 тонн радиоактивного топлива реактора оказались в воздухе. Другие опасные вещества продолжали покидать реактор в результате пожара, длившегося почти две недели. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. В результате аварии произошло радиоактивное заражение в радиусе 30 км. Загрязнена территория площадью 160 тысяч квадратных километров. Пострадали северная часть Украины, Беларусь и запад России.Радиационному загрязнению подверглись 19 российских регионов с территорией почти 60 тысяч квадратных километров и с населением 2,6 миллиона человек.

9) 11.03.2011. Япония . АЭС Фукусима-1. Последствия ещё только предстоит оценить. На сегодняшний день вторая по масштабности ядерная катастрофa после чернобыльской.

Заслуживает упоминания происшествие на заводе «Красное Сормово» (не вошел в список т.к. не было прямого выброса во внешнюю среду, но зараженные радиацией люди всё же покинули территорию завода).

5а) 18.01.1970. СССР . Завод «Красное Сормово» (Нижний Новгород).
При строительстве атомной подводной лодки К 320 произошёл неразрешённый запуск реактора, который отработал на запредельной мощности около 15 секунд. При этом произошло радиоактивное заражение зоны цеха, в котором строилось судно. В цехе находилось около 1000 рабочих . Радиоактивного заражения местности удалось избежать из-за закрытости цеха. В тот день многие ушли домой, не получив необходимой дезактивационной обработки и медицинской помощи. Шестерых пострадавших доставили в московскую больницу, трое из них скончались через неделю с диагнозом острая лучевая болезнь, с остальных взяли подписку о неразглашении произошедшего на 25 лет.
Основные работы по ликвидации аварии продолжались до 24 апреля 1970 года. В них приняло участие более тысячи человек. К январю 2005 года в живых из них осталось 380 человек.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

    Определение понятия «радиационная авария».

    Классификация радиационных аварий по последствиям.

    Международная шкала аварий на АЭС. Аварии и происшествия.

    Стадии развития радиационной аварии.

    Этапы радиационно-защитных мероприятий на разных стадиях развития радиационной аварии.

    Зонирование загрязненных территорий.

    Мероприятия при обнаружении локальных радиоактивных загрязнений.

Авария радиационная - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами, которые могли привести или привели к незапланированному облучению людей или радиоактивному загрязнению окружающей среды, превышающим величины, регламентированные для контролируемых условий.

Радиационные аварии, не связанные с АЭС, по их последствиям делят на 5 групп:

I – аварии, которые не приводят к облучению персонала, лиц из населения (выше ДП) или загрязнению производственной и окружающей среды, не создают реальной опасности переоблучения или загрязнения и требуют расследования причин их возникновения;

II – аварии, в результате которых персонал и лица из населения получили дозу внешнего облучения (выше ДП);

III – аварии, при которых была загрязнена производственная или окружающая среда (выше ДУ);

IV – аварии, в результате которых персонал и лица из населения получили дозу внешнего и внутреннего облучения выше значений, предусмотренных НРБ-99;

V – аварии, в результате которых произошло внешнее и внутреннее облучение персонала, лиц из населения и загрязнение окружающей среды (группы III и IV настоящей классификации).

Международная шкала аварий на аэс

Аварии

VII уровень – Глобаль ная . Выброс в окружающую среду большей части радиоактивных продуктов, накопленных в активной зоне, в результате которого будут превышены дозовые пределы для запроектных аварий. Возможны острые лучевые поражения.

Длительное воздействие на здоровье населения, проживающего на большой территории, включающей более чем одну страну.

Длительное воздействие на окружающую среду.

VI уровень – Тяжелая . Выброс в окружающую среду большого количества радиоактивных продуктов, накопленных в активной зоне, в результате которого дозовые пределы для проектных аварий будут превышены, а для запроектных – нет. Для ослабления серьезного влияния на здоровье населения необходимо введение планов мероприятий по защите персонала и населения в случае аварий в зоне радиусом 25 км, включающих эвакуацию населения.

V уровень - С риском для ок ружаю щей среды. Выброс в окружающую среду такого - количества продуктов деления, который приводит к незначительному повышению дозовых пределов для проектных аварий и радиационно эквивалентных выбросу порядка сотни ТБк 131 I Разрушение большей части активной зоны, вызванное механическим воздействием или плавлением с превышением максимального проектного предела повреждения твэлов.

В некоторых случаях требуется частичное введение планов мероприятий по защите персонала и населения в случае аварий (местная йодная профилактика и/или частичная эвакуация) для уменьшения влияния облучения на здоровье населения.

IV уровень - В преде лах АЭС . Выброс радиоактивных продуктов в окружающую среду в количестве, превышающем значения для уровня 3, который привел к переоблучению части персонала, но в результате которого не будут превышены дозовые пределы для населения. Однако требуется контроль продуктов питания населения.

Происшествия

III уровень – Серьез ное . Выброс в окружающую среду радиоактивных продуктов выше допустимого суточного, но не превышающий 5-кратного допустимого суточного выброса газообразных летучих радиоактивных продуктов и аэрозолей и/или 1/10 годового допустимого сброса со сбросными водами.

Высокий уровень радиации и/или большое загрязнение поверхностей на АЭС, обусловленные отказом оборудования или ошибками эксплуатации. События, в результате которых происходит значительное переоблучение работающих (доза > 50 мЗв).

При рассматриваемом выбросе не требуется принимать защитных мер за пределами площадки. Происшествия, при которых дальнейшие отказы в системах безопасности должны привести к авариям или ситуациям, где системы безопасности не будут способны предотвратить аварию, если произойдет исходное событие.

II уровень - Средней тяжести. Отказы оборудования или отклонения от нормальной эксплуатации, которые хотя и не влияют непосредственно на безопасность станции, но способны привести к значительной переоценке мер по безопасности.

I уровень – Незна читель ное . Функциональные отклонения в управлении, которые не представляют какого-либо риска, но указывают на недостатки в обеспечении безопасности. Эти отклонения могут возникнуть из-за отказа оборудования, ошибки эксплуатационного персонала или недостатков руководства по эксплуатации (такие события должны отличаться от отклонений без превышения пределов безопасной эксплуатации, при которых управление станцией осуществляется в соответствии с установленными требованиями. Эти отклонения, как правило, считаются «ниже уровня шкалы»).

0 уровень - Ни же уро вня шка лы . Не влияет на безопасность.

Для практических целей по основному этиологическому фактору принято выделять следующие возможные варианты аварийного облучения:

1. Воздействие внешнего излучения (гамма- и рентгеновского, бета-гамма-, гамма-нейтронного и др.).

2. Внутреннее облучение от попавших в организм радионуклидов.

3. Сочетанное радиационное воздействие внешних источников излучения и внутреннего облучения.

4. Комбинированное воздействие радиационных и нерадиационных факторов.

ОСТРЫЕ ВОЗДЕЙСТВИЯ ВНЕШНЕГО ИЗЛУЧЕНИЯ

В литературе представлены многочисленные сведения о случаях острого воздействия на людей внешнего гамма-излучения. Причинами аварийных ситуаций при этом, как правило, являются грубые нарушения правил хранения, эксплуатации, транспортирования источников при дефектоскопии, работе с эталонами и реже манипуляции на стационарных гамма-источниках, в первую очередь при зарядке облучательских установок (неисправность блокировки или сигнализации). Значительное число случаев происходит в связи с недостатками организации работ. Часть из них может быть отнесена к категории ситуаций с «незамеченным источником», подчас становящимся доступным лицам, недостаточно осведомленным о правилах работы с источниками ионизирующих излучений.

Число участников аварийной ситуации может быть различным – от единиц до нескольких десятков человек. При этом наблюдаются все варианты по тяжести поражения – от крайне тяжелых, с общими и местными симптомами заболевания, до слабовыраженных. В случаях с «незамеченным источником» число лиц, подлежащих обследованию по подозрению на облучение, в 5–10 раз больше, чем реально пострадавших.

Из встречающихся на практике видов ионизирующих излучений гамма-излучение является наиболее проникающим. При прохождении моноэнергетического гамма-излучения через среду оно ослабляется по экспоненциальному закону. Его проникающую способность нельзя охарактеризовать пробегом в среде, но можно косвенно представить толщиной слоя половинного ослабления. Последняя в воздухе измеряется метрами, а в биологической ткани - сантиметрами и дециметрами. Наиболее распространенные гамма-излучающие нуклиды могут быть расположены по мере уменьшения проникающей способности излучения в следующий ряд: 60 Co, 137 Cs, 192 Ir.

Для возникающих от источников внешнего гамма-излучения поражений чаще характерно резко неравномерное облучение, при котором на разные части и сегменты тела приходятся существенно различающиеся дозы.

При любом одностороннем воздействии гамма-излучения равномерное облучение практически невозможно из-за существенного перепада дозы по глубине и высоте тела человека. Чем ближе пострадавший находится к источнику, тем эта неравномерность больше. Довольно часто положение и поза работающего приводят к преимущественному облучению отдельных частей тела (вытянутые по направлению к источнику конечности, наклоненная к источнику голова). В такого рода случаях возможно развитие локальной формы поражения. Чаще же всего имеет место сочетание общего облучения в той или иной (иногда небольшой) дозе с дополнительным воздействием на отдельные сегменты тела. Соотношение и уровень доз при общем и местном облучении, размер и объем тканей, подвергающихся повышенному облучению, во многом обусловливают исход радиационного поражения.

Острые воздействия бета-гамма-излучения возможны при нарушении правил ведения работы с гамма-бета-источниками, при нарушении герметичности упаковки с поступлением в окружающую среду гамма-бета-радиоактивных веществ в жидком, аэрозольном или газообразном состоянии. При этом могут возникнуть поражения, обусловленные сочетанным воздействием двух факторов.

Сочетание внешнего бета и гамма-облучений, иногда с отложением радиоактивных веществ на коже и слизистых оболочках дыхательных путей и глаз, имеет место при авариях ядерных установок с нарушением целостности технологических коммуникаций. При этом пострадавшие, в зависимости от конкретных условий (характер аварии, тип установки, объем пространства), могут подвергаться воздействию:

радиоактивных благородных газов;

проникающего излучения от загрязненной местности в случае нарушения герметичности установки или выброса из активной зоны реактора смеси продуктов деления различного возраста;

радиоактивных веществ, апплицированных на коже и слизистых оболочках глаз и дыхательных путей;

радиоактивных веществ, поступающих в организм при ингаляции, заносе и загрязненных кожных покровов или при использовании пищи и воды, содержащих нуклиды.

Сочетания отдельных компонентов воздействия могут быть различными. В каждом случае исход радиационного поражения будет зависеть от уровня и соотношения дозы при общем и местном облучении и, что очень существенно, от размеров поверхности тела, подвергшейся «дополнительному» локальному облучению.

Результат действия совокупности указанных радиационных факторов на людей существенно зависит от того, были ли на них специальные защитные костюмы и находились ли они на открытой местности или в укрытии (в автомашинах, зданиях и различных сооружениях). В зависимости от степени защиты воздействие может ограничиться только общим внешним облучением или сочетанным действием нескольких факторов. Как показывает опыт, число пострадавших может колебаться в широких пределах - от одного человека до множества людей.

Примером сходной по совокупности действующих факторов ситуации является обстановка, создавшаяся в связи с испытанием ядерного оружия на Маршалловых островах, у жителей которых развились радиационные поражения от воздействия бета- и гамма-излучений радиоактивных осадков экспериментального взрыва термоядерной бомбы.

Бета-излучение имеет конечный пробег в веществе, который в воздухе измеряется дециметрами – метрами, а в биологической ткани составляет несколько миллиметров. Внешнее бета-излучение действует главным образом на кожу, а при большой энергии бета-частиц - также на подкожные ткани и хрусталики глаз. Остальные органы не подвергаются воздействию внешних потоков бета-частиц. При тотальном воздействии или большой площади бета-облучения кожи она может становиться критическим органом. Локальные облучения потоками бета-частиц тоже наблюдаются, но относительно реже, чем в сочетании с гамма-излучением.

Опыт аварийных ситуаций с воздействием бета-, гамма-излучения в масштабе как крупных ядерных катастроф, так и случаев разгерметизации источников бета- гамма-излучения различной активности убедительно демонстрирует определяющую роль внешнего бета-, гамма-излучения в сравнении с поступлением радионуклидов в организм. Подтверждением этому служат ситуации при авариях на атомных реакторах в Уиндскейле, и на АЭС Три-Майл-Айленд и ЧАЭС.

Воздействия на человека внешнего гамма-нейтронного излучения имели место при нарушении правил техники безопасности в лабораториях научно-исследовательских учреждений или на действующих ядерно-энергетических установках, при ведении работ по геологическому каротажу, при экспрессном химическом анализе и других работах.

Наибольшую опасность представляют аварии ядерных установок, вызванные развитием самопроизвольных цепных реакций. Это относится, в частности, к «критическим сборкам», у которых, в отличие от стационарных энергетических установок, отсутствует специальная защита. Самопроизвольные цепные реакции могут возникнуть также в емкостях с раствором делящегося вещества (например, урана или плутония), когда масса его превысит критическую.

Мировая практика свидетельствует, что при массивном воздействии гамма-нейтронного излучения облучение тела пострадавших является обычно резко неравномерным. Гамма- и нейтронное излучения являются косвенно ионизирующими. Тканевая доза нейтронов обусловлена поглощенной энергией вторичного излучения, возникающего при их взаимодействии с тканями организма. Характер распределения дозы в тканях и вклад в дозу различных компонентов зависят от энергии нейтронов, геометрических размеров облучаемого объекта и распределения химических элементов в ткани. Неоднородность распределения дозы в объеме тела тем больше, чем выше доля нейтронов деления и меньше расстояние пострадавшего до источника. Относительная биологическая эффективность нейтронов разных энергий по сравнению с гамма-излучением усиливает создающуюся неравномерность распределения дозы по телу. При прохождении через тело человека нейтронное излучение ослабляется меньше, чем бета-излучение, но в большей степени, чем гамма-излучение. Так, при направленном пучке доза нейтронов может ослабляться в торсе человека в десятки раз, а гамма-излучение - в 2-4 раза. В случае экранирования отдельных частей тела различными предметами изменяется не только уровень облучения, но и спектр компонентного состава излучения, поскольку гамма-излучение и нейтроны различных энергий ослабляются существенно различно. Таким образом, соотношение поглощенных доз гамма-излучения и нейтронов зависит не только от спектра энергии компонентов излучения источника, но и от условий облучения (наличие различных предметов, экранов и т.п.), изменяется по глубине облучаемой ткани и может несколько различаться у пострадавших в одной и той же аварии.

При некоторых обстоятельствах (нарушение целостности активной зоны на критических сборках или реакторах, при ядерных взрывах) аварийное облучение может сопровождаться попаданием внутрь организма продуктов деления урана или плутония, т.е. может иметь место сочетанное воздействие различных радиационных факторов.

Число пострадавших в авариях от гамма-нейтронного излучения при СЦР в лабораториях, как правило, невелико (3-10 человек).

При современном техническом уровне организации работ на ускорителях частиц высоких энергий (линейный ускоритель, электростатический генератор Ван-де-Граафа, циклотрон, бетатрон, синхротрон, синхрофазотрон, синхроциклотрон и др.) воздействия потоков частиц (протоны, дейтроны и другие частицы) в повышенной дозе редки, носят чаще локальный характер. Своеобразием их действия является достижение высоких локальных доз в строго определенном ограниченном объеме, соответственно геометрии источник-объект. Однако распределение дозы требует учета всех компонентов, в том числе и относительной доли низкоэнергетических излучений, а также условий воздействия (угол наклона падения потока частиц по отношению к облучаемой поверхности и пр.).

В зону повреждения попадают ткани различной радиочувствительности, поэтому их поражение формируется даже при относительной близости поглощенных доз в различные сроки. Исход во многом зависит от локализации излучения и заключенных в облученном сегменте критических структур.

ВНУТРЕННЕЕ ОБЛУЧЕНИЕ ОТ ПОСТУПЛЕНИЯ РАДИОНУКЛИДОВ В ОРГАНИЗМ

Поступление радионуклидов в организм в количествах, превышающих допустимое годовое поступление (ДГП), возможно лишь при нарушении аргументированных регламентов работы, несоблюдении санитарных правил работы с радиоактивными веществами и норм радиационной безопасности. Облучение в повышенной дозе может касаться различных категорий облучаемых лиц.

В условиях профессионального контакта подобные ситуации описаны при нарушениях правил ведения научно-исследовательских работ в лабораториях, при работе в ремонтных зонах атомных электростанций и ядерно-энергетических установок, при получении ядерного топлива, производстве и использовании различных радионуклидов для технических, исследовательских и медицинских целей, при промышленном использовании соединений радия, полония, трития, стронция и др.

Поступление радиоактивных веществ в организм лиц из населения возможно при нарушении системы очистки воздуха рабочих помещений атомных электростанций и радиохимических предприятий и при аварийных производственных выбросах, загрязнении источников водоснабжения и питания производственными отходами и продуктами экспериментальных ядерных взрывов, разгерметизации похищенных радиоактивных источников, незаконном проникновении людей в места захоронения отходов и т.д. В зависимости от обстоятельств число лиц с подозрением на поступление нуклидов может колебаться от единиц до нескольких сотен.

Закономерности формирования дозовых нагрузок в организме или отдельных органах (распределение и динамика) зависят от многих факторов: путей поступления, дисперсности, форм растворимости и валентности, транспортабельности поступающих соединений вещества. Существенно отличается их распределение по органам (равномерное или органотропное) и микроструктурам. Различны параметры обмена и кинетики (коэффициенты резорбции и отложения, постоянные и периоды полувыведения). Периоды полувыведения для одних нуклидов могут составлять доли секунд, для других – сотни лет, т.е. превосходить продолжительность жизни человека.

Уровень формирующихся доз зависит, кроме того, от типа излучателя и его энергии, приходящейся на один распад, количества поступившего радионуклида и создающейся при этом концентрации вещества на единицу массы в рассматриваемом органе.

Часть ситуаций с попаданием радиоактивных веществ в организм может сопровождаться одновременно воздействием внешнего излучения, т.е. происходит сочетанное радиационное воздействие.

Реальные ситуации показывают, что при сочетании внешнего и внутреннего облучения преобладающим чаще является действие внешнего фактора. Следует, однако, учитывать, что внутреннее облучение может быть длительным, в то время как прямое действие внешних источников излучения на организм прекращается с выводом человека из поля их действия, и это требует большого внимания на всех этапах оказания помощи, носящей профилактический характер.

В реальных условиях влияние радиационных факторов обычно сочетается с воздействием токсических и иных нерадиационных факторов. Внешняя среда в лабораториях, предприятиях сложная, многофакторная. Таким образом, следует попытаться выделить основные ведущие и сопутствующие факторы либо учитывать их сочетанное действие. Закономерным в этих сочетаниях зачастую является преобладающее влияние нерадиационных факторов (ожог, травма, отравление угарным газом при пожаре, поступлении окиси азота, фтора, концентрированных кислот и щелочей).

Требования по ограничен и ю облучения населен и я в услов и ях рад и ац и онной авар и и

В случае возникновения аварии, при которой облучение людей может превысить основные дозовые пределы от техногенного облучения, должны быть приняты практические меры для восстановления контроля над источником и сведения к минимуму доз облучения, количества облученных лиц из населения, радиоактивного загрязнения окружающей среды, экономических и социальных потерь, вызванных радиоактивным загрязнением.

При радиационной аварии или обнаружении радиоактивного загрязнения ограничение последующего облучения осуществляется защитными мероприятиями, применимыми, как правило, к окружающей среде и (или) к человеку. Эти мероприятия связаны с нарушением нормальной жизнедеятельности населения, хозяйственного и социального функционирования территории, т. е. являются вмешательством, влекущим за собой не только экономический ущерб, но и неблагоприятное воздействие на здоровье населения, психологическое воздействие на население и экологический ущерб. Поэтому при принятии решений о характере вмешательства (защитных мероприятий) следует руководствоваться следующими принципами:

Предлагаемое вмешательство должно принести обществу и, прежде всего облучаемым лицам больше пользы, чем вреда, т. е. уменьшение ущерба в результате снижения дозы должно быть достаточным, чтобы оправдать вред и стоимость вмешательства, включая его социальную стоимость (принцип обоснования вмешательства);

Форма, масштаб и длительность вмешательства должны быть оптимизированы таким образом, чтобы чистая польза от снижения дозы, т. е. польза от снижения радиационного ущерба за вычетом ущерба, связанного с вмешательством, была бы максимальной (принцип оптимизации вмешательства). Однако если предполагаемая доза облучения достигает уровней, при превышении которых возможны клинически определяемые эффекты (табл. 28), срочное вмешательство (меры защиты) безусловно необходимо.

Таблица 28.

ПРОГНОЗИРУЕМЫЕ УРОВНИ ОБЛУЧЕНИЯ, ПРИ КОТОРЫХ БЕЗУСЛОВНО НЕОБХОДИМО СРОЧНОЕ ВМЕШАТЕЛЬСТВО

Уровни вмешательства для временного отселения населения составляют: для начала временного отселения - 30 мЗв в месяц, для окончания временного отселения 10 мЗв в месяц. Если прогнозируется, что накопленная за один месяц доза будет находиться выше указанных уровней в течение года, следует решать вопрос об отселении населения на постоянное место жительства.

При проведении противорадиационных вмешательств дозовые пределы (табл. 3) не применяются. Исходя из указанных принципов, при планировании защитных мероприятий на случай радиационной аварии органами госсанэпиднадзора устанавливаются уровни вмешательства (дозы и мощности доз облучения, уровни радиоактивного загрязнения) применительно к конкретному радиационно-опасному объекту и условиям его размещения с учетом вероятных типов аварии, сценариев развития аварийной ситуации и складывающейся радиационной обстановки.

При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании контроля и прогноза радиационной обстановки устанавливается зона радиационной аварии (ЗРА). ЗРА определяется как территория, на которой суммарное внешнее и внутреннее облучение в единицах эффективной дозы может превышать 5 мЗв за первый после аварии год (средняя по населенному пункту). В зоне радиационной аварии проводится мониторинг радиационной обстановки и осуществляются мероприятия по снижению уровней облучения населения на основе принципа оптимизации.

Принятие решений о мерах защиты населения в случае крупной радиационной аварии с радиоактивным загрязнением территории проводится на основании сравнения прогнозируемой дозы, предотвращаемой защитным мероприятием, с уровнями А и Б, приведенными в табл. 29–31.

Таблица 29.

КРИТЕРИИ ДЛЯ ПРИНЯТИЯ НЕОТЛОЖНЫХ РЕШЕНИЙ В НАЧАЛЬНОМ ПЕРИОДЕ АВАРИЙНОЙ СИТУАЦИИ

Меры защиты

Прогнозируемая доза за первые 10 суток, мГр

на все тело

Щитовидная железа, легкие, кожа

Уровень А

Уровень Б

Уровень А

Уровень Б

профилактика взрослые

Эвакуация

*Тольк о для щитовидной железы

Таблица 30.

КРИТЕРИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ ОБ ОТСЕЛЕНИИ И ОГРАНИЧЕНИИ ПОТРЕБЛЕНИЯ ЗАГРЯЗНЕННЫХ ПИЩЕВЫХ ПРОДУКТОВ

Таблица 31.

КРИТЕРИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ ОБ ОГРАНИЧЕНИИ ПОТРЕБЛЕНИЯ ЗАГРЯЗНЕННЫХ ПРОДУКТОВ ПИТАНИЯ В ПЕРВЫЙ ГОД ПОСЛЕ ВОЗНИКНОВЕНИЯ АВАРИИ

Если уровень облучения, предотвращаемого защитным мероприятием, не превосходит предела А, нет необходимости в выполнении мер защиты, связанных с нарушением нормальной жизнедеятельности населения и хозяйственного и социального функционирования территории.

Если предотвращаемое защитным мероприятием облучение превосходит уровень А, но не достигает уровня Б, решение о выполнении мер защиты принимается по принципам обоснования и оптимизации с учетом конкретной обстановки и местных условий.

Если уровень облучения, предотвращаемого защитным мероприятием, достигает и превосходит предел Б, необходимо выполнение соответствующих мер защиты, даже если они связаны с нарушением нормальной жизнедеятельности населения, хозяйственного и социального функционирования территории.

На поздних стадиях радиационной аварии, повлекшей за собой загрязнение обширных территорий долгоживущими радионуклидами, решения о защитных мероприятиях принимаются с учетом сложившейся радиационной обстановки и конкретных социально-экономических условий.

Кри т ерии вмеша т ельства на загрязненных территориях

    Защита населения на территориях, подвергшихся радиоактивному загрязнению, осуществляется путем вмешательства на основе принципов безопасности при вмешательстве. При любых восстановительных действиях вмешательства необходимо обеспечить непревышение уровня пороговых нестохастических эффектов.

    Числовые значения критериев вмешательства для территорий, загрязненных в результате радиационных аварий, и вмешательства при обнаружении локальных радиоактивных загрязнений (“последствий прежней деятельности”) различаются.

Расширяющееся внедрение источников ионизирующих излучений в промыш­ленность, в медицину и научные исследования, наличие на вооружении армий ядерного оружия, а также работа человека в космическом пространстве увеличивают чис­ло людей, подвергающихся воздействию ионизирующих излучений.

Несмотря на достаточно совершенные технические системы по обеспечению радиационной безопасности персонала и населения, разработанные в последние годы, сохраня­ется определенная вероятность повторения крупномасштабных радиационных аварий.

На территории Российской Федерации в настоящее время функционирует по­рядка 400 «стационарных» радиационноопасных объектов (атомные электростанции, заводы по переработке ядерного топлива, хранилища радиоактивных отходов, ядер­ные объекты Министерства обороны России и др.). Не исключена возможность транспортных радиационных аварий (в том числе с ядерным оружием), локальных аварий, связанных с хищением и утерей различных приборов, работающих на основе радионуклидных источников, а также в результате использования радиоактивных ве­ществ в диверсионных целях.

Радиационная авария - событие, которое могло привести или привело к незапланированному облучению людей или к радиоактивному загрязнению окружающей среды с превышением величин, регламентированных норматив­ными документами для контролируемых условий, происшедшее в результате потери управления источником ионизирующего излучения, вызванное неис­правностью оборудования, неправильными действиями персонала, стихийны­ми бедствиями или иными причинами.

Различают очаг аварии и зоны радиоактивного загрязнения местности.

Очаг аварии - территория разброса конструкционных материалов ава­рийных объектов и действия α -, β - и γ-излучений.

Зона радиоактивного загрязнения – местность, на которой произошло выпадение радиоактивных веществ.

Типы радиационных аварий определяются используемыми в народном хозяй­стве источниками ионизирующего излучения, которые можно условно разделить на следующие группы: ядерные, радиоизотопные и создающие ионизирующее излуче­ние за счет ускорения (замедления) заряженных частиц в электромагнитном поле (электрофизические). Такое деление достаточно условно, поскольку, например, атом­ные электростанции (АЭС) одновременно являются и ядерными, и радиоизотопными объектами.

К чисто радиоизотопным объектам можно отнести, например, пункты за­хоронения радиоактивных отходов или радиоизотопные технологические медицин­ские установки для облучения.

Имеются также специальные технологии, связанные с уничтожением ядерных боеприпасов, снятием с эксплуатации исчерпавших эксплуатационный ресурс реак­торов, проводящимися в интересах народного хозяйства ядерными взрывами и др.


На ядерных энергетических установках в результате аварийного выброса воз­можны следующие факторы радиационного воздействия на население:

Внешнее облучение от радиоактивного облака и от радиоактивно загрязнен­ных поверхностей земли, зданий, сооружений и др.;

Внутреннее облучение при вдыхании находящихся в воздухе радиоактивных веществ и при потреблении загрязненных радионуклидами продуктов пита­ния и воды;

Контактное облучение за счет загрязнения радиоактивными веществами кож­ных покровов,

В зависимости от состава выброса может преобладать, то есть приводить к наи­большим дозовым нагрузкам тот или иной из вышеперечисленных путей воздейст­вия. Радионуклидами, вносящими существенный вклад в облучение организма и его отдельных органов (щитовидной железы и легких) при авариях на ядерных энергетических установках, являются: иод 131-135, теллур 132, ксенон 133, 135, цезий 134, 137, стронций 90, криптон 88, рутений 106, церий 144, плутоний 238 и 239 (аэрозоль).

Особенностью аварии с радиоактивным источником является сложность установления факта аварии. К сожалению, часто подобная авария устанавливается после регистрации тяжелого радиационного поражения.

При аварии с ядерными боеприпасами в случае диспергирования делящегося материала (механическое разрушение, пожар) основным фактором радиационного воздействия являются изотопы плутония 239 и америция 241 с преобладанием внутреннего облучения за счет ингаляции. При пожаре возможен сценарий, когда основным поражающим фактором будет выделение оксида трития (молекулярного трития).

Возможность радиационной аварии на космических аппаратах обусловлена на­личием на их борту:

Радиоактивных изотопов в генераторах электрической и тепловой энергии, в различных контрольно-измерительных приборах и системах;

Ядерных бортовых электроэнергетических установок;

Ядерных установок в качестве двигательных систем.

Аварии при перевозке радиоактивных материалов также возможны, несмотря на то, что практика транспортировки радиоактивных материалов базируется на норма­тивно-правовых документах, регламентирующих ее безопасность.

Классы радиационных аварий связаны, прежде всего, с их масштабами. По границам распространения радиоактивных веществ и по возможным последствиям радиационные аварии подразделяются на локальные, местные, общие.

Локальная авария - это авария с выходом радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, техно­логических систем, зданий и сооружений в количествах, превышающих регла­ментированные для нормальной эксплуатации значения, при котором возмож­но облучение персонала, находящегося в данном здании или сооружении, в до­зах, превышающих допустимые.

Местная авария - это авария с выходом радиоактивных продуктов в пре­делах санитарно-защитной зоны в количествах, превышающих регламентиро­ванные для нормальной эксплуатации значения, при котором возможно облу­чение персонала в дозах, превышающих допустимые.

Общая авария - это авария с выходом радиоактивных продуктов за гра­ницу санитарно-защитной зоны в количествах, превышающих регламентиро­ванные для нормальной эксплуатации значения, при котором возможно облу­чение населения и загрязнение окружающей среды выше установленных норм.

По техническим последствиям выделяются следующие виды радиационных аварий.

1. Проектная авария . Это предвиденные ситуации, то есть возможность воз­никновения такой аварии заложена в техническом проекте ядерной уста­новки. Она относительно легко устранима.

2. Запроектная авария - возможность такой аварии в техническом проекте не предусмотрена, однако она может произойти.

3. Гипотетическая ядерная авария - авария, последствия которой трудно предугадать.

4. Реальная авария - это состоявшаяся как проектная, так и запроектная ава­рия. Практика показала, что реальной может стать и гипотетическая авария (в частности, на Чернобыльской АЭС).

Аварии могут быть без разрушения и с разрушением ядерного реактора.

Отдельно следует указать на возможность возникновения аварии реактора с раз­витием цепной ядерной реакции - активного аварийного взрыва, сопровождающего­ся не только выбросом радиоактивных веществ, но и мгновенным гамма-нейтронным излучением, подобного взрыву атомной бомбы. Данный взрыв может возникнуть только при аварии реакторов на быстрых нейтронах.

При решении вопросов организации медицинской помощи населению в услови­ях крупномасштабной радиационной аварии необходим анализ путей и факторов ра­диационного воздействия в различные временные периоды развития аварийной си­туации, формирующих медико-санитарные последствия. С этой целью рассматрива­ют три временные фазы: раннюю, промежуточную и позднюю (восстановительную).

Ранняя фаза - это период от начала аварии до момента прекращения выброса радиоактивных веществ в атмосферу и окончания формирования радиоактивного следа на местности. Продолжительность этой фазы в зависимости от характера, мас­штаба аварии и метеоусловий может быть от нескольких часов до нескольких суток.

На ранней фазе доза внешнего облучения формируется гамма- и бета-излучени­ем радиоактивных веществ, содержащихся в облаке. Возможно также контактное об­лучение за счет излучения радионуклидов, осевших на кожу и слизистые. Внутрен­нее облучение обусловлено ингаляционным поступлением в организм человека ра­диоактивных продуктов из облака.

Промежуточная фаза аварии начинается от момента завершения формирова­ния радиоактивного следа и продолжается до принятия всех необходимых мер защи­ты населения, проведения необходимого объема санитарно-гигиенических и лечебно-профилактических мероприятий. В зависимости от характера и масштаба аварии дли­тельность промежуточной фазы может быть от нескольких дней до нескольких меся­цев после возникновения аварии.

Во время промежуточной фазы основными причинами поражающего действия являются внешнее облучение от радиоактивных веществ, осевших из облака на по­верхность земли, зданий, сооружений и т.п. и сформировавших радиоактивный след, и внутреннее облучение за счет поступления радионуклидов в организм человека с питьевой водой и пищевыми продуктами. Значение ингаляционного фактора опреде­ляется возможностью вдыхания загрязненных мелкодисперсных частиц почвы, пыль­цы растений и т.п., поднятых в воздух в результате вторичного ветрового переноса.

Поздняя (восстановительная) фаза может продолжаться от нескольких недель до нескольких лет после аварии (до момента, когда отпадает необходимость выпол­нения мер по защите населения) в зависимости от характера и масштабов радиоак­тивного загрязнения. Фаза заканчивается одновременно с отменой всех ограничений на жизнедеятельность населения на загрязненной территории и переходом к обычно­му санитарно-дозиметрическому контролю радиационной обстановки, характерной для условий «контролируемого облучения». На поздней фазе источники и пути внешнего и внутреннего облучения те же, что и на промежуточной фазе.

Особенно важная роль по предотвращению и снижению радиационных пораже­ний отводится следующим мероприятиям по защите персонала АЭС и населения.

1. Использование защищающих от ионизирующего излучения материалов с учетом их коэффициента ослабления, позволяющего определить, в какой степени уменьшится воздействие ионизирующего излучения на чело­века. Использование коллективных средств защиты (герметизированных помещений, укрытий).

2. Увеличение расстояния от источника ионизирующего излучения, при необ­ходимости - эвакуация населения из зон загрязнения.

3. Сокращение времени облучения и соблюдение правил поведения персона­ла, населения, детей, сельскохозяйственных работников и других контин­гентов в зоне возможного радиоактивного загрязнения.

4. Проведение частичной или полной дезактивации одежды, обуви, имущест­ва, местности и др.

5. Повышение морально-психологической устойчивости спасателей, персона­ла и населения.

6. Организация санитарно-просветительной работы, проведение занятий, вы­пуск памяток и др.

7. Установление временных и постоянных предельно допустимых доз (уров­ней концентрации) загрязнения радионуклидами пищевых продуктов и во­ды; исключение или ограничение потребления с пищей загрязненных ра­диоактивными веществами продуктов питания и воды.

8. Эвакуация и переселение населения.

9. Простейшая обработка продуктов питания, поверхностно загрязненных ра­диоактивными веществами (обмыв, удаление поверхностного слоя и т.п.), использование незагрязненных продуктов.

10. Использование средств индивидуальной защиты (костюмы, респираторы).

11. Использование средств медикаментозной защиты (фармакологическая про­тиволучевая защита) - фармакологических препаратов или рецептур для повышения радиорезистентности организма, стимуляции иммунитета и кроветворения.

12. Санитарная обработка людей.

Основы медико-санитарного обеспечения при ликвида­ции последствий радиационных аварий

Успех ликвидации медико-санитарных последствий радиационных аварий обеспечивается:

Своевременным оповещением работников объекта и населения прилегающих зон о радиационной опасности и необходимости принятия мер по ограниче­нию возможного облучения;

Способностью медицинского персонала медико-санитарной части объекта и учреждений здравоохранения района обеспечить диагностику радиационного поражения и оказание первой врачебной помощи пострадавшим;

Своевременным (в первые часы и сутки) прибытием в зону поражения специализированных радиологических бригад гигиенического и терапевтиче­ского профилей;

Наличием четкого плана эвакуации пораженных в специализированный ра­диологический стационар;

Готовностью специализированного радиологического стационара к приему и лечению пострадавших;

Готовностью системы здравоохранения (в том числе службы медицины ката­строф) местного и территориального уровня к медико-санитарному обеспе­чению населения.

Одним из основных государственных учреждений в службе медицины катаст­роф, предназначенных для предупреждения и ликвидации последствий радиацион­ных аварий, является федеральное управление «Медбиоэкстрем» при Минздраве России. Оно осуществля­ет медико-санитарное обеспечение работников отдельных отраслей промышленности с особо опасными условиями труда, государственный санитарно-эпидемиологиче­ский надзор, а также медицинские мероприятия по предупреждению и ликвидации последствий ЧС, связанных с радиационными и другими авариями, в районах распо­ложения обслуживаемых организаций, учреждений и предприятий и проживающего там населения. Для решения этих задач создана «Специализированная служба экс­тренной медицинской помощи при радиационных, химических и других авариях», которая представлена штатными и внештатными формированиями на базе учрежде­ний ФУ «Медбиоэкстрем» федерального и территориального (объектового) уровней.

На территориальном (объектовом) уровне на базе медсанчастей стационарных радиационно опасных объектов имеются штатные (отделение скорой помощи, здрав­пункт, специальное приемное отделение, специализированное отделение, промышленно-санитарная лаборатория, биофизическая лаборатория центра Госсанэпиднадзора) и нештатные (специализированные бригады быстрого реагирования) формирования,

При центрах Госсанэпиднадзора территориального уровня функционируют радиологические лаборатории. В составе ВЦМК «Защита» имеются отдел организации медицинской помощи при радиационных авариях и специализированная радиологи­ческая бригада. Их состав и оснащение позволяют в случае радиационной аварии оценить радиационную обстановку, дать прогноз ее развития и рекомендации по про­ведению защитных мероприятий, реально оказать медицинскую помощь поражен­ным. Бригада оснащена передвижной лабораторией радиационного контроля, имеет запас медикаментов на случай радиационной аварии.

Организация медико-санитарного обеспечения при радиационной аварии включает:

Оказание до врачебной и первой врачебной медицинской помощи пораженным;

Квалифицированное и специализированное лечение пораженных в специализированных лечебных учреждениях;

Амбулаторное наблюдение и обследование населения, находящегося в зонах радиационного загрязнения местности.

В очаге поражения сразу же после возникновения аварии до врачебная и первая врачебная помощь пораженным оказывается медицинским персоналом аварийного объекта и прибывающими уже в первые 1-2 ч бригадами скорой медицинской помо­щи медсанчасти. Основной задачей в этом периоде является вывод (вывоз) поражен­ных из зоны аварии, проведение необходимой специальной обработки, размещение в зависимости от условий в медико-санитарной части или других помещениях и оказа­ние первой врачебной помощи.

Первый этап медицинской помощи включает медицинскую сортировку, сани­тарную обработку, первую врачебную помощь и подготовку к эвакуации. Для выпол­нения первого этапа необходим сортировочный пост, отделение санитарной обработ­ки, сортировочно-эвакуационное отделение с рабочими местами для врача-гематоло­га, терапевта-радиолога и эвакуационное отделение.

На 100 человек, оказавшихся в зоне аварии, необходимы 2-3 бригады для оказа­ния первой врачебной помощи в течение 2 часов.

Неотложные мероприятия первой врачебной помощи включают:

1. Купирование первичной реакции на облучение:

2. При поступлении радионуклидов в желудок. Мероприятия по сниже­нию резорбции и ускорению выведения радионуклидов из организма.

3. При интенсивном загрязнении кожных покровов для их дезактивации приме­няется табельное средство «Защита» или обильное промывание кожных по­кровов водой с мылом.

4. В случае ингаляционного поступления аэрозоля плутония - ингаляция 5 мл 10% раствора пентацина в течение 30 мин.

5. В случае ранений при загрязнении кожи радионуклидами - наложение веноз­ного жгута, обработка раны 2% раствором питьевой соды; при наличии за­грязнения α-излучателями - обработка раны 5% раствором пентацина, в дальнейшем (при возможности) первичная хирургическая обработка раны с иссечением ее краев.

6. При сердечно-сосудистой недостаточности – сердечно-сосудистые аналептики.

7. При появлении первичной эритемы - ранняя терапия места поражения кожи.

8. Снижение психомоторного возбуждения.

При необходимости медицинская служба пострадавшего объекта усиливается соответствующей медицинской группой из центра медицины катастроф. Эта группа усиления организует и проводит сортировку пораженных и оказание неотложной квалифицированной медицинской помощи по жизненным показаниям. В результате сортировки выделяются группы людей, подлежащих направлению в лечебные учреж­дения с определением очередности эвакуации и остающихся на амбулаторном на­блюдении по месту проживания..

Важным разделом медико-санитарного обеспечения ликвидации последствий аварии является организация медицинского наблюдения за людьми, вынужденными находиться различное время в зонах радиоактивного загрязнения местности. К этой категории относятся:

Призванные для ликвидации аварии на втором (промежуточном) и третьем (восстановительном) этапах ее развития - ликвидаторы;

Население, остающееся в зонах радиоактивного загрязнения до эвакуации или до завершения эффективной дезактивации района проживания.

Через 10 мин - 2 ч после облучения большинство пораженных, получивших об­лучение в дозе свыше 1 Гр, будет нуждаться в мероприятиях по купированию пер­вичной реакции ОЛБ; эти мероприятия целесообразно проводить во врачебных меди­цинских учреждениях (подразделениях).

При небольшом числе пораженных все они подлежат эвакуации в ближайшие после аварии сроки в специализированные (радиологические) лечебные учреждения для диагностики и последующего стационарного лечения.

При значительном числе поражений действует следующая схема:

Лица с ОЛБ I степени, не имеющие клинических проявлений болезни (облу­чение в дозе до 2 Гр), после купированных симптомов первичной реакции могут быть оставлены на амбулаторном лечении; это же относится и к полу­чившим легкие местные поражения (доза местного облучения до 12 Гр);

Лица, получившие облучение в дозе свыше 2 Гр, подлежат эвакуации в специализированные лечебные учреждения не позднее исхода первых суток после облучения;

В специализированных лечебных учреждениях при большом числе поступив­ших пораженных с крайне тяжелой и острейшей формами ОЛБ пациенты мо­гут получать лишь симптоматическое лечение.

При организации медицинской помощи пораженным важное место занимает ор­ганизация четкого взаимодействия сил и средств, участвующих в ликвидации послед­ствий радиационной аварии.

11 марта 2011 года на Японию обрушилось землетрясение силой 9,0 баллов по шкале Рихтера, приведшее к разрушительному цунами. В одном из наиболее пострадавших регионов находилась атомная станция Фукусима Даичи, на которой, через 2 дня после землетрясения, произошел взрыв. Эту аварию назвали самой масштабной со времен взрыва на Чернобыльской АЭС в 1986 году, - самой известной, но далеко не единственной радиационной катастрофы, произошедшей за последние полвека.

29 сентября 1957 года произошла авария, получившая название «Кыштымская», - первая в СССР чрезвычайная ситуация подобного рода: в хранилище радиоактивных отходов на химкомбинате «Маяк» (город Озерск, Челябинская обл.) взорвалась емкость.

Специалисты оценили мощность взрыва, радиоактивное облако от которого прошло над Челябинской, Свердловской и Тюменской областями, образовав след площадью свыше 20 тысяч кв.км, в 70-100 тонн в тротиловом эквиваленте.

Правительство СССР отказалось разглашать подробности аварии, засекретив информацию вплоть до 1990 года.По подсчетам зарубежных изданий от радиации погибло,как минимум, 200 чел.Радиационному заражению подверглось 500 км окружающей местности.

Спустя неделю у местных жителей начали проявляться признаки лучевой болезни.В общей сложности из зараженной местности было эвакуировано 10 тысяч человек,из них 5 тысяч подверглись разовому облучению до 100 рентген в первые часы после взрыва

10 октября 1957 года в Уиндскейле (Великобритания) произошла крупная авария на одном из двух реакторов, первоначально предназначавшихся для наработки оружейного плутония, а затем переоборудованных для производства трития.

Новая цель требовала более высоких температур, чем те, на которые был рассчитан реактор. В результате в активной зоне возник пожар, продолжавшийся в течение 4 суток. Всего сгорело около 11 тонн урана.

В результате аварии получили повреждения 150 технологических каналов, что повлекло за собой выброс радионуклидов. Радиоактивные осадки загрязнили обширные области Англии и Ирландии; радиоактивное облако достигло Бельгии, Дании, Германии.

Что же касается Великобритании, то исследования, проведенные в 2007 году, показали, что выброс зараженной воды в окружающую среду привел к более чем 200 случаям заболевания раком у местных жителей.

3 января 1961 года взорвался, убив трех рабочих и вызвав расплавление топливных элементов, стационарный реактор малой мощности номер 1, или SL-1, расположенный в пустыне, в 65 км от городка Айдахо-Фоллз, штат Айдахо, США.

Причиной катастрофы послужил неправильно вынутый стержень регулирования мощности реактора, но даже 2 года расследований не дали конкретного представления о действиях персонала до момента аварии.

После взрыва, приведшему к прекращению ядерной реакции, погибших операторов вынесли из здания, где находился реактор. Их тела оказались настолько радиоактивными, что всех трех пришлось похоронить в свинцовых могильниках.

Нельзя не отметить, что хотя реактор и выбросил в атмосферу радиоактивные материалы, их было немного, а удаленное местоположение SL-1 позволило минимизировать урон, нанесенный населению и окружающей среде.

4 июля 1961 года на советской подводной лодке К-19, которая находилась в тот момент в северной части Атлантического океана, заметили утечку реактора.

Не имея других вариантов, члены команды заходили в отделение реактора и пытались ликвидировать аварию собственноручно, подвергая себя дозам радиации, не совместимым с жизнью. Все 8 членов экипажа, которые чинили утечку.

Радиационному заражению также подвергся остальной экипаж, сама подлодка и баллистические ракеты на ней. Когда К-19 встретилась с кораблем, принявшим их сигнал о бедствии, ее отбуксировали на базу.

Затем, во время ремонта, который длился 2 года, была заражена окружающая местность, а также получили облучение рабочие дока. В последующие несколько лет еще 20 членов экипажа скончалось от лучевой болезни.

В апреле 1967 года произошел очередной радиационный инцидент в ПО «Маяк»: озеро Карачай, которое с 1951 года использовалось предприятием для сброса жидких радиоактивных отходов, сильно обмелело.

Из-за понижения уровня воды оголилось 2,3 га прибрежной полосы и 2-3 га дна озера. В результате ветрового подъема донных отложений с оголившихся участков дна водоема была вынесена радиоактивная пыль около 600 кюри радиоактивности.

Последние десятилетия озеро Карачай окончательно «убирается с лица Земли», а именно - засыпается грунтом. Однако под озером уже созрела новая опасность - слой зараженной грунтовой воды общей площадью более 10 кв.км.

21 января 1968 года в воздухе загорелся бомбардировщик ВВС США Б-52, который нес дежурство на американской военной базе North Star Bay в Гренландии и совершал полет в рамках операции «Хромовый купол», с четырьмя водородными бомбами на борту

«Хромовый купол» - американская военная операция времен Холодной войны, в ходе проведения которой в воздухе постоянно находились бомбардировщики с ядерными зарядами, готовые в любой момент нанести удар по целям в Советском Союзе.

Ближайшую аварийную посадку загоревшегося Б-52 можно было совершить на авиабазе Туле в Гренландии, но времени на приземление не осталось, и команда катапультированием покинула горящий самолет.

Когда бомбардировщик упал, ядерные боезаряды детонировали, что спровоцировало радиоактивное заражение местности. Инцидент повлек немедленное закрытие программы «Хромовый купол» и разработку более стабильной взрывчатки.

В 1969 году произошла авария на швейцарском подземном ядерном реакторе в Люценсе. Стоит отметить, что Швейцария обратилась к промышленному использованию ядерной энергии позже других развитых стран.

Авария, произошедшая на реакторе под названием Кантон Во, постройка которого началась лишь в 1962 году, была классифицированная как одна из десяти наиболее серьезных ядерных катастроф в мире.

Население и окружающая среда не пострадали, но пещеру, где находился реактор, зараженную радиоактивными выбросами, пришлось навсегда замуровать.

17 октября 1969 года произошла радиационная авария во Франции: на АЭС «Святой Лаврентий» из-за неправильной загрузки топливного канала взорвался запущенный реактор мощностью 500 мВт. В результате часть элементов расплавилась.

18 января 1970 года радиационная катастрофа произошла на заводе «Красное Сормово» (Нижний Новгород, Россия): при строительстве атомной подводной лодки К320 случился неразрешенный запуск реактора, который отработал на запредельной мощности.

При этом произошло радиоактивное заражение зоны цеха, в котором строилось судно и находилось около 1000 рабочих, трое из которых скончались через неделю. Заражения местности удалось избежать из-за закрытости цеха.

В работах по ликвидации последствий аварии приняло участие в общей сложности более тысячи человек. К январю 2005 года в живых из них осталось 380 человек.

18 декабря 1970 года на площадке для ядерных испытаний Юкка-Флэт (штат Невада, США), которая находится в часе езды от Лас-Вегаса, проводилась детонация 10-килотонной атомной бомбы, закопанной на глубине 275 метров под землей.

В процессе разрыва бомбы плита, предназначенная для удержания взрыва под землей, треснула, и в воздух поднялся столб радиоактивных осадков, в результате чего было облучено 86 человек, принимавших участие в испытаниях.

Кроме того, что радиационные осадки выпали в округе, их также отнесло на север Невады, в штаты Айдахо и Калифорнию, а также в восточные части штатов Орегон и Вашингтон. В 1974 году два специалиста, которые присутствовали при детонации.

Семичасовой пожар, вспыхнувший 22 марта 1975 года на одном из реакторов АЭС «Браунс Ферри» (штат Алабама, США), обошелся правительству в $10 млн.

Все случилось после того, как рабочий с зажженной свечой в руке полез заделать протечку воздуха в бетонной стене. Огонь был подхвачен сквозняком и распространился через кабельный канал. АЭС была выведена из строя на год.

Через 10 лет после аварии, в 1985-м, реактор был остановлен по соображениям безопасности. Владельцы станции потратили $1,8 млрд на модернизацию оборудования, и в мае 2007 года АЭС возобновила работу.

На сегодняшний день «Браунс Ферри» представляет собой три усовершенствованных блока с водяными кипящими реакторами BWR. Мощности блоков находятся в пределах от 1093 до 1105 МВт.

22 февраля 1977 года один из рабочих электростанции Ясловске-Бохунице (Чехословакия) во время обычной смены топлива неверно вынул стержень регулирования мощности реактора.

Эта простая ошибка спровоцировала масштабную утечку. Инцидент заработал 4 уровень по Международной шкале ядерных событий от 1 до 7.

Реактор был экспериментальной разработкой для работы с ураном. Стоит отметить, что этот первый в своем роде, а также первый среди атомных реакторов на территории Чехословакии комплекс известен множеством аварий - по протоколу закрыть его.

28 марта 1979 года на АЭС Тримайл-Айленд (штат Пенсильвания) в результате серии сбоев в работе оборудования и грубых ошибок операторов произошла авария, ставшая самым серьезным инцидентом в атомной энергетике США.

На втором энергоблоке станции не сработала система охлаждения, что вызвало расплавление 53% ядерных топливных элементов реактора. Однако полного расплавления и, как следствие, катастрофы мирового масштаба удалось избежать.

Среди последствий аварии - выброс в атмосферу инертных радиоактивных газов - ксенона и йода. Кроме того, в реку Сукуахана было сброшено 185 кубических метров слаборадиоактивной воды.

Из района, подвергшегося радиационному воздействию, в общей сложности было эвакуировано 200 тысяч человек. Официальная статистика утверждает, что в результате инцидента никто из людей не погиб и даже не получил серьезной дозы облучения.

Работы по устранению последствий катастрофы завершились только в 1993 году, а их стоимость составила $975 млн. Аварийный энергоблок полностью закрыт. Другой энергоблок станции продолжает работать и сегодня.

Нельзя не отметить, что эта авария заставила многих американцев пересмотреть свое мнение насчёт использования атомной энергии, а строительство новых реакторов, которое постоянно увеличивалось с 1960-х годов, значительно замедлилось.

26 апреля 1986 года на четвертом блоке Чернобыльской АЭС (Украина) произошла крупнейшая ядерная авария в истории человечества, с частичным разрушением активной зоны реактора и выходом осколков деления за пределы зоны.

По свидетельству специалистов, авария произошла из-за попытки проделать эксперимент по снятию дополнительной энергии во время работы основного атомного реактора.

В атмосферу было выброшено 190 тонн радиоактивных веществ, в воздухе оказалось 8 тонн радиоактивного топлива реактора. Другие опасные вещества продолжали покидать блок в результате пожара, длившегося почти две недели.

В результате аварии произошло радиоактивное заражение в радиусе 30 км - пострадала северная часть Украины, Беларусь и запад России. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму.

При взрыве реактора погибло 50 человек, но количество людей, которые оказались на пути радиоактивного облака остается неизвестным.

В докладе Всемирной атомной ассоциации говорится о более чем миллионе людей, которые могли подвергнуться воздействию радиации.

радиационные и ЯДЕРНЫЕ АВАРИИ

Презентацию подготовила Саркисян Лидия, 8 «А» класс


ПОНЯТИЕ РАДИАЦИОННОЙ АВАРИИ

Радиационная авария - это авария на радиационно опасном объекте, приводящая к выбросу радиоактивных продуктов или ионизирующих излучений за предусмотренные проектом для нормальной эксплуатации объекта границы в количествах, превышающих установленные пределы эксплуатации объекта.

Ядерная авария: авария, связанная с повреждением тепловыделяющих элементов, превышающим установленные пределы безопасной эксплуатации, и облучением персонала, превышающим допустимое для нормальной эксплуатации, вызванная:

Нарушением контроля и управления цепной ядерной реакцией в активной зоне реактора;

Реактивностная). Авария происходит вследствие разгона реактора на мгновенных нейтронах.

Образованием локальной критичности при перегрузке, транспортировке и хранении ядерного топлива;

Нарушением теплоотвода от ТВЭЛов.

Радиационные аварии подразделяют на три типа: локальные, местные и общие.






«Кыштымская авария» - первая в СССР радиационная чрезвычайная ситуация техногенного характера, возникшая 29 сентября 1957 года на химкомбинате «Маяк», расположенном в закрытом городе Челябинск-40 (ныне Озёрск). Название города в советское время употреблялось только в секретной переписке, поэтому авария и получила название «кыштымской» по ближайшему к Озёрску городу Кыштыму, который был обозначен на картах.

Причины Кыштымской катастрофы

Основная причина аварии на ПО «Маяк» - выход из строя системы охлаждения емкости для хранения высокоактивных ядерных отходов. Из-за перегрева произошел взрыв, который привел к выбросу в атмосферу большого количества (порядка 70 - 80 тонн) радиоактивных веществ.

Однако истинные причины катастрофы лежат несколько глубже – они чисто химические. Отказ системы охлаждения вызван коррозией ее компонентов, а взрыв произошел в результате бурной химической реакции.


Последствия аварии

Облако радиоактивных отходов, выброшенных взрывом в атмосферу, накрыло территорию площадью порядка 23 000 кв.км. На этой территории находилось 217 населенных пунктов (включая город Каменск-Уральский) с общей численностью населения около 272 000 человек.

После аварии из наиболее загрязненных районов было эвакуировано порядка 10 – 12 тысяч человек. Опустевшие после выселения людей деревни (их было 23) были фактически стерты с лица земли – под гусеницами бульдозеров погибло всё. Также был забит и захоронен весь скот, вспаханы поля и уничтожено вообще все, что могут взять и использовать люди. Все это предотвратило распространение радиационного заражения. а также уберегло от опасности людей, которые могли тайком вернуться в свои дома.

Уже в 1959 году на наиболее загрязненной территории была создана санитарно-защитная зона, которая в 1968 году была преобразована в Восточно-Уральский государственный заповедник. На этой территории была полностью запрещена хозяйственная деятельность, и посещали ее только ученые.

авария на заводе «Красное Сормово»

Радиационная авария на заводе «Красное Сормово» произошла 18 января 1970 года на заводе «Красное Сормово» (Нижний Новгород) при строительстве К-320, седьмой по счёту атомной подводной лодки проекта 670 «Скат». При проведении гидравлических испытаний произошёл несанкционированный запуск реактора ВМ. Проработав на запредельной мощности около 10-15 секунд, он частично разрушился. Непосредственно в помещении находилось 150-200 рабочих. Двенадцать монтажников погибли сразу, остальные попали под радиоактивный выброс. Заражения местности удалось избежать из-за закрытости цеха, однако был произведён сброс радиоактивной воды в Волгу.

В тот день многие ушли домой, не получив необходимой медицинской помощи. Шестерых пострадавших доставили в больницу в Москву, трое из них скончались через неделю с диагнозом «острая лучевая болезнь». Только на следующий день рабочих начали отмывать специальными растворами, их одежду и обувь - собирать и сжигать. Со всех без исключения взяли подписку о неразглашении на 25 лет. В тот же день 450 человек, узнав о произошедшем, уволились с завода. Остальным пришлось принять участие в работах по ликвидации последствий аварии, которые продолжались до 24 апреля 1970 года. В них приняло участие более тысячи человек.



Чернобыльская катастрофа, 7 уровень - разрушение 26 апреля 1986 года четвёртого энергоблока Чернобыльской атомной электростанции, расположенной на территории Украинской ССР (ныне - Украина). Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. Авария расценивается как крупнейшая в своём роде за всю историю атомной энергетики, как по предполагаемому количеству погибших и пострадавших от её последствий людей, так и по экономическому ущербу. В течение первых трёх месяцев после аварии погиб 31 человек; отдалённые последствия облучения, выявленные за последующие 15 лет, стали причиной гибели от 60 до 80 человек. 134 человека перенесли лучевую болезнь той или иной степени тяжести. Более 115 тыс. человек из 30-километровой зоны были эвакуированы. Для ликвидации последствий были мобилизованы значительные ресурсы, более 600 тыс. человек участвовали в ликвидации последствий аварии.


Краткая сводка событий

Практически 30 лет назад, а именно 26 апреля 1986 г., на территории нынешней Украины случилась самая крупная атомная авария в мире, последствия которой ощущает планета и до нашего времени. На электростанции в городе Чернобыле взорвался атомный реактор четвертого энергоблока. В воздух одновременно было выброшено огромное количество смертельно опасных радиоактивных веществ. Сейчас уже подсчитано, что только за три первых месяца, начиная с 26 апреля 1986 года, от радиационного излучения буквально на месте погиб 31 человек. Позже 134 человека были направлены в специализированные клиники для интенсивного лечения от лучевой болезни, а еще 80 в муках умерли от заражения кожных покровов, крови и дыхательных путей.


Ареал распространения

После аварии вокруг ЧАЭС пришлось обозначить так называемую «мертвую» зону в 30 км. Сотни населенных пунктов были уничтожены практически до основания или погребены под тоннами земли при помощи тяжелой техники. Если рассматривать сферу сельского хозяйства, с уверенностью можно заявить, что Украина на тот момент лишилась пяти миллионов гектаров плодородной почвы. В реакторе четвертого энергоблока перед аварией находилось почти 190 т топлива, 30 % которого во время взрыва выбросилось в окружающую среду. Кроме того, на то время в активной фазе пребывали разнообразные радиоактивные изотопы, накопившееся за время работы. Именно они, по мнению специалистов, и представляли наибольшую опасность.


ПРИПЯТЬ ДО И ПОСЛЕ АВАРИИ НА ЧАЭС


После аварии на расстоянии 8 километров к Украине от места аварии радиационный фон составил 90000000 микрорентген в час.

В результате аварии подверглись радиоактивному облучению 1946 человек, из которых 160 человек находились во время аварии в непосредственной близости от места аварии, 20 человек принимали участие в тушении пожара и 1920 человек выполняли работы по ликвидации последствий аварии.

Индекс по международной шкале

ядерных событий INES - 4.


Заключение

Несмотря на трагические события, связанные с чернобыльской аварией 1986 г., и получившее в связи с этим широкий размах движение против развития ядерной энергетики и строительства АЭС, результаты исследований последних лет в различных областях инженерных дисциплин и физики высоких энергий, а также заключения авторитетных международных комиссий, убедительно свидетельствуют в пользу дальнейшего развития ядерной энергетики в самых широких масштабах. Уже сегодня существуют и одобрены экспертами из ведущих ядерных стран проекты по созданию ядерных энергетических установок на качественно новом уровне безопасности для различных географических зон с отличающимися климатическими условиями.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ