Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Горением – называют физико-химический процесс, для которого характерны три признака: химическое превращение, выделение тепла, излучение света

Основа горения – окислительно-восстановительная реакция горючего вещества с окислителем. Окислителями могут быть хлор, бром, сера, кислород, кислородосодержащие и другие вещества.

Однако чаще всего приходится иметь дело с горением в атмосфере воздуха, при этом окислителем является кислород воздушной среды.

Для возникновения горения необходимо наличие:

горючего вещества;

окислителя;

источника воспламенения.

Но и в этом случае горение будет возможным, если горючее вещество и кислород или другой окислитель находятся в определенном количественном соотношении, а тепловой импульс имеет запас тепла, достаточный для нагревания веществ до температуры его воспламенения.

Если мало горючего вещества в смеси с воздухом или мало кислорода (менее 14-16% ), процесс горения не начинается.

Горение может быть вызвано непосредственным воздействием на горючее вещество открытого пламени или накаленного тепла, слабым, но беспрерывным и продолжительным нагреванием горючего вещества, самовозгоранием, химической энергией, механической энергией (трение, удар, давление), лучистой энергией тепла, нагретым до высоких температур воздухом и т.д.

Следовательно, следует различать условия, необходимые для возникновения горения и условия необходимые для протекания процесса горения.

Условия протекания горения:

1. Количество кислорода в составе воздуха, поступающего в зону горения, будет не менее 14–16% , т.е. вещество и окислитель находятся в определенном количественном соотношении.

Температура зоны горения, которая является постоянным источником воспламенения и источником нагрева верхнего слоя горючего вещества, выше температуры его воспламенения.

3. Скорость диффузии горючих газов и паров (продуктов разложения вещества) в зону горения будет несколько выше скорости горения.

4. Количества излучаемого зоной горения тепла при горении вещества будет достаточно для нагрева поверхностного слоя до температуры его воспламенения.

Если одно из этих условий отсутствует, то процесса горения не будет.

Пожарной опасностью называется возможность возникновения или развития пожара, заключенная в каком-либо веществе, состоянии или процессе.

Из этого определения можно сделать вывод, что пожарную опасность представляют вещества и материалы, если они в силу своих свойств, благоприятствуют возникновению или развитию пожара. Такие вещества и материалы относятся к пожароопасным.

Классификация пожароопасных веществ

Пожароопасные вещества по способности к горению подразделяются на:

Трудногорючие;

Негорючие.

Горючими называются вещества, способные самостоятельно гореть после удаления источника зажигания. Горючие вещества в свою очередь разделяются на легковоспламеняющиеся и трудно воспламеняющиеся.

Легковоспламеняющимся веществом называется горючее вещество, способное воспламеняться от кратковременного воздействия пламени спички, искры и тому подобных источников зажигания с низкой энергией.

К ним относятся:

Горючие жидкости (ГЖ):

Анилин ГЖ;

этиленгликоль ГЖ;

моторные и трансформаторные масла ГЖ;

ацетон ЛВЖ;

бензин ЛВЖ;

бензол ЛВЖ;

диэтиловый эфир и др.

ГЖ – жидкость способная самостоятельно гореть после удаления источника зажигания и имеющая температуру вспышки выше 66 0 С .

ЛВЖ – ГЖ, имеющая температуру вспышки не выше 66 0 С.

Горючие газы (ГГ):

пропан и др.

ГГ – газ способный образовывать с воздухом воспламеняемые и взрывоопасные смеси при температурах не выше 55 0 С .

Горючие вещества:

целлулоид;

полистирол;

нафталин;

древесная стружка;

бумага и т.д.

Трудно воспламеняющимися веществами называются горючие вещества, способные воспламеняться только под воздействием мощного источника зажигания.

К ним относятся:

гетинакс;

полихлорвиниловая плитка;

древесина.

Трудно горючими – называют вещества, способные гореть под воздействием источника зажигания, но не способные к самостоятельному горению после удаления его.

К ним относятся:

трихлорацетат натрия (Nа(СН 3 СОО)Сl 3 );

водные растворы спирта;

аммиачная вода и т.д.

Негорючими называют вещества, не способные к горению в атмосфере воздуха обычного состава. К ним относятся: кирпич, бетон, мрамор, и гипс. Среди негорючих веществ имеются много весьма пожароопасных, которые выделяют горючие продукты или тепло при взаимодействии с водой или друг с другом.

К ним относятся:

Карбид кальция (СаС 2 );

Негашеная известь (СаСО 3 );

Разбавленные кислоты с металлами (серная, соляная);

Окислители КМпО 4 , Са 2 О 2 , О 2 , Н 2 О 2 , НО 3 , сжатый и жидкий кислород.

Общие сведения о горении

Сущность процесса горения

Одним из первых химических явлений, с которым человечество познакомилось на заре своего существования, было горение. Вначале оно использовалось для приготовления пищи и обогрева, и лишь через тысячелетия человек научился использовать его для преобразования энергии химической реакции в механическую, электрическую и другие виды энергии.


Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и свечением. В печах, двигателях внутреннего сгорания, на пожарах всегда наблюдается процесс горения, в котором участвуют какие-либо горючие вещества и кислород воздуха. Между ними протекает реакция соединения, в результате которой выделяется тепло и продукты реакции нагреваются до свечения. Так горят нефтепродукты, дерево, торф и многие другие вещества.


Однако процесс горения может сопровождать не только реакции соединения горючего вещества с кислородом воздуха, но и другие химические реакции, связанные со значительным выделением тепла. Водород, фосфор, ацетилен и другие вещества горят, например, в хлоре; медь - в парах серы, магний - в углекислом газе. Сжатый ацетилен хлористый азот и ряд других веществ способны взрываться. В процессе взрыва происходит разложение веществ с выделением тепла и образованием пламени. Таким образом, процесс горения является результатом реакций соединения и разложения веществ.

Условия, способствующие горению

Для возникновения горения необходимы определенные условия: наличие горючей среды (горючее вещество + окислитель) и источника воспламенения. Воздух и горючее вещество составляют систему, способную гореть, а температурные условия обуславливают возможность воспламенения и горения этой системы.


Как известно, основными горючими элементами в природе являются углерод и водород. Они входят в состав почти всех твердых, жидких и газообразных веществ, например, древесины, ископаемых углей, торфа, хлопка, ткани, бумаги и др.


Воспламенение и горение большинства горючих веществ происходит в газовой или паровой фазе. Образование паров и газов у твердых и жидких горючих веществ происходит в результате их нагревания. Твердые горючие вещества, например, сера, стеарин, фосфор, некоторые пластмассы при нагревании плавятся и испаряются. Дерево, торф, каменный уголь при нагревании разлагаются с образованием паров, газов и твердого остатка - угля.


Рассмотрим этот процесс подробнее на примере древесины. При нагревании до 110°С происходит высушивание древесины и незначительные испарения смолы. Слабое разложение начинается при 130°С. Более заметное разложение древесины (изменение цвета) происходит при 150°С и выше. Образующиеся при 150-200°С продукты разложения составляют, в основном, воду и углекислый газ, поэтому гореть не могут.


При температуре выше 200°С начинает разлагаться главная составная часть древесины - клетчатка. Газы, образующиеся при этих температурах, являются горючими, так как они содержат значительное количество окиси углерода-, водорода, углеводородов и паров других органических веществ. Когда концентрация этих продуктов в воздухе станет достаточной, при определенных условиях произойдет их воспламенение.


Все горючие жидкости способны испаряться, и горение их происходит в газовой фазе. Поэтому, когда говорят о горении или воспламенении жидкости, то под этим подразумевают горение или воспламенение ее паров.


Горение всех веществ начинается с их воспламенения. У большинства горючих веществ момент воспламенения характеризуется появлением пламени, а у тех веществ, которые пламенем не горят, - появлением свечения (напала).


Начальный элемент горения, возникающий под действием источников, имеющих более высокую температуру, чем температура самовоспламенения вещества, называется воспламенением.


Некоторые вещества способны без воздействия внешнего источника тепла выделять теплоту и самонагреваться. Процесс самонагревания, заканчивающийся горением, принято называть самовозгоранием.


Самовозгорание - это способность вещества воспламеняться не только при нагревании, но и при комнатной температуре под воздействием химических, микробиологических и физико-химических процессов.


Температура, до которой нужно нагреть горючее вещество, чтобы оно воспламенилось без поднесения к нему источника зажигания, называется температурой самовоспламенения.


Процесс самовоспламенения вещества проходит следующим образом. При нагревании горючего вещества, например, смеси паров бензина с воздухом, можно достигнуть такой температуры, при которой в смеси начинает протекать медленная реакция окисления. Реакция окисления сопровождается выделением тепла, и смесь начинает нагреваться выше той температуры, до которой ее нагрели.


Однако вместе с выделением тепла и повышением температуры смеси происходит теплоотдача от реагирующей смеси в окружающую среду. При малой скорости окисления величина теплоотдачи всегда превышает выделение тепла, поэтому температура смеси после некоторого повышения начинает снижаться и самовоспламенение не происходит. Если смесь нагреть извне до более высокой температуры, то вместе с увеличением скорости реакции увеличивается количество тепла, выделяемого в единицу времени.


При достижении определенной температуры тепловыделение начинает превышать теплоотдачу, и реакция приобретает условия для интенсивного ускорения. В этот момент происходит самовоспламенение вещества. Температура самовоспламенения у горючих веществ разная.



Процесс самовоспламенения, рассмотренный выше, является характерным явлением, присущим всем горючим веществам, в каком бы агрегатном состоянии они не находились. Однако в технике и быту горение веществ возникает вследствие воздействия на них пламени, искр или накаленных предметов.


Температура указанных источников воспламенения всегда выше температуры самовоспламенения горючих веществ, поэтому горение возникает очень быстро. Вещества, способные самовозгораться, делятся на три группы. К первой относятся вещества, способные самовозгораться при контакте с воздухом, ко второй со слабо нагретыми предметами. К третьей группе относятся вещества, которые самовозгораются при контакте с водой.


Например, склонными к самовозгоранию могут быть растительные продукты, древесный уголь, сульфаты железа, бурый уголь, жиры и масла, химические вещества и смеси.


Из растительных продуктов склонны к самовозгоранию сено, солома, клевер, листья, солод, хмель. Особенно подвержены самовозгоранию недосушенные растительные продукты, в которых продолжается жизнедеятельность растительных клеток.


Согласно бактериальной теории, наличие влаги и повышение температуры за счет жизнедеятельности растительных клеток способствует размножению имеющихся в растительных продуктах микроорганизмов. Вследствие плохой теплопроводности растительных продуктов выделяющаяся теплота постепенно накапливается и температура повышается.


При повышенной температуре микроорганизмы погибают и превращаются в пористый уголь, который обладает свойством нагреваться за счет интенсивного окисления и поэтому является следующим, после микроорганизмов, источником выделения тепла. Температура в растительных продуктах поднимается до 300°С, и они самовозгораются.


Древесный, бурый и каменный уголь, торф самовозгораются также за счет интенсивного окисления кислородом воздуха.


Растительные и животные жиры, если они нанесены на измельченные или волокнистые материалы (тряпки, веревки, пакля, рогожа, шерсть, опилки, сажа и др.) обладают способностью самовозгораться.


При смачивании измельченных или волокнистых материалов маслом, оно распределяется по поверхности и при соприкосновении с воздухом, начинает окисляться. Одновременно с окислением в масле происходит процесс полимеризации (соединения нескольких молекул в одну). Как первый, так и второй процессы сопровождаются значительным выделением тепла. Если выделяемое тепло не рассеивается, то температура в промасленном материале поднимается, и может достигнуть температуры самовоспламенения.


Некоторые химические вещества способны самовозгораться при соприкосновении с воздухом. К ним относится фосфор (белый, желтый), фосфористый водород, цинковая пыль, алюминиевая пудра, металлы: рубидий, цезий и др. Все эти вещества способны окисляться на воздухе с выделением тепла, за счет которого реакция ускоряется до самовоспламенения.


Калий, натрий, рубидий, цезий, карбид кальция, карбиды щелочных и щелочно-земельных металлов энергично соединяются с водой, и при взаимодействии выделяют горючие газы, которые, будучи нагреты за счет теплоты реакции, самовозгораются.


При смешении таких окислителей, как сжатый кислород, хлор, бром, фтор, азотная кислота, перекись натрия и бария, марганцевокислый калий, селитра и др., с органическими веществами, происходит процесс самовозгорания этих смесей.


Пожарная опасность веществ и материалов определяется не только их способностью воспламеняться, но и массой других факторов: интенсивностью самого процесса горения и сопутствующих горению явлений (образование дыма, токсичных паров и т.д.), возможностью прекращения этого процесса. Общим показателем пожарной опасности является горючесть.


Согласно этому показателю все вещества и материалы условно делятся на три группы: негорючие, трудногорючие, горючие.


Негорючими считаются вещества и материалы, неспособные к горению в воздухе (около 21 % кислорода). К ним относятся сталь, кирпич, гранит и т.д. Однако было бы ошибкой относить негорючие материалы к безопасным в пожарном отношении. Не горючими, но пожароопасными считаются сильные окислители (азотная и серная кислоты, бром, перекись водорода, перманганаты и др.); вещества, выделяющие горючие газы при нагревании, при реакции с водой, вещества, реагирующие с водой с выделением большого количества тепла, например, негашеная известь.


Трудногорючие - это вещества и материалы, способные гореть в воздухе от источника зажигания, но не способные самостоятельно гореть после его удаления.


Горючие - это вещества и материалы, способные самовозгораться, возгораться от источника зажигания и гореть после его удаления.

Известно, что для возникновения горения необходимо наличие:
1. Горючего вещества
2. Окислителя
3. Источника зажигания (энергетический импульс)
Эти три составляющие часто называют треугольником пожара. Если исключить одну из них, то горение возникнуть не может. Это важнейшее свойство треугольника используется на практике для предотвращения и тушения пожаров.

Воздух и горючее вещество составляют систему, способную гореть, а температурные условия обуславливают возможность самовоспламенения и горения системы.

Наибольшая скорость горения получается при горении вещества в чистом кислороде, наименьшая (прекращение горения) – при содержании 14–15% кислорода.

Горение веществ может происходить за счет кислорода, находящегося в составе других веществ, способных легко его отдавать. Такие вещества называются окислителями. Приведем наиболее известные окислители.

· Бертолетова соль (KClO 3).

· Калийная селитра (KNO 3).

· Натриевая селитра (NaNO 3).

В составе окислителей содержится кислород, который может быть выделен путем разложения соли, например:

2 KClO 3 = 2KCl + 3 O 2

Разложение окислителей происходит при нагревании, а некоторых из них даже под воздействием сильного удара.

2. Продукты горения. Полное и неполное сгорание. Экологические аспекты процессов горения.

В процессе горения образуются продукты сгорания. Состав usшвисит от горящего вещества и условий горения. Продукты сгорания, за исключением окиси углерода, гореть не способны.

Дым, образующийся при горении органических веществ, содержит твердые частицы и газообразные продукты (углекислый газ, окись углерода, азот, сернистый газ и другие). В зависи­мости от состава веществ и условий их горения получается различный по содержанию дым. Дымы, образующиеся при горении разных веществ, отличаются не только составом, но цветом и запахом. По цвету дыма можно определить, какое вещество горит, хотя цвет дыма изменяется в зависимости от условий трения. При горении древесины дым имеет серовато-черный пнет; бумаги, сена, соломы - беловато-желтый; ткани и хлоп­ка- бурый; нефтепродуктов - черный и т. д.

Продукты горения – это газообразные, жидкие или твердые вещества, образующиеся в процессе горения. Состав продуктов сгорания зависит от состава горящего вещества и от условий его горения. Органические и неорганические горючие вещества состоят, главным образом, из углерода, кислорода, водорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при температуре горения и образовывать продукты горения: СО, CO 2 , SO 2 , P 2 O 5 . Азот при температуре горения не окисляется и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. Все указанные продукты сгорания (за исключение окиси углерода СО) гореть в дальнейшем больше не способны. Они образуются при полном сгорании, то есть при горении, которое протекает при доступе достаточного количества воздуха и при высокой температуре.

Углекислый газ или двуокись углерода (СО 2) – продукт полного горения углерода. Не имеет запаха и цвета. Горение магния, например, происходит в атмосфере углекислого газа по уравнению:

CO 2 +2 Mg = C + 2 MgO.

При концентрации углекислого газа в воздухе, превышающей 3-4.5%, нахождение в помещении и вдыхание газа в течение получаса опасно для жизни.

Оксид углерода или угарный газ (СО) – продукт неполного сгорания углерода. Этот газ не имеет запаха и цвета, поэтому особо опасен.

Сернистый газ (SO 2) – продукт горения серы и сернистых соединений. Бесцветный газ с характерным резким запахом.

Дым При горении многих веществ, кроме рассмотренных выше продуктов сгорания выделяется дым – дисперсная система, состоящая из мельчайших твердых частиц, находящихся во взвешенном состоянии в каком-либо газе.

При неполном сгорании органических веществ в условиях низких температур и недостатка воздуха образуются более разнообразные продукты – окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные химические соединения. Они получаются при частичном окислении как самого горючего, так и продуктов его сухой перегонки (пиролиза). Эти продукты образуют едкий и ядовитый дым. Кроме того, продукты неполного горения сами способны гореть и образовывать с воздухом взрывчатые смеси. Такие взрывы бывают при тушении пожаров в подвалах, сушилках и в закрытых помещениях с большим количеством горючего материала. Рассмотрим кратко свойства основных продуктов горения.

Экологические аспекты процессов горения. Применение природного газа позволяет уменьшить загрязнение атмосферы оксидам серы, твердыми частицами и окисью углерода, однако в атмосферу поступает большое количество оксидов азота, окиси углерода и канцерогенных веществ (3,4-бенз(о)перен). Правильная организация горения, выбор рациональных способов сжигания позволяет свести к минимуму образование вредных веществ и выделение их в воздушный бассейн. Использование природного газа позволяет вести не только пассивную, но и активную борьбу за чистоту воздуха: использование установок для дожигания, использование выбросных газов для подачи в газовый горелки вместо соответствующего количества воздуха.

Экологические проблемы горения. Задача – не навредить при сжигании топлив. Негативные проявления:

Техногенное тепловыделение соизмеримо с компонентами теплового баланса атмосферы;

Акустический шум турбулентных пламен при работе авиационных и ракетных двигателей – загрязнитель окружающей среды.

Выброс вредных продуктов сгорания – окислов азота, окислов металлов, угарного газа (при высоких Тг), окислов серы, канцерогенных веществ – продуктов неполного пиролиза органических горючих, сажи, углекислого газа (при низких Тг) – является причиной: изменения оптических свойств атмосферы и уменьшения потока солнечного излучения, возникновения кислотных дождей, усиления «парникового эффекта», разрушения озонового слоя Земли, негативного воздействия на флору и фауну, здания и конструкции. Общий итог: глобальное потепление, климатические катастрофы (циклоны, бураны, смерчи, цунами, наводнения, засухи, сходы лавин, сели)..

3. Уравнения горения веществ в кислороде и на воздухе, методика их составления. Термодинамика процессов горения. Тепловые эффекты реакций горения.

Общее уравнение реакции горения любого углеводорода
C m H n + (m + n/4) O 2 = mCO 2 + (n/2) Н 2 O + Q (8.1)
где m, n - число атомов углерода и водорода в молекуле; Q - тепловой эффект реакции, или теплота сгорания.

Тепловой эффект (теплота сгорания) Q - количество теплоты, выделяющееся при полном сгорании 1 кмоля, 1 кг или 1 м 3 газа при нормальных физических условиях. Различают высшую Q в и низшую Q н теплоту сгорания: высшая теплота сгорания включает в себя теплоту конденсации водяных паров в процессе горения (в реальности при сжигании газа водяные пары не конденсируются, а удаляются вместе с другими продуктами сгорания). Обычно технические расчеты обычно ведут по низшей теплоте сгорания, без учета теплоты конденсации водяных паров (около 2400 кДж/кг).
КПД, рассчитанный по низшей теплоте сгорания, формально выше, но теплота конденсации водяных паров достаточно велика, и ее использование более чем целесообразно. Подтверждение этому - активное применение в отопительной технике контактных теплообменников, весьма разнообразных по конструкции.
Для смеси горючих газов высшая (и низшая) теплота сгорания газов определяется по соотношению
Q = r 1 Q 1 + r 2 Q 2 + ... + r n Q n (8.2)
где r 1 , r 2 , …, r n - объемные (молярные, массовые) доли компонентов, входящих в смесь; Q 1 , Q 2 , …, Q n - теплота сгорания компонентов.
Процесс горения протекает гораздо сложнее, чем по формуле (8.1), так как наряду с разветвлением цепей происходит их обрыв за счет образования промежуточных стабильных соединений, которые при высокой температуре претерпевают дальнейшие преобразования. При достаточной концентрации кислорода образуются конечные продукты: водяной пар Н 2 О и двуокись углерода СО 2 . При недостатке окислителя, а также при охлаждении зоны реакции, промежуточные соединения могут стабилизироваться и попадать в окружающую среду.
Высокотемпературное горение углеводородов имеет весьма сложный характер и связано с образованием активных частиц в виде атомов и радикалов, а также промежуточных молекулярных соединений. В качестве примера приводятся реакции горения простейшего углеводорода - метана:

1. Н + О 2 -› ОН + О
СН 4 + ОН -› СН 3 + Н 2 О
СН 4 + О -› СН 2 + Н 2 О
2. СН 3 + О 2 -› НСНО + ОН
СН 2 + О 2 -› НСНО + О
3. НСНО + ОН -› НСО + Н 2 О
НСНО + О -› СО + Н 2 О
НСО + О 2 -› СО + О + ОН
4. СО + О -› СО 2
СО + ОН -› СО 2 + Н

Итог единичного цикла:
2СН 4 + 4О 2 -› 2СО 2 + 4Н 2 О

Термодинамика горения

Исходный состав горючей смеси характеризуется молярными или массовыми долями компонентов и начальными давлением и температурой. Если состав смеси подобран так, что при её сгорании и горючее, и окислитель полностью преобразуются в продукты реакции, то такая смесь называется стехиометрической. Смеси с избытком топлива называются богатыми , а с недостатком топлива - бедными . Степень отклонения состава смеси от стехиометрического характеризуется коэффициентом избытка топлива (англ. equivalenceratio ) :

где Y F и Y O - массовые доли топлива и окислителя соответственно, а (Y F /Y O) st - их отношение в стехиометрической смеси. В русскоязычной литературе используется также коэффициент избытка окислителя (или воздуха), обратный коэффициенту избытка топлива.

Адиабатическая температура горения смесей CH 4 с воздухом в зависимости от коэффициента избытка топлива. P = 1 бар, T 0 = 298,15 K.

Если горение происходит адиабатически при постоянном объёме, то сохраняется полная внутренняя энергия системы, если же при постоянном давлении - то энтальпия системы. На практике условия адиабатического горения приближённо реализуются в свободно распространяющемся пламени (без учёта теплопотерь излучением) и в других случаях, когда потерями тепла из зоны реакции можно пренебречь, например, в камерах сгорания мощных газотурбинных установок или ракетных двигателей.

Адиабатическая температура горения - это температура продуктов, достигаемая при полном протекании химических реакций и установлении термодинамического равновесия. Для термодинамических расчётов используются таблицы термодинамических функций всех компонентов исходной смеси и продуктов. Методы химической термодинамики позволяют рассчитать состав продуктов, конечное давление и температуру при заданных условиях сгорания. В настоящее время доступно много программ, способных выполнять эти расчёты .

Теплота сгорания - это количество теплоты, выделившейся при полном сгорании исходных компонентов, то есть до CO 2 и H 2 O для углеводородных топлив. На практике часть выделившейся энергии расходуется на диссоциацию продуктов, поэтому адиабатическая температура горения без учёта диссоциации оказывается заметно выше той, что наблюдается на практике .

Термодинамический расчёт позволяет определить равновесный состав и температуру продуктов, но не даёт никакой информации о том, с какой скоростью система приближается к равновесному состоянию. Полное описание горения требует знания механизма и кинетики реакций и условий тепло- и массообмена с окружающей средой.

4. Типы пламени и скорость горения. Теории горения: тепловая, цепная, диффузионная.

В общем случае скорость горения зависит от скорости смешения исходных компонентов в зоне прогрева и зоне реакции (для гетерогенных систем), от скорости химических реакций между компонентами, от скорости передачи тепла и активных частиц из зоны реакции к исходной системе. Нормальная скорость горения (и тем более форма фронта горения) зависит от условий течения свежей смеси и продуктов горения (особенно при горении в двигателях).

Поэтому в теории горения рассматривается несколько основных типов пламен. Они неодинаковы по своему научному и практическому значению и степени изученности. Неодинаковы параметры, представляющие наибольший интерес для данного типа пламени. Существенно отличается подход к теоретическому рассмотрению каждого типа пламени. Некоторые различия имеются и в экспериментальных методах.

Перечислим наиболее важные для теории горения типы пламен:

1) ламинарное пламя в гомогенной газовой смеси. К этому же типу относится пламя при горении летучих взрывчатых веществ;

2) ламинарное диффузионное пламя при горении струи горючего газа в окислительной атмосфере. К этому типу примыкает пламя при диффузионном горении жидкого горючего, налитого в цилиндрический сосуд, и т. п.;

3) пламя при горении капли жидкого горючего или частицы твердого горючего в окислительной атмосфере;

4) турбулентные пламена в гомогенных или в предварительно не смешанных газовых смесях;

5) пламя при горении нелетучих взрывчатых веществ, порохов и т. д. в тех случаях, когда существенную роль играет реакция в конденсированной фазе.

Коротко рассмотрим некоторые характеристики основных типов пламен в той мере, в какой это полезно для понимания закономерностей горения конденсированных смесей.

Предварительно следует остановиться на определении скорости горения . При ламинарном горении газовых смесей и гомогенных конденсированных систем большое принципиальное значение имеет понятие нормальной скорости горения (). По определейию, равна скорости перемещения пламени относительно свежей смеси в направлении, перпендикулярном поверхности пламени в данной точке. Размерность в системе СИ - м/сек, однако для скорости горения эта единица пока употребляется редко и только для газовых систем. Обычно величину для газовых систем выражают в см/сек, а для конденсированных систем в мм/сек (если выражать скорость горения конденсированных систем в м/сек, то в обычном диапазоне давлений получаются очень малые дробные числа).

Для гомогенных конденсированных систем чаще всего измеряется скорость горения цилиндрических зарядов, горящих с торца, причем фронт горения полагается плоским (опыт показывает, что в большинстве случаев при наличии надлежащей оболочки это допущение справедливо, и искажения наблюдаются лишь на краях заряда). К тому же для твердых веществ (и достаточно вязких жидких веществ) исходное (твердое или жидкое) вещество неподвижно во время горения. Поэтому в данном случае нормальная скорость горения просто равна видимой скорости пламени (в лабораторной системе координат) и постоянна в различных точках заряда.

Виды горения — это классификация физико-химического процесса в зависимости от характеристик его протекания.Деление на виды может производиться на основе анализа экзогенных и эндогенных характеристик.

Горение — это стремительно протекающая химическая реакция окисления, сопровождающаяся выделением тепла и свечением. Особенностью этого процесса является наличие цепной реакции распространения огня с ускорением и увеличением количества выделяемого тепла по мере вовлечения в процесс нового материала.

Для обеспечения горения необходимо наличие следующих факторов:

  • окислителя (чаще всего это кислород);
  • горючего вещества;
  • возгорания.

Эти факторы можно разделить на две части: условия и стартовый механизм. К первым относятся:

  • состояние среды;
  • состояние материала.

Главным фактором среды является наличие такого количества окислителя, который мог бы достаточно долго поддерживать ускоряющуюся цепную реакцию окисления.

Материал должен быть горючим, то есть способным к окислению. К состоянию материала как фактору горения относится и его структура. Пористый материал горит лучше, потому что в нем созданы все условия для лучшего доступа окислителя на всех стадиях процесса.

Стартовый механизм — это возгорание, после которого начинается цепная реакция распространения пламени. Может быть экзогенным и эндогенным. Обычно стремительное окисление начинается от поджога, осуществляемого человеком или природными стихиями.

Человек преднамеренно или нечаянно резко поднимает температуру материала в какой-либо его части, формируя управляемое или неуправляемое (пожар) распространение пламени. Природные стихии — это любой источник высокой температуры. Обычно это вулканы, метеориты, разряды молнии.

Эндогенные причины возгорания — это переход окисления из медленной стадии в быструю. Обычно сам по себе огонь появляется при помещении большого количества горючего материала в среду со значительным содержанием окислителя. Ярким примером является самовозгорание угля или торфа, извлеченных из бескислородной среды на воздух.

Существует еще теория самовозгорания органики при активном действии разлагающих микроорганизмов. Ее суть состоит в том, что бактерии или грибы, разлагая много органики, могут повысить температуру, после чего появляется пламя.

Однако у этой теории есть один изъян: при повышении температуры до определенного предела микроорганизмы перегреваются и прекращают свою деятельность, после чего температура органики снижается. Кроме того, бактерии и грибы могут активно жить только во влажной среде, в которой возникновение пламени невозможно.

Максимальное повышение температуры в разлагающейся куче травы достигает +60°С. После этого бактерии или погибают, или впадают в анабиоз. Через какое-то время на смену перегревшимся микроорганизмам придут другие, но уже в остывшем субстрате.

Виды горения по скорости

Горение — это по определению высокая скорость распространения реакции окисления. Однако есть показатели и побольше. С этой точки зрения виды горения делятся на следующие:

  • дефлаграционное — скорость около 10 м/с;
  • взрывное — около100 м/с;
  • детонационное — около 5000 м/с.

Дефлаграционное горение — это процесс, сопровождаемый передвижением пламени по всему материалу.

Взрыв — это процесс одновременного стремительного окисления всего горючего материала сразу. Обычно он происходит при возгорании очень мелкого и сильно горючего материала.

Детонация — это процесс, при котором распространяется ударная волна, инициирующая реакцию окисления. Последняя поддерживает движение первой за счет стремительно выделяющегося тепла. Ударная волна и экзотермические реакции развивают сверхзвуковую скорость, формируя детонацию.

Эту классификацию не стоит путать с видами пожаров. Понятие последнего произошло не совсем от физики и химии. Это оценка степени управляемости процесса. Горение дров в печке поддается контролю, поэтому это не пожар. В отличие от горения травы и деревьев в лесу.

Разновидности по признакам горючего материала

Конечной стадией горения является сгорание. Оно делится на полное и неполное. Первое — это образование продуктов, которые не являются больше горючим материалом. Обычно это вода, газообразные окислы и минерализованные твердые частицы (зола, пепел). Неполное сгорание происходит в условиях, препятствующих распространению огня. При этом образуются обугленные частички горючего материала.

Внешние условия и виды горения находятся в причинно-следственной взаимосвязи. Примером этого утверждения является деление видов по состоянию смесей.

  1. Бедные горючие смеси. Это связь какого-либо материала с окислителем, в которой воспламеняющихся компонентов слишком мало для продолжительного процесса окисления. Иными словами, это такая смесь, в которой окислителя много, а гореть нечему. Возможно и обратное: материал горючий и его много, а окислителя слишком мало.
  2. Богатые смеси. В них соотношение окислителя и горючего материала способствует возникновению устойчивого окисления с высокой температурой. В этой смеси есть чему гореть долго и с большим жаром. Главное, чтобы на этот процесс хватило окислителя.

В норме в воздухе содержится около 21% кислорода. Процесс горения стремительно меняет пропорции состава воздуха. Горение часто становится невозможным при снижении содержания кислорода до 14-18%. В этих неблагоприятных условиях гореть продолжают только некоторые вещества, например водород, этилен, ацетилен. При уменьшении количества кислорода менее 10% горение невозможно для всех смесей.

Процесс хоть и быстрый, но многофакторный. Это позволяет создавать большое количество таксонов и классификаций. Так что разнообразие видов горения зависит не только от среды и материала, но и от фантазии человека.

Для возникновения процесса горения необходимы: горючее вещество, кислород, источник воспламенения. Некоторые вещества способны гореть без кислорода, в атмосфере хлора, брома и т.п., но это явление, скорее всего, следует отнести к исключениям из правил.

Горючие вещества могут быть в виде газов, пыли, твердых веществ и жидкостей. Углерод, водород, сера и фосфор, входящие в состав горючих веществ, при горении окисляются и образуют продукты сгорания, которые обычно представляют серьезную опасность для жизни и здоровья людей. Например, 0,4 % окиси углерода, вдыхаемого человеком, является смертельной дозой; вдыхание в течение нескольких минут горячего воздуха температурой 70 °С тоже приводит к летальному исходу.

Выделяющееся при пожаре тепло может оказать разрушительное воздействие на строительные конструкции и технологическое оборудование, что часто приводит к авариям и взрывам.

Чтобы предотвратить пожар, необходимо исключить горючее вещество, кислород или источник воспламенения. Исключить кислород воздуха чрезвычайно сложно, поэтому при разработке противопожарных мероприятий обычно заменяют материалы на менее горючие и ограничивают возможность наличия источника воспламенения.

По горючести вещества и материалы подразделяют на группы:

    негорючие (несгораемые) - вещества и материалы, не способные к горению на воздухе;

    трудногорючие (трудносгораемые) - вещества и материалы, способные возгораться от источника зажигания, но не способные самостоятельно гореть после удаления источника зажигания;

    горючие (сгораемые) - вещества и материалы, способные самовозгораться, а также возгораться от источника зажигания и самостоятельно гореть после его удаления.

Из группы горючих веществ и материалов выделяют легковоспламеняющиеся вещества и материалы. Легковоспламеняющимися называют горючие вещества и материалы, способные воспламеняться от кратковременного (до 30 с) воздействия источника зажигания с низкой энергией (пламя спички, искра, тлеющая сигарета и т.п.). К легковоспламеняющимся относят жидкости с температурой вспышки не выше 61 °С в закрытом или 66 °С в открытом тигле.

Вспышкой называется быстрое сгорание горючей смеси, не переходящее в стационарное горение. Температура вспышки - минимальная температура, при которой данное количество паров над поверхностью жидкости может воспламениться. Горючая смесь - смесь паров горючего вещества с кислородом воздуха. Воспламенение такой смеси может произойти даже от маломощного и кратковременного источника воспламенения (искры).

Температура воспламенения - наименьшая температура, при которой вещество выделяет горючие пары и газы с такой скоростью, что после их зажигания возникает устойчивое горение пламени.

Температура самовоспламенения - температура, при которой начинается самонагревание смеси до воспламенения, заканчивающегося горением.

Нижний и верхний пределы воспламенения (взрываемость) - объемная доля горючего в смеси (%), ниже и выше которой смесь становится неспособной к воспламенению.

Предел распространения огня характеризуется способностью строительных конструкций к самостоятельному горению, измеряется в сантиметрах и представляет собой размер повреждения конструкции в контрольной зоне в течение 15 мин.

В строительном производстве при проектировании мероприятий по предотвращению пожаров ориентируются на недопустимость появления источника воспламенения, поскольку очень многие строительные материалы относятся к группе сгораемых и исключить их из технологических процессов невозможно.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ