Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса , они называются термопласты , если с помощью химических связей - реактопласты . К линейным полимерам относится, например, целлюлоза , к разветвлённым, например, амилопектин , есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено - повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (-СН 2 -CHCl-) n , каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами .

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки , нуклеиновые кислоты , полисахариды , каучук и другие органические вещества . В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров . Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: поли этилен, поли пропилен, поли винилацетат и т. п.

Энциклопедичный YouTube

  • 1 / 5

    Особые механические свойства

    • эластичность - способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
    • малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
    • способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

    Особенности растворов полимеров:

    • высокая вязкость раствора при малой концентрации полимера;
    • растворение полимера происходит через стадию набухания.

    Особые химические свойства:

    • способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

    Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.

    Классификация

    По химическому составу все полимеры подразделяются на органические , элементоорганические , неорганические .

    • Органические полимеры.
    • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель - кремнийорганические соединения.
    • Неорганические полимеры . Они не содержат в повторяющемся звене связей C-C, но способны содержать органические радикалы , как боковые заместители.

    Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов , например, стеклопластиков . Возможны композиционные материалы, все компоненты которых - полимеры (с разным составом и свойствами).

    По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай - звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

    Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей - молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными . Полимеры с неполярными звеньями - неполярными , гидрофобными . Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными . Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами .

    По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные . Термопластичные полимеры (полиэтилен , полипропилен , полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

    Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды , белки и нуклеиновые кислоты , из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных - высокомолекулярных (см. Химическая эволюция).

    Типы

    Синтетические полимеры. Искусственные полимерные материалы

    Человек давно использует природные полимерные материалы в своей жизни. Это кожа , меха , шерсть , шёлк , хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент , известь , глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы . Однако промышленное производство цепных полимеров началось в начале XX века, хотя предпосылки для этого появились ранее.

    Практически сразу же промышленное производство полимеров развивалось в двух направлениях - путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров из органических низкомолекулярных соединений.

    В первом случае крупнотоннажное производство базируется на целлюлозе . Первый полимерный материал из физически модифицированной целлюлозы - целлулоид - был получен ещё в середине XIX века. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки , волокна , лакокрасочные материалы и загустители . Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы .

    Производство синтетических полимеров началось в 1906 году, когда Лео Бакеланд запатентовал так называемую бакелитовую смолу - продукт конденсации фенола и формальдегида , превращающийся при нагревании в трёхмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов , телевизоров , розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.

    Благодаря усилиям Генри Форда , перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем - также и синтетического каучука . Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида , являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата - без органического стекла под названием «плексиглас» было бы невозможно массовое самолётостроение в годы войны.

    После войны возобновилось производство полиамидного волокна и тканей (капрон , нейлон), начатое ещё до войны. В 50-х годах XX века было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат . Полипропилен и нитрон - искусственная шерсть из полиакрилонитрила , - замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок , шерсть , шёлк). Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта , что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны - наиболее распространенные герметики,

    ВВЕДЕНИЕ
    ИСТОРИЯ РАЗВИТИЯ ПРОМЫШЛЕННОСТИ ПЕРЕРАБОТКИ
    ПОЛИМЕРОВ
    Переработка полимеров появилась в середине 19 века
    Модифицированная целлюлоза - целлулоид – для замены
    слоновьих бивней для бильярдных шаров.
    Устройства, названные экструдерами, появились в 19 веке в
    Англии, Америке и Германии. Применялись для изоляции
    проводов и кабелей каучуком и резиной.
    3

    Отрасль химической промышленности: «Синтетические смолы их переработка».

    1. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОМЫШЛЕННОСТИ
    ПЕРЕРАБОТКИ ПОЛИМЕРОВ И КОМПОЗИТОВ
    Отрасль химической промышленности:
    «Синтетические смолы их переработка».
    Сырье
    Переработка:
    Генерирует максимальное
    количество мест
    Работает как драйвер
    развития машиностроения
    Увеличивает наукоемкость
    промышленности страны
    Полимер
    Переработка
    4

    5

    Предпосылки развития переработки полимеров

    Годовые
    темпы
    развития
    промышленного
    производства
    России
    8,2%
    4,7%
    3,3%
    0,3%
    3,2%
    5%
    Годовые
    темпы
    развития
    переработки
    пластмасс
    21,5%
    13,1%
    7,4%
    7,3%
    7-7,5%
    9-10%
    реалистический
    2010 г.
    2011 г.
    2012 г.
    2013 г.
    оптимистический
    2030 г.
    6

    7

    2. КЛАССИФИКАЦИЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
    И КОМПОЗИТОВ
    1. Классификация по модулю упругости в условиях
    эксплуатации
    При комнатной температуре модуль упругости при
    растяжении полимеров в высокоэластическом состоянии очень
    мал
    E~ 0,1 - 10 МПа
    Для стеклообразных полимеров – пластиков - Е 103 МПа
    Для частично-кристаллических полимеров - пластиков
    Е (αкрист) 10 – 103 МПа
    2. Классификация по Т стеклования аморфных полимеров
    Тст < Т = 23оС < Тст
    эластомер
    пластик
    8

    Полимеры, которые в условиях эксплуатации
    находятся в стеклообразном или кристаллическом
    состояниях и проявляют упругость, используются в
    качестве конструкционных материалов и являются
    основой пластиков и волокон.
    Полимеры, которые в условиях эксплуатации
    находятся в высокоэластическом физическом состоянии
    и проявляют большие и обратимые деформации,
    используются в качестве эластомеров.
    9

    10.

    10

    11.

    3. Классификация по химической структуре
    11

    12.

    4. Классификация по технологическому признаку:
    Термопласты – ПМ, способные к неоднократному
    переходу при нагревании в текучее состояние и
    затвердеванию при охлаждении без существенного
    изменения структуры и свойств.
    Реактопласты – ПМ, которые при нагревании вначале
    переходят в текучее состояние, а затем отверждаются
    в результате химических превращений и неспособны к
    повторному переходу в текучее состояние.
    4. КЛАССИФИКАЦИЯ по технологическим свойствам (условная)
    характер):
    литьевые (для тонкостенных изделий, длинномерных
    изделий),
    экструзионные (пленочные, трубные, листовые),
    пресс-материалы.
    12

    13.

    5. Классификация по областям применения – выделение групп
    ПМ, сходных по основному эксплуатационному признаку.
    Конструкционные материалы – для работы при кратковременном или
    длительном действии статических нагрузок: Е > 900 МПа
    (ПА, ПК, ПБТ, ПФО, полиимиды, этролы, армированные ПП, ПА, фенопласты,
    аминопласты, кремнийорганические композиции).
    Ударопрочные материалы – работа в условиях ударных нагрузок: ударная
    прочность > 20 кДж/ м2
    (ПЭ, СКЭП, СЭВА, ПП, ПВХ, ПТФЭ, УПС, ПК, АБС, армированные пластики).
    Теплостойкие материалы – Т эксплуатации > 150оС
    (ПА, ПБТФ, ПЭТФ, ПФО, ПК, аминопласты, фенопласты, полиимиды, резины на основе
    фторкаучуков, кремнийорганические композиции)
    Морозостойкие материалы – Т эксплуатации < минус 40оС
    (ПЭ, СКЭП, СЭВА, ПТФЭ, ПА, ПК, резины на основе НК, изопрена и др).
    ПМ электро- и радиотехнического назначения – ρv > 1010 Ом*м, tg δ < 0,02
    (ПО, ПВХ, ПТФЭ, ПФС, ПФО, полиимиды, СФД, ненасыщенные ПЭ).
    13

    14.

    Светотехнические ПМ – к-т светопропускания > 80%
    (блочный ПС, сополимеры САН, полиакрилаты, ПММА, прозрачные марки ПВХ, ПК,
    пленки ПЭТФ и ПА, ЭС, ненасыщенные ПЭ)
    Огнестойкие и самозатухающие ПМ – КИ > 22% или затухающие при выносе
    из пламени
    (ПТФЭ, полиимиды, ПВХ и композиции с антипиренами)
    Радиационностойкие ПМ – длительная устойчивость к ионизирующим
    излучениям
    (ПТФЭ, полимиды, фторкаучуки, композиции на основе ЭС и КС).
    Химически стойкие ПМ – для работы в агессивных средах
    (ПО, ПВХ, ПТФЭ, ПБТ, ПЭТФ, полиимиды, композиции на основе КС).
    Кроме того, группы водо-, бензо-, маслостойких, атмосферостойких,
    тропикостойких, грибостойких ПМ.
    14

    15.

    6.Классификация ПМ по совокупности параметров эксплуатации
    15

    16.

    7. Классификация ПМ по объему производства
    Крупнотоннажные пластмассы: ПО, ПВХ, ПС и его сополимеры, ПУ,
    композиции на основе ФФС, ненасыщенных ПЭС, аминоальдегидных смол
    – 80% от общего объема производства пластмасс.
    Крупнотоннажные каучуки – каучуки общего назначения: изопреновые,
    бутадиеновые, бутадиенстирольные.
    Среднетоннажные пластмассы: ПА, этролы, ПЭТФ, ПК, ПФО, ЭС,
    фурановые смолы.
    Среднетоннажные каучуки – хлоропреновые, акрилатные,
    этиленпропиленовые.
    Малотоннажные пластмассы и каучуки – несколько % от объема
    производства.
    16

    17.

    8. Классификация по составу и типу макроструктуры
    полимерного материала:
    Полимерный материал (ПМ) = полимер + ∑ добавок
    Гомогенная макроструктура: все добавки (стабилизаторы,
    пластификаторы, красители) растворены в полимере.
    Гетерогенная макроструктура - композиционные материалы:
    добавки нерастворимы в полимере - наличие включений
    (наполнители, пигменты, полимерные добавки) размером
    более 100 нм.
    Гетерогенная структура ПМ может быть:
    17

    18.

    18

    19.

    Типы армированных структур
    19

    20.

    3. СОЗДАНИЕ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
    ПОЛИМЕРНЫЙ
    МАТЕРИАЛ
    ПОЛИМЕР
    ПОЛИМЕРНЫЙ
    МАТЕРИАЛ
    =
    ПОЛИМЕР + Σ ДОБАВОК
    ДОБАВКИ:
    1 ЗАМЕДЛЯЮЩИЕ СТАРЕНИЕ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
    2 УЛУЧШАЮЩИЕ ПЕРЕРАБАТЫВАЕМОСТЬ
    3 СНИЖАЮЩИЕ ГОРЮЧЕСТЬ
    4 ПОВЫШАЮЩИЕ ПРОЧНОСТНЫЕ СВОЙСТВА
    5 ПРИДАЮЩИЕ СПЕЦИАЛЬНЫЕ СВОЙСТВА
    20

    21.

    1 ДОБАВКИ ЗАМЕДЛЯЮЩИЕ СТАРЕНИЕ ПМ
    Старение полимеров - это сложный комплекс химических и
    физических процессов, происходящих под влиянием окружающей
    среды, при переработке ПМ, эксплуатации и хранении,
    приводящий к необратимым или обратимым изменениям
    (ухудшению) свойств полимеров (вместо термина "старение"
    употребляют термин "деструкция" (иногда "деградация").
    Процессы физического старения обратимы. Нет разрыва или
    сшивания полимерных цепей. Это процессы кристаллизации,
    перекристаллизации или диффузии в полимер растворителей,
    вызывающие межкристаллитную коррозию и приводят к
    ухудшению механических свойств полимерных изделий.
    21

    22.

    Процессы химического старения необратимы. Они
    приводят к разрыву химических связей, а иногда к сшивке
    макромолекул, изменению химической структуры, понижению
    или увеличению молекулярной массы полимера.
    Процессы химического старения:
    Термическая деструкция (термораспад макромолекул по
    цепному механизму).
    Окислительная деструкция (образование пероксидных
    радикалов, инициирующих распад цепей).
    Как правило ТД и ОД идут одновременно - это
    термоокислительная деструкция.
    Озонное старение (озон реагирует с двойной связью,
    возникает промежуточный комплекс, а затем образуется
    циклическое кислородсодержащее соединение, разлагающееся
    на пероксидные радикалы)
    22

    23.

    Фотодеструкция
    Фотохимические превращения происходят в
    полимерах под действием УФ (180 < λ< 400нм) и
    видимого света (400< λ < 800нм), если полимер
    содержит химические связи или хромофорные
    группы.
    Фотодеструции в этой области подвержены
    полимеры содержащие
    О, N, двойные связи,
    ароматические ядра, примеси соединений металлов
    (например, остатки катализатора), случайно попавшие
    ароматические соединения и т. д.
    23

    24.

    Радиационная деструкция. Ионизирующее излучение ведет
    к образованию электрона и положительно заряженной полимерной
    частицы, которая распадается на радикалы.
    Гидролитическая деструкция. Механизм процесса
    гидролитический, скорость деструкции определяется скоростью
    диффузии гидролитирующей среды (вода, растворы кислот,
    оснований, солей).
    Механодеструкция. Образование радикалов под действием
    механических сил с последующим превращением на воздухе в
    гидропероксиды.
    Биодеструкция. Взаимодействие с бактериями, грибами с
    протеканием гидролитического ферментативного разложения
    полимера.
    24

    25.

    25

    26.

    26

    27.

    СТАБИЛИЗАТОРЫ (термо-, светостабилизаторы, антиоксиданты,
    антирады, антиозонаты, фунгициды).
    Термостабилизаторы (или ингибиторы) :
    а) обрывают цепи по реакции с пероксидными радикалами
    (фенолы, ароматические амины, аминофенолы, гидроксиламины,
    ароматические многоядерные углеводороды).
    б)обрывают цепи по реакции с алкильными (R*) радикалами
    (хиноны, нитроксильные радикалы, молекулы йода).
    в)разрушают гидропероксиды, особенно в реакциях
    автоокисления (сульфиды, дисульфиды, эфиры фосфористой
    кислоты).
    27

    28.

    Светостабилизаторы:
    а) вещества отражающие кванты света - (технический
    углерод (сажа)),
    б) поглощающие кванты света (2-гидроксибензофенон),
    в) тушители возбужденных состояний (2-(2`-гидроксифенил)-бензтиазол).
    Антиоксиданты – вещества взаимодействующие с
    пероксидами и гидроксидами (первичные антиоксиданты –
    затрудненные фенолы, вторичные – фосфиты, тиоэфиры).
    Антирадиационные добавки (антирады) придают устойчивость к гамма-радиации и др. видам
    излучений при стерилизации.
    Антимикробные добавки, абиотические добавки,
    биоциды. Повышают устойчивость к действию бактерий
    (бактериациды), грибков и плесени (фунгициды), обрастанию в воде
    (альгициды)
    28

    29.

    29

    30.

    30

    31.

    Требования к антиоксидантам:
    эффективная защита полимера в процессе
    переработки в изделия; от внешних воздействий
    при эксплуатации;
    потери стабилизатора при перработке должны
    быть минимальны;
    достаточно высокая ММ (свыше 700 г/моль);
    способность к диффузии в расплаве полимера;
    совместимость, растворимость в твердом
    полимере;
    низкая летучесть и стойкость к миграции в
    окружающую среду;
    специальные стабилизаторы для изделий
    медицинского назначения, игрушек, упаковки
    31
    пищевых продуктов

    Полимеры

    Однако существует много направлений, позволяющих использовать молекулы-гиганты в мирных целях. Так, если полностью нитрованная целлюлоза - это взрывчатое вещество и может применяться только как таковое, то частично нитрованная целлюлоза (пироксилин ) более безопасна в обращении, и ее можно применять не только в военных целях.

    Американский изобретатель Джон Уэсли Хайятт (1837-1920), пытаясь завоевать приз, установленный за создание заменителя слоновой кости для биллиардных шаров, прежде всего обратил внимание именно на частично нитрованную целлюлозу. Он растворил ее в смеси спирта и эфира, добавил камфору, чтобы новое вещество легче было обрабатывать. К 1869 г. Хайятт получил то, что он назвал целлулоидом , и завоевал приз . Целлулоид был первой синтетической пластмассой - материалом, который можно отливать в формы .

    Однако, как выяснилось, частично нитрованную целлюлозу можно не только формовать в шары, но и вытягивать в волокна и пленки. Французский химик Луи Мари Гиляр Берниго, граф Шар-донне (1839-1924), получил такие волокна, продавливая раствор нитроцеллюлозы через тончайшие отверстия. Растворитель при этом почти сразу же испарялся.

    Из полученных волокон можно было ткать материал, который своим блеском напоминал шелк. В 1884 г. Шардонне запатентовал полученный им искусственный шелк . Шардонне назвал эту ткань рейон - излучающая свет, так как ткань блестела и казалось, что она излучает свет.

    Появлением пластмассовых пленок мы обязаны американскому изобретателю Джорджу Истмену (1854-1932). Истмен увлекался фотографией. Пытаясь упростить процесс проявления, он начал смешивать эмульсию соединений серебра с желатиной, чтобы сделать эту эмульсию сухой. Полученную таким образом смесь можно было хранить, а следовательно, и готовить впрок. В 1884 г. Истмен заменил стеклянные пластинки на целлулоидные.

    Целлулоид невзрывоопасен, но он легко воспламеняется, что может быть причиной пожара, поэтому Истмен начал поиски менее горючих материалов. Когда в целлюлозу вместо нитрогрупп ввели ацетильные группы, полученный продукт остался столь же пластичным, как и нитроцеллюлоза, но он уже не был легко воспламеняющимся. С 1924 г. ацетилцеллюлозные пленки начали использовать в производстве кинофильмов, так как развивающаяся кинопромышленность особенно остро нуждалась в заменителе целлулоида.

    Изучая высокомолекулярные природные соединения, химики рассчитывали не только получить их синтетические аналоги, но и открыть новые типы соединений. Одним из методов синтеза молекул-гигантов является полимеризация мономеров (мономер - вещество, молекулы которого способны реагировать между собой или с молекулами других веществ с образованием полимера).

    Способ объединения мономеров в гигантскую молекулу можно пояснить хотя бы на примере этилена С 2 Н 4 . Напишем структурные формулы двух молекул этилена:


    Представим себе, что атом водорода переместился из одной молекулы в другую, в результате в этой молекуле вместо двойной связи появилась свободная одинарная связь. Свободная связь появилась и у первой молекулы, из которой ушел водород. Поэтому эти две молекулы могут соединиться друг с другом.


    Такая молекула содержит уже четыре углеродных атома и одну двойную связь, как и молекула исходного этилена. Следовательно, при взаимодействии этой молекулы с еще одной молекулой этилена также может произойти перемещение атома водорода и разрыв двойной связи. Образующаяся в результате молекула будет содержать шесть атомов углерода и одну двойную связь. Таким способом можно получить последовательно молекулу с восемью, десятью и более атомами углерода. Фактически так можно получать молекулы почти любой заданной длины.

    Американский химик Лео Хендрик Бакеланд (1863-1944) искал заменитель шеллака - воскоподобного вещества, выделяемого некоторыми видами тропических насекомых. Для этой цели ему необходим был раствор клейкого дегтеобразного вещества. Бакеланд начал с того, что провел полимеризацию фенола и формальдегида и получил полимер, для которого не смог подобрать растворитель. Этот факт привел его к мысли, что такой твердый, практически нерастворимый и, как выяснилось, не проводящий электричество полимер может оказаться ценным материалом. Так, например, из него можно отливать детали, которые легко будет обрабатывать на станках. В 1909 г. Бакеланд сообщил о полученном им материале, который он назвал бакелит . Эта фенолформальдегидная смола была первой синтетической пластмассой , которая по ряду свойств осталась непревзойденной.

    Нашли применение и синтетические волокна. Это направление возглавил американский химик Уоллес Хьюм Карозерс (1896-1937). Вместе с американским химиком Джулиусом Артуром Ньюлендом (1878-1936) он исследовал родственные каучуку эластомеры . Результатом его работ было получение в 1932 г. неопрена - одного из синтетических каучуков .

    Продолжая изучение полимеров, Карозерс попытался полимеризовать смесь диаминов и дикарбоновых кислот и получил волокнистый полимер. Длинные молекулы этого полимера содержат комбинации атомов, подобные пептидным связям (см. разд. «Белки») в белке шелка. Вытягивая эти волокна, получают то, что мы сегодня называем найлоном . Карозерс завершил эту работу буквально накануне преждевременной смерти. Разразившаяся вторая мировая война заставила химиков на время забыть об открытии Карозерса. Однако после окончания войны найлон начал вытеснять шелк и вскоре пришел ему на смену (в частности, в производстве чулочного трикотажа).

    Первые синтетические полимеры были получены, как правило, случайно, методом проб и ошибок, поскольку и о строении молекул-гигантов, и о механизме полимеризации было в ту пору мало что известно. Первым за изучение строения полимеров взялся немецкий химик Герман Штаудингер (1881-1965) и сделал в этой области немало. Штаудингеру удалось раскрыть общий принцип построения многих высокомолекулярных природных и искусственных веществ и наметить пути их исследования и синтеза. Благодаря работам Штаудингера выяснилось, что присоединение мономеров друг к другу может происходить беспорядочно и приводить к образованию разветвленных цепей, прочность которых значительно ниже.

    Начались интенсивные поиски способов получения линейных неразветвленных полимеров. И в 1953 г. немецкий химик Карл Циглер (1898-1973) открыл свой знаменитый титан-алюминиевый катализатор, на котором был получен полиэтилен с регулярной структурой.

    Итальянский химик Джулио Натта (1903-1979) модифицировал катализатор Циглера и разработал метод получения нового класса синтетических высокомолекулярных соединений - стерео-регулярных полимеров . Был разработан метод получения полимеров с заданными свойствами.

    Одним из главных источников основных органических соединений, необходимых для производства новых синтетических продуктов, является нефть . Эта жидкость известна с античных времен, но чтобы использовать ее в больших количествах, необходимо было открыть способ выкачивания нефти из обширных подземных месторождений. Американский изобретатель Эдвин Лаурентин Дрейк (1819-1880) первым в 1859 г. начал бурить нефтяные скважины. Столетие спустя нефть стала основным источником органических соединений, источником тепла и энергии.

    Еще более важным источником органических продуктов является каменный уголь, хотя в век двигателей внутреннего сгорания мы обычно забываем о нем. Русский химик Владимир Николаевич Ипатьев (1867-1952) на рубеже веков начал исследовать сложные углеводороды, содержащиеся в нефти и каменноугольном дегте, и, в частности, изучать их реакции, идущие при высоких температурах. Немецкий химик Фридрих Карл Рудольф Бергиус (1884-1949), используя данные Ипатьева, разработал в 1912 г. практические способы обработки каменного угля и нефти водородом с целью получения бензина.

    Однако мировые запасы ископаемого топлива (каменный уголь плюс нефть) ограничены и невосполнимы. Все прогнозы говорят о том, что наступит день, когда запасы ископаемого топлива будут исчерпаны, и что этот день не за горами, особенно если учесть, что численность населения земли быстро увеличивается, а, следовательно, увеличивается и потребность в энергии .

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    1. Полимеры

    Историческая справка.

    Термин “полимерия” был введен в науку И.Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.

    Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами”). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол),

    Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г.Бушарда, У.Тилден, немецкий учёный К Гарриес, И.Л.Кондаков, С.В.Лебедев и другие). В 30-х годов было доказано существование свободнорадикального и ионного механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У.Карозерса.

    С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

    Полимеры - химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

    2. Классификация

    По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).

    Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

    Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.

    Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

    В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

    3. Свойства и важнейшие характеристики

    Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

    Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

    Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.

    Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

    Некоторые свойства полимеров, например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

    Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.

    4. Получение

    Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных), Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С=О, С=N, N=С=О) или непрочные гетероциклические группировки.

    5. Полимеры в сельском хозяйстве

    Сегодня можно говорить по меньшей мере о четырех основных направлениях использования полимерных материалов в сельском хозяйстве. И в отечественной и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повышается до 30%, а сроки созревания ускоряются на 10-14 дней. Использование полиэтиленовой пленки для гидроизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укрытие пленкой сенажа, силоса, грубых кормов обеспечивает их лучшую сохранность даже в неблагоприятных погодных условиях. Но главная область использования пленочных полимерных материалов в сельском хозяйстве - строительство и эксплуатация пленочных теплиц. В настоящее время стало технически возможным выпускать полотнища пленки шириной до 16 м, а это позволяет строить пленочные теплицы шириной в основании до 7,5 и длиной до 200 м. В таких теплицах можно все сельскохозяйственные работы проводить механизированно; более того, эти теплицы позволяют выращивать продукцию круглогодично. В холодное время теплицы обогреваются опять-таки с помощью полимерных труб, заложенных в почву на глубину 60-70 см.

    С точки зрения химической структуры полимеров, используемых в тепличных хозяйствах такого рода, можно отметить преимущественное использование полиэтилена, непластифицированного поливинилхлорида и в меньшей мере полиамидов. Полиэтиленовые пленки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1-2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.

    Другая область широкого применения полимерных материалов в сельском хозяйстве - мелиорация. Тут и разнообразные формы труб и шлангов для полива, особенно для самого прогрессивного в настоящее время капельного орошения; тут и перфорированные пластмассовые трубы для дренажа. Интересно отметить, что срок службы пластмассовых труб в системах дренажа, напри мер, в республиках Прибалтики в 3-4 раза дольше, чем соответствующих керамических труб. Вдобавок использование пластмассовых труб, особенно из гофрированного поливинилхлорида, позволяет почти полностью исключить ручной труд при прокладке дренажных систем.

    Два остальных главных направления использования полимерных материалов в сельском хозяйстве - строительство, особенно животноводческих помещений, и машиностроение.

    Овцы в синтетических шубах

    Овца, как известно, животное неразумное. Особенно - меринос. Знает ведь, что шерсть нужна хозяину чистой а все-таки то в пыли изваляется, то, продираясь по кус там, колючек на себя нацепляет. Мыть и чистить овечью шерсть после стрижки - процесс сложный и трудоемкий. Чтобы упростить его, чтобы защитить шерсть от загрязнений, австралийские овцеводы изобрели попону из полиэтиленовой ткани. Надевают ее на овцу сразу после стрижки, затягивают резиновыми застежками. Овца растет, и шерсть на ней растет, распирает попону, а резинки слабеют, попона все время как по мерке сшита. Но вот беда: под австралийским солнцем сам полиэтилен хрупким становится. И с этим справились с помощью аминных стабилизаторов. Осталось еще приучить овцу не рвать полиэтиленовую ткань о колючки и заборы.

    Нумерованные животные

    Начиная с 1975 года весь крупный рогатый скот, а также овцы и козы в государственных хозяйствах Чехословакии должны носить в ушах своеобразные сережки - пластмассовые таблички с указанием основных данных о животных. Эта новая форма регистрации животных должна заменить применявшееся ранее клеймение, что признано специалистами негигиеничным. Миллионы пластмассовых табличек должны выпускать артели местной промышленности.

    Микроб - кормилец

    Комплексную задачу очистки сточных вод целлюлозно-бумажного производства и одновременного производства кормов для животноводства решили финские ученые. Специальную культуру микробов выращивают на отработанных сульфитных щелоках в специальных ферментаторах при 38° С, одновременно добавляя туда аммиак. Выход кормового белка составляет 50-55%; его с аппетитом поедают свиньи и домашняя птица.

    Синтетическая травка

    Традиционно принято многие спортивные мероприятия проводить на площадках с травяным покрытием. Футбол, теннис, крокет... К сожалению, динамичное развитие спорта, пиковые нагрузки у ворот или у сетки приводят к тому, что трава не успевает подрасти от одного состязания до другого. И никакие ухищрения садовников не могут с этим справиться. Можно, конечно, проводить аналогичные состязания на площадках, скажем, с асфальтовым покрытием, но как же быть с традиционными видами спорта? На помощь пришли синтетические материалы. Полиамидную пленку толщиной 1/40 мм (25 мкм) нарезают на полоски шириной 1,27 мм, вытягивают их, извивают, а затем переплетают так, чтобы получить легкую объемную маcсу, имитирующую траву. Во избежание пожара к полимеру загодя добавляют огнезащитные средства, а чтобы из-под ног у спортсменов не посыпались электрическое искры -антистатик. Коврики из синтетической травы наклеивают на подготовленное основание - и вот зам готов травяной корт или футбольное поле, или иная спортивная площадка. А по мере износа отдельные участки игрового поля можно заменять новыми ковриками, изготовленными по той же технологии и того же зеленого цвета.

    6. Полимеры в машиностроении

    Ничего удивительного в том, что эта отрасль - главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. машиностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. - всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37--38% всех выпускающихся в нашей стране пластмасс, а 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали применять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно.

    При этом уместно отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли. Полимерам стали доверять все более и более ответственные задачи. Из полимеров стали изготавливать все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, и в то же время все чаще полимеры стали применяться в изготовлении крупногабаритных корпусных деталей машин и механизмов, несущих значительные нагрузки. Ниже будет подробнее рассказано о применении полимеров в автомобильной и авиационной промышленности, здесь же упомянем лишь один примечательный факт: несколько лет назад по Москве ходил цельнопластмассовый трамвай. А вот другой факт: четверть всех мелких судов - катеров, шлюпок, лодок - теперь строится из пластических масс.

    До недавних пор широкому использованию полимерных материалов в машиностроении препятствовали два, казалось бы, общепризнанных недостатка полимеров: их низкая (по сравнению с марочными сталями) прочность и низкая теплостойкость. Рубеж прочностных свойств полимерных материалов удалось преодолеть переходом к композиционным материалам, главным образом стекло и углепластикам. Так что теперь выражение “пластмасса прочнее стали” звучит вполне обоснованно. В то же время полимеры сохранили свои позиции при массовом изготовлении огромного числа тех деталей, от которых не требуется особенно высокая прочность: заглушек, штуцеров, колпачков, рукояток, шкал и корпусов измерительных приборов. Еще одна область, специфическая именно для полимеров, где четче всего проявляются их преимущества перед любыми иными материалами, - это область внутренней и внешней отделки.

    То же самое можно сказать и о машиностроении. Почти три четверти внутренней отделки салонов легковых автомобилей, автобусов, самолетов, речных и морских судов и пассажирских вагонов выполняется ныне из декоративных пластиков, синтетических пленок, тканей, искусственной кожи. Более того, для многих машин и аппаратов только использование антикоррозионной отделки синтетическими материалами обеспечило их надежную, долговременную эксплуатацию. К примеру, многократное использование изделия в экстремальных физико-технических условиях (космосе) обеспечивается, в частности, тем, что вся его внешняя поверхность покрыта синтетическими плитками, к тому же приклеенными синтетическим полиуретановым или полиэпоксидным клеем. А аппараты для химического производства? У них внутри бывают такие агрессивные среды, что никакая марочная сталь не выдержала бы. Единственный выход - сделать внутреннюю облицовку из платины или из пленки фторопласта. Гальванические ванны могут работать только при условии, что они сами и конструкции подвески покрыты синтетическими смолами и пластиками.

    Широко применяются полимерные материалы и в такой отрасли народного хозяйства, как приборостроение. Здесь получен самый высокий экономический эффект в среднем в 1,5-2,0 раза выше, чем в других отраслях машиностроения. Объясняется это, в частности тем что большая часть полимеров перерабатывается в приборостроении самыми прогрессивными способами что повышает уровень полезного использования (и безотходность отходность) термопластов, увеличивает коэффициент замены дорогостоящих материалов. Наряду с этим значительно снижаются затраты живого труда. Простейшим и весьма убедительным примером может служить изготовление печатных схем: процесс, не мыслимый без полимерных материалов, а с ними и полностью автоматизированный.

    Есть и другие подотрасли, где использование полимерных материалов обеспечивает и экономию материальных и энергетических ресурсов, и рост производительности труда. Почти полную автоматизацию обеспечило применение полимеров в производстве тормозных систем для транспорта. Неспроста практически все функциональные детали тормозных систем для автомобилей и около 45% для железнодорожного подвижного состава делаются из синтетических пресс-материалов. Около 50% деталей вращения и зубчатых колес изготовляется из прочных конструкционных полимеров. В последнем случае можно отметить две различных тенденции. С одной стороны, все чаще появляются сообщения об изготовлении зубчатых колес для тракторов из капрона. Обрывки отслуживших свое рыболовных сетей, старые чулки и путанку капроновых волокон переплавляют и формуют в шестерни. Эти шестерни могут работать почти без износа в контакте со стальными, вдобавок такая система не нуждается в смазке и почти бесшумна. Другая тенденция - полная замена металлических деталей в редукторах на детали из углепластиков. У них тоже отмечается резкое снижение механических потерь, долговременность срока службы.

    Еще одна область применения полимерных материалов в машиностроении, достойная отдельного упоминания, - изготовление металлорежущего инструмента. По мере расширения использования прочных сталей н сплавов все более жесткие требования предъявляются к обрабатывающему инструменту. И здесь тоже на выручку инструментальщику и станочнику приходят пластмассы. Но не совсем обычные пластмассы сверхвысокой твердости, такие, которые смеют поспорить даже с алмазом. Король твердости, алмаз, еще не свергнут со своего трона, но дело идет к тому. Некоторые окислы (например из рода фианитов), нитриды, карбиды, уже сегодня демонстрируют не меньшую твердость, да к тому же и большую термостойкость. Вся беда в том, что они пока еще более дороги, чем природные и синтетические алмазы, да к тому же им свойствен “королевский порок” - они в большинстве своем хрупки. Вот и приходится, чтобы удержать их от растрескивания, каждое зернышко такого абразива окружать полимерной упаковкой чаще всего из фенолформальдегидных смол. Поэтому сегодня три четверти абразивного инструмента выпускается с применением синтетических смол.

    Таковы лишь некоторые примеры н основные тенденции внедрения полимерных материалов в подотрасли машиностроения. Самое же первое место по темпам роста применения пластических масс среди других подотраслей занимает сейчас автомобильная промышленность. Десять лет назад в автомашинах использовали от 7 до 12 видов различных пластиков, к концу 70-х годов это число перешагнуло за 30. С точки зрения химической структуры, как и следовало ожидать, первые места по объему занимают стирольные пластики, поливинилхлорид и полиолефины. Пока еще немного уступают им, но активно догоняют полиуретаны, полиэфиры, акрилаты и другие полимеры. Перечень деталей автомобиля, которые в тех или иных моделях в наши дни из готовляют из полимеров, занял бы не одну страницу. Кузова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шланги, сиденья, дверцы, капот. Более того, несколько разных фирм за рубежом уже объявили о начале производства цельнопластмассовых автомобилей. Наиболее характерные тенденции в применении пластмасс для автомобилестроения, в общем, те же, что и в других подотраслях. Во-первых, это экономия материалов: безотходное или малоотходное формование больших блоков и узлов. Во-вторых, благодаря использованию легких и облегченных полимерных материалов снижается общий вес автомобиля, а значит, будет экономиться горючее при его эксплуатации. В-третьих, выполненные как единое целое, блоки пластмассовых деталей существенно упрощают сборку и позволяют экономить живой труд.

    Кстати, те же преимущества стимулируют и широкое применение полимерных материалов в авиационной промышленности. Например, замена алюминиевого сплава графитопластиком при изготовлении предкрылка крыла самолета позволяет сократить количество деталей с 47 до 14, крепежа - с 1464 до 8 болтов, снизить вес на 22%, стоимость - на 25%. При этом запас прочности изделия составляет 178%. Лопасти вертолета, лопатки вентиляторов реактивных двигателей рекомендуют изготовлять из поликонденсационных смол, наполненных алюмосиликатными волокнами, что позволяет снизить вес самолета при сохранении прочности и надежности. По английскому патенту № 2047188 покрытие несущих поверхностей самолетов или лопастей роторов вертолетов слоем полиуретана толщиной всего 0,65 мм в 1,5-2 раза повышает их стойкость к дождевой эрозии. Жесткие требования были поставлены перед конструкторами первого англо-французского сверхзвукового пассажирского самолета “Конкорд”. Было рассчитано, что от трения об атмосферу внешняя поверхность самолета будет разогреваться до 120-150° С, и в то же время требовалось, чтобы она не поддавалась эрозии в течение по меньшей мере 20000 часов. Решение проблемы было найдено с помощью поверхностного покрытия защиты самолета тончайшей пленкой фторопласта.

    Пластмассовые ракеты

    Оболочку двигателя ракет изготавливают из углепластика, наматывая на трубу ленту из углеволокна, предварительно пропитанную эпоксидными смолами. После отверждения смолы и удаления вспомогательного сердечника получают трубу с содержанием углеволокна более двух третей, достаточно прочную на растяжение и изгиб, стойкую к вибрациям и пульсации. Остается начинить заготовку ракетным топливом, приладить к ней отсек для приборов и фотокамер, и можно отправлять ее в полет.

    Пластмассовый шлюз

    На одном из каналов в районе Быгдощи установлен первый в Польше (а вероятно, и первый в мире) цельнопластмассовый шлюз. Работает шлюз безукоризненно. Пластмассовые элементы рассчитаны на более чем 20-летний срок эксплуатационной службы. Конструкции же из дубовых балок приходилось менять каждые 6 лет.

    Сварка без нагрева

    Как прикрепить друг к другу две пластмассовые панели? Можно приклеить, но тогда необходимо оборудовать рабочее место системой вентиляции. Можно привинтить или приклепать, но тогда надо загодя сверлить отверстия. Можно приварить, если обе панели термопластичны, но и тут без вентиляции не обойтись, да к тому же из-за локальных перегревов соединение может оказаться продеструктировавшим и непрочным. Самый лучший способ и оборудование для него разработала французская фирма “Брансон”. Генератор ультразвука мощностью 3 кВт, частотой 20 кГц, “звуководы” - сонотроды - и все. Наконечник сонотрода, вибрируя, проникает сквозь верхнюю из скрепляемых деталей толщиной до 8 мм. погружаются в нижнюю и увлекает за собой расплав верхнего полимера. Энергия ультразвуковых колебаний превращается в тепло лишь локально, получается точечная сварка. полимер химический молекулярный

    Размещено на Allbest.ru

    ...

    Подобные документы

      История развития науки о полимерах - высокомолекулярных соединений, веществ с большой молекулярной массой. Классификация и свойства органических пластических материалов. Примеры использования полимеров в медицине, сельском хозяйстве, машиностроении, быту.

      презентация , добавлен 09.12.2013

      Особенности строения и свойств. Классификация полимеров. Свойства полимеров. Изготовление полимеров. Использование полимеров. Пленка. Мелиорация. Строительство. Коврики из синтетической травы. Машиностроение. Промышленность.

      реферат , добавлен 11.08.2002

      Общая характеристика современных направлений развития композитов на основе полимеров. Сущность и значение армирования полимеров. Особенности получения и свойства полимерных композиционных материалов. Анализ физико-химических аспектов упрочнения полимеров.

      реферат , добавлен 27.05.2010

      Характеристика биодеградируемых (биоразлагаемых) полимеров - материалов, которые разрушаются в результате естественных природных (микробиологических и биохимических) процессов. Свойства, способы получения и сферы использования биодеградируемых полимеров.

      реферат , добавлен 12.05.2011

      Особенности химических реакций в полимерах. Деструкция полимеров под действием тепла и химических сред. Химические реакции при действии света и ионизирующих излучений. Формирование сетчатых структур в полимерах. Реакции полимеров с кислородом и озоном.

      контрольная работа , добавлен 08.03.2015

      Пластмассы и эластомеры, подобие и различия. Сравнительная характеристика стеклообразного и высокоэластичного состояния полимеров. Химия полимеризации и поликонденсации. Технологии получения заданных свойств полимеров, предупреждение старения.

      лекция , добавлен 09.10.2009

      Что такое полимеры и особенности развития науки о полимерах. Описание различий в свойствах высоко- и низкомолекулярных соединений. История развития производства полимеров. Технологический процесс образования, получения и распространения полимеров.

      реферат , добавлен 12.06.2011

      Формование полимерных материалов с заданной структурой на основе смесей несовместимых полимеров. Условия волокнообразования в смесях несовместимых полимеров при изменении вязкостей и дисперсности смеси. Реологические свойства исследованных полимеров.

      статья , добавлен 03.03.2010

      Физические и фазовые состояния и переходы. Термодинамика высокоэластической деформации. Релаксационные и механические свойства кристаллических полимеров. Теории их разрушения и долговечность. Стеклование, реология расплавов и растворов полимеров.

      контрольная работа , добавлен 08.03.2015

      Формула и описание полиацителена, его место в классификации полимеров. Строение, физические и химические свойства полиацителена. Способ получения полиацетилена полимеризацией ацетилена или полимерана логичными превращениями из насыщенных полимеров.

    Термин "полимерия" был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о полимерах. "Истинные" синтетические полимеры к тому времени ещё не были известны.

    Ряд полимеров был, по-видимому, получен ещё в первой половине XIX в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е., собственно, к образованию полимеров (до сих пор полимеры часто называли "смолами"). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).

    Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения (начало 1860-х гг.). А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. А.М.Бутлеров предложил рассматривать способность непредельных соединений к полимеризации в качестве критерия их реакционной способности. Отсюда берут свое начало классические работы в области полимеризационных и изомеризационных процессов А.Е. Фаворского, В.Н.Ипатьева и С.В. Лебедева. От исследований нефтяных углеводородов В.В. Марковниковым и затем Н.Д. Зелинским протягиваются нити к современным работам по синтезу всевозможных мономеров из нефтяного сырья.

    Здесь следует отметить, что с самого начала промышленное производство полимеров развивалось по двум направлениям: путем переработки природных полимеров в искусственные полимерные материалы и получения синтетических полимеров из органических низкомолекулярных соединений. В первом случае крупнотоннажное производство базируется на целлюлозе, первый материал из физически модифицированной целлюлозы - целлофан, был получен в 1908 г.

    Наука о синтезе полимеров из мономеров оказалась куда более масштабным явлением в плане стоящих перед учеными задач.

    Несмотря на изобретение в начале XX века способа получения фенолформальдегидных смол Бакеландом не существовало понимания процесса полимеризации. Лишь в 1922 г. немецкий химик Герман Штаудингер выдвинул определение макромолекула - длинной конструкции из атомов, связанных ковалентными связями. Он же первым установил взаимосвязь между молекулярной массой полимера и вязкостью его раствора. Впоследствии американский химик Герман Марк исследовал форму и размер макромолекул в растворе.

    Тогда же в 1920-1930-е гг. благодаря передовым работам Н. Н. Семенова в области цепных реакций было обнаружено глубокое сходство механизма полимеризации с цепными реакциями, которые изучал Н. Н. Семенов.

    В 30-х гг. было доказано существование свободнорадикального (Г.Штаудингер и др.) и ионного (Ф. Уитмор и др.) механизмов полимеризации.

    В СССР в середине 1930-х гг. С.С. Медведев сформулировал понятие «инициирование» полимеризации как результат распада перекисных соединений с образованием радикалов. Им же были оценены количественно реакции передачи цепи как процессы регулирования молекулярной массы. Исследования механизмов свободнорадикальной полимеризации проводились вплоть до 1950-х гг.

    Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса, который ввел в химию высокомолекулярных соединений понятия функциональности мономера, линейной и трехмерной поликонденсации. Он же в 1931 синтезировал совместно с Дж.А. Ньюландом хлоропреновый каучук (неопрен) и в 1937 разработал метод получения полиамида для формования волокна типа найлон.

    В 1930-е гг. развивалось и учение о структуре полимеров, А.П.Александров впервые развил в 30-х гг. представления о релаксационной природе деформации полимерных тел; В.А. Каргин установил в конце 30-х гг. факт термодинамической обратимости растворов полимеров и сформулировал систему представлений о трех физических состояниях аморфных высокомолекулярных соединений.

    До Второй мировой войны наиболее развитые страны освоили промышленное производство СК, полистирола, поливинилхлорида и полиметилметакрилата.

    В 1940-е гг. американский физико-химик Флори внес значительный вклад в теорию растворов полимеров и статистическую механику макромолекул, Флори создал методы определения строения и свойств макромолекул из измерений вязкости, седиментации и диффузии.

    Эпохальным событием в химии полимеров стало открытие К. Циглером в 1950-е гг. металлокомплексных катализаторов, что привело к появлению полимеров на основе полиолефинов: полиэтилена и полипропилена, которые стали получать при атмосферном давлении. Затем были внедрены в массовое производство полиуретаны (в частности поролон), а также полисилоксаны.

    В 1960-1970-е гг. получены уникальные полимеры - ароматические полиамиды, полиимиды, полиэфиркетоны, содержащие в своей структуре ароматические циклы, и характеризующиеся огромной прочностью и термостойкостью. В частности, в 1960-е гг. Каргин В.А. и Кабанов В.А. положили начало новому виду полимерообразования - комплексно-радикальной полимеризации. Ими было показано, что активность непредельных мономеров в реакциях радикальной полимеризации может быть значительно повышена путем связывания их в комплексы с неорганическими солями. Так были получены полимеры неактивных мономеров: пиридина, хинолина и др.

    При этом совершенно не затронуто исследование биополимеров, особенно белков и нуклеиновых кислот; а также полимерных жидких кристаллов. Исследования в этой области лежат в пограничных областях между химией и другими естественными науками и далеко выходят за рамки данного реферата.



    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ