Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Содержание статьи

ПРОМЫШЛЕННЫЕ ФАКТОРЫ ОПАСНОСТИ, любые факторы, связанные с производством и способные оказать неблагоприятное влияние на здоровье человека. Условия окружающей среды, вещества или нагрузки, связанные с производством, могут вызвать снижение трудоспособности, ухудшение самочувствия, травму, болезнь и даже смерть. Факторы, вредно влияющие на самочувствие и здоровье человека в процессе его трудовой деятельности, приводят к снижению эффективности его труда или временной потере трудоспособности. Промышленная гигиена – область медицины, которая занимается промышленными факторами опасности.

Степень опасности.

Влияние промышленного фактора опасности зависит от рода опасности, интенсивности и длительности воздействия вредного фактора, а также обеспокоенности человека данным видом опасности. Воздействие промышленного вредного фактора на человека может быть слабым, но длительным (хроническим), либо сильным, но краткосрочным (острым). Примеры результатов хронических воздействий – антракоз (почернение легких), асбестоз и сидероз – виды заболеваний легких, вызванных вдыханием угольной пыли, асбестовых волокон и металлической пыли (железа) соответственно. Кожная сыпь – пример результата острого воздействия. Промышленные факторы опасности можно разделить на четыре основные категории: химические, физические, биологические и эргономические.

Химические факторы опасности.

Большинство вредных для здоровья воздействий, исходящих от загрязненной окружающей среды, создается пылью, дымами, газами, жидкостями, туманами или парами. Химические препараты могут быть крайне опасными при работе с ними или когда они присутствуют в воздухе в высокой концентрации. При работе с химикатами надо постоянно соблюдать меры предосторожности – пользуясь защитной одеждой, вентиляцией, дистанционными манипуляторами и т.д., – поскольку даже малое количество опасного химиката может нанести вред. Характер воздействия химиката на организм зависит от природы вещества (очевидно, что кислота опаснее для человека, чем вода), интенсивности и времени воздействия, температуры и физического состояния вредного вещества, а также полноценности питания и состояния здоровья работника. Химикаты представляют потенциальную опасность для людей и материальных ценностей, когда они химически активны, нестабильны, воспламеняемы либо летучи или когда они разлагаются. К опасным химикатам относятся взрывчатые вещества, коррозионно-активные вещества, в т.ч. сильные кислоты и щелочи, воспламеняющиеся жидкости, в частности некоторые топлива, токсичные препараты, например соединения, содержащие цианогруппу, окисляющие материалы и некоторые газы.

Растворители, в частности бензол и скипидар, могут быть особенно опасными. Растворители используются для перевода в раствор таких материалов, как масла, смазки, жиры и воски. При контакте с кожей растворители могут вызвать дерматит; вдыхание их может вызвать отравление. Растворители часто бывают причиной взрывов и пожаров в жилых домах, школах, заводах и мастерских.

Химикаты проникают в организм при вдыхании, глотании или путем впитывания. При вдыхании химикаты могут вызвать воспаление верхних дыхательных путей и легких. Реакция организма может быть немедленной и острой. После вдыхания токсичное вещество быстро попадает из легких в кровь и с нею в мозг; именно по этой причине вдыхание некоторых химикатов является крайне опасным. Случаи заглатывания происходят при приеме пищи с попавшими в нее химикатами. После заглатывания токсичные химикаты переносятся из пищеварительной системы в кровь. Путем впитывания в организм обычно попадают жидкие химикаты. Впитывание происходит через кожу или слизистые оболочки, особенно в носу и горле, и может вызвать сыпь на коже и повреждение внутренних органов.

Физические факторы опасности.

Шум, высокие температура и давление, радиация и вибрации – основные виды физических факторов опасности.

Шум (ненужный звук) может оказывать вредное воздействие на различные системы человеческого организма. Среди возможных психологических последствий чрезмерного шума – нервозность, усталость, сонливость и высокое кровяное давление. Физиологические эффекты шума – боль в ушах и потеря слуха. Степень профессиональной потери слуха выше, чем при старении организма, и такая потеря не может быть компенсирована хирургическим вмешательством. Шум может также вызвать нарушение функции речевых органов.

Тепловые нагрузки, вызванные высокими температурами, довольно распространены в металлургии и машиностроении, но факторы теплового воздействия проще всего поддаются контролю по сравнению с другими промышленными факторами опасности. Хотя человек чувствует себя лучше всего только в очень узком диапазоне температуры тела, должны сложиться весьма жесткие внешние условия, прежде чем тепловое перенапряжение станет ощутимым. Уровень тепловой нагрузки зависит от таких параметров, как количество теплоты, передаваемой излучением и конвекцией, влажность, температура и скорость движения воздуха, а также скорость биохимических процессов в организме рабочего. Перегрев может вызвать тепловой удар, тепловые судороги и тепловое истощение. Переохлаждение, которое возможно при производстве на открытом воздухе, приводит к обморожению или гипотермии.

Радиация как физический фактор опасности вызывает все возрастающее беспокойство. Радиацию разделяют на ионизирующую и неионизирующую. Ионизирующая радиация может превратить нейтральные атомы в ионы (заряженные частицы), которые высокореакционноспособны по отношению к другим атомам – в тканях, костном мозге, крови и других элементах человеческого организма. Ионизирующая радиация может представлять собой поток частиц, скажем, альфа-частиц, бета-частиц и нейтронов, либо электромагнитное излучение, например рентгеновское или гамма-излучение. Рентгеновское излучение и гамма-излучение – наиболее опасные виды ионизирующей радиации; их может задержать только массивная преграда (свинцовая или бетонная). Ионизирующая радиация может поразить любую ткань человеческого тела, а степень поражения варьируется от ожогов кожи до рака. Производственные процессы, в частности, сварка и переработка материалов в изделия, а также использование медицинских препаратов, содержащих радиоактивные вещества, – вот примеры ситуаций, где возможно воздействие ионизирующей радиации. Случаи острых облучений довольно редки, однако хроническое облучение может со временем привести к лейкемии, раку щитовидной железы или бесплодию. Нейтронный поток крайне вреден, но в обычных производственных процессах такие потоки, как правило, отсутствуют.

Неионизирующая радиация – например световое, микроволновое и радиочастотное излучение – встречается в производственных условиях гораздо чаще. Неионизирующее излучение имеет большую длину волны и, следовательно, меньшую частоту, чем ионизирующее. Опасность нанесения вреда здоровью низкочастотным излучением (скажем, таким, какое возникает близ линий электропередачи) мала, поскольку излучение этого типа редко имеет высокую интенсивность. Микроволновое излучение, испускаемое радиолокаторами и системами связи, может быть достаточно интенсивным, чтобы вызвать непереносимое повышение температуры тела и серьезные локальные повреждения, например катаракту. Инфракрасное излучение может привести к ожогам и катаракте; однако излучение этого типа не проникает глубже поверхностных слоев кожи. Ультрафиолетовое излучение испускается Солнцем и является наиболее распространенным (по наносимому им вреду) видом неионизирующей радиации. Некоторые применяемые в промышленности вещества делают кожу особенно чувствительной к ультрафиолетовым лучам. Тяжелые солнечные ожоги и воспаление глаз у сварщиков – примеры вредного влияния ультрафиолетового излучения на здоровье человека; во время сварки, плавки и разливки металлов испускается как инфракрасное, так и ультрафиолетовое излучение. Лазеры широко используются в различных отраслях промышленности, науке и медицине и могут причинить непоправимый вред глазам оператора; особому риску такого рода подвергаются работники, занимающиеся сваркой, системами связи, хирургией и химическими исследованиями.

Вибрации передаются телу через стопы и пальцы рук. Этот физический фактор опасности может повредить суставы, кости, мышцы, нервы и систему кровообращения. Чрезмерные вибрации нередко создают пневматические отбойные и бурильные молотки, долота и дрели, а также клепальные пистолеты.

Биологические факторы опасности.

Эргономические нагрузки.

Эргономика, или технология человеческих факторов, – учение о законах труда, связанных с привычками, склонностями, физиологическими параметрами и психологическими характеристиками людей. Учет всех требований, предъявляемых процессом труда к указанным параметрам и характеристикам, необходим для устранения или снижения многих нагрузок. Эргономика, следовательно, заключает в себе больше, чем просто проблемы здоровья, безопасности и производительности труда. Специалисты по гигиене труда стремятся подобрать для каждого конкретного работника наиболее подходящую ему работу и так спроектировать рабочее место, чтобы его удобство для работника способствовало росту производительности труда. Высокий уровень производительности труда возможен только в рабочих системах, спроектированных с учетом способностей, возможностей и ограничений людей. Создавая рабочие системы, в которых физические и психологические нагрузки минимальны, а условия работы комфортны, можно повысить эффективность технологических операций, уменьшить число несчастных случаев, снизить стоимость производства, сократить время обучения и использовать персонал более эффективно. Эргономические нагрузки могут влиять на здоровье и производительность труда столь же сильно, как и другие, более явные опасные факторы окружения. Эргономическое проектирование должно учитывать биомедицинские факторы, в т.ч. нагрузку на мышцы, нервы, суставы и кости организма; факторы чувствительности, в частности звуковые сигналы, утомляемость зрения и цвет; факторы окружающей среды, например температуру, влажность, шум, химические факторы опасности, освещение.

Средства устранения факторов опасности.

Промышленные факторы опасности могут быть устранены или сокращены различными способами. Многие такие факторы могут быть исключены внесением изменений в технологический процесс, когда, например, токсичные материалы заменяются безвредными веществами. Если невозможно устранить все факторы опасности, то необходимо использовать защитное оборудование, в частности каски, защитные очки, маски и перчатки. Однако такое оборудование лишь защищает от факторов опасности, не устраняя их. Путем управленческих решений можно ограничить воздействие неустранимых вредных факторов, например шума. Регулярные медицинские осмотрыважная часть борьбы с промышленными факторами опасности.

Среди чрезвычайных ситуаций техногенного характера аварии на химически опасных объектах занимают одно из важнейших мест. Химизация промышленной индустрии во второй половине ХХ столетия обусловила возрастание техногенных опасностей, связанных с химическими авариями, которые могут сопровождаться выбросами в атмосферу аварийно химически опасных веществ (АХОВ), значительным материальным ущербом и большими человеческими жертвами.

Территория, подвергшаяся заражению СДЯВ, на которой могут возникнуть или возникают массовые поражения людей, называется очагом химического поражения (ОХП).

Сильнодействующие ядовитые вещества - это химические вещества или соединения, которые при проливе или выбросе в окружающую среду способны вызвать массовое поражение людей или животных, а также заражение воздуха, почвы, воды, растений и различных объектов выше установленных предельно допустимых значений.

Развитие очага химического заражения связано с высвобождением химической энергии:

Аварии с выбросом СДЯВ при их производственной переработке или хранении;

Аварии при траспортировке СДЯВ;

Распространении СДЯВ в процессе протекания химической реакции, начавшихся, в результате аварии;

Аварий с химическими боеприпасами;

Утрате источников СДЯВ

Применения химического оружия.

Химически опасный объект (ХОО) - это объект, на котором хранят, перерабатывают, используют или транспортируют опасные химические вещества, при аварии на котором или при разрушении которого может произойти гибель или химическое заражение людей, сельскохозяйственных животных и растений, а также химическое заражение окружающей природной среды.

К ХОО относятся предприятия химической, нефтеперерабатывающей, нефтехимической и других родственных им отраслей промышленности; предприятия, имеющие промышленные холодильные установки, в которых в качестве хладагента используется аммиак; водопроводные и очистные сооружения, на которых применяется хлор и другие предприятия

I - когда в зону возможного химического заражения попадает более 75 тыс. человек,

II - от 40 до 75 тыс. человек,

III - менее 40 тыс. человек,

IV - зона возможного химического заражения, не выходящая за пределы территории объекта или его санитарно-защитной зоны.

По степени воздействия на организм человека АХОВ подразделяются на 4 класса опасности :

1 - чрезвычайно опасные;

2 - высокоопасные;

3 - умеренно опасные;

4 - малоопасные.

По своим поражающим свойствам АХОВ неоднородны. В качестве их основного классификационного признака наиболее часто используется признак преимущественного синдрома, складывающегося при острой интоксикации человека.

Исходя их этого по характеру воздействия на организм человека все АХОВ условно делятся на следующие группы:

· вещества с преимущественно удушающим действием (хлор, фосген и др.);

· вещества преимущественно общеядовитого действия (окись углерода и др.);

· вещества, обладающие удушающим и общеядовитым действием (азотная кислота и окислы азота, сернистый ангидрид, фтористый водород и др.);

· вещества, обладающие удушающим и нейротропным действием (аммиак и др.);

· метаболические яды (окись этилена и др.);

· вещества, нарушающие обмен веществ (диоксины и др.).

АХОВ находятся в больших количествах на предприятиях, их производящих или потребляющих. На химически опасных предприятиях они являются исходным сырьем, промежуточными, побочными и конечными продуктами, а также растворителями и средствами обработки. Запасы этих веществ размещаются в хранилищах (до 70–80%), технологической аппаратуре, транспортных средствах (трубопроводы, цистерны и т. п.). Наиболее распространенными АХОВ являются сжиженные хлор и аммиак. На отдельных ХОО содержатся десятки тысяч тонн сжиженного аммиака и тысячи тонн сжиженного хлора. Кроме того, сотни тысяч тонн АХОВ транспортируются круглосуточно железнодорожным и трубопроводным транспортом.

Зона химического заражения - территория и акватория, в пределах которой распространены или куда привнесены опасные химические вещества в концентрациях или количествах, создающих опасность для жизни и здоровья людей, для сельскохозяйственных животных и растений в течение определенного времени.

В зоне химического заражения могут быть выделены составляющие ее зоны - зона смертельных токсодоз (зона чрезвычайно опасного заражения), зона поражающих токсодоз (зона опасного заражения) и зона дискомфорта (пороговая зона, зона заражения).

На внешней границе зоны смертельных токсодоз 50% людей получают смертельную токсодозу. На внешней границе поражающих токсодоз 50% людей получают поражающую токсодозу. На внешней границе дискомфортной зоны люди испытывают дискомфорт, начинается обострение хронических заболеваний или появляются первые признаки интоксикации.

В очаге химического заражения происходят массовые поражения людей, сельскохозяйственных животных и растений.

При авариях на химически опасных объектах может действовать комплекс поражающих факторов: непосредственно на объекте аварии - токсическое воздействие АХОВ, ударная волна при наличии взрыва, тепловое воздействие и воздействие продуктами сгорания при пожаре; вне объекта аварии - в районах распространения зараженного воздуха только токсическое воздействие как результат химического заражения окружающей среды. Основным поражающим фактором является токсическое воздействие АХОВ.

В процессе жизнедеятельности человек постоянно сталкивается с большим количеством химических вредных факторов, которые могут вызвать различные заболевания, расстройства здоровья, травматизм как в процессе контакта, так и через определенный промежуток времени. Известно примерно 7 млн. Химических веществ и соединений, из которых 60 тыс. Используются в деятельности человека. На международном рынке ежегодно появляется от 500 до 1000 новых химических соединений и смесей.

Химические факторы опасности - факторы, имеющие высокую химическую родство с тканями организма человека и веществами окружающей среды (едкими, ядовитыми, взрывоопасными и др.) И способны причинить ущерб человеческому организму.

Химические элементы, вещества и соединения могут находиться в твердом, газообразном и жидком агрегатных состояниях. Поэтому в организм человека химические вещества проникают через органы дыхания, желудочно-кишечный

тракт, кожу и слизистые оболочки. Степень поражения химическими веществами зависит от их токсичности, избирательного действия, продолжительности, а также физико-химических свойств.

Отравление может быть острым и хроническим. При любой формы отравления интенсивность действия вредного вещества определяют степенью ее физиологической активности - токсичностью.

Токсичность (греч. Toxikon - яд) - свойство некоторых химических элементов, соединений и биогенных веществ пагубно влиять на живые организмы (растения, животные, грибы, микроорганизмы) и здоровья людей.

По токсичности ядовитые вещества разделяют на следующие виды:

Нервно-паралитического действия (зарин, зоман): бронхоспазм, удушье, паралич;

Общетоксического действия (синильная кислота, хлор, циан): отеки, кома, паралич, судороги, учащенное сердцебиение;

Раздражающего действия (аммиак, пары кислот): раздражение слизистых оболочек носа, ротовой полости;

Ирнонаривнои действия (иприты): местные воспаления и некротические изменения в сочетании с общетоксическими явлениями.

По избирательностью действия выделяют такие группы ядовитых веществ:

Сердечные, имеющих кардиотоксическое действие (лекарства, растительные яды, соли бария, калия, кобальта, кадмия);

Нервные, которые приводят к нарушению функций нервной системы (угарный газ, аммиак, углеводороды, фосфорорганические соединения, алкогольные изделия, наркотические средства, снотворные лекарства и др.);

Печеночные, которые вызывают поражения печени (хлорированные углеводороды, альдегиды, фенолы, фосфор, селен и др.);

Почечные, негативно влияющих на почки (соединения тяжелых металлов, этиленгликоль, щавелевая кислота и др.);

Кровяные, которые поражают кровь (производные анилина, анилин, нитриты)

Легочные, приводящие к поражению легких (оксиды азота, озон, фосген).

В зависимости от практического использования химические вещества классифицируют на:

Промышленные яды, используемые в производстве (органические растворители, красители) и является источником острых и хронических интоксикаций при нарушении правил техники безопасности;

Ядохимикаты, применяемые в сельском хозяйстве для борьбы с сорняками, грызунами, насекомыми и др;

Лекарственные препараты;

Бытовые химические вещества, которые используют в качестве пищевых добавок, средства санитарии, косметические средства;

Биологические яды (растительные и животные, содержащиеся в растениях и грибах, животных и насекомых)

Ядовитые вещества (зарин, иприт, фосген).

По характеру действия химические вещества разделяют на следующие группы:

Токсичные, которые обусловливают отравление организма человека или влияют на его отдельные системы (например, на кроветворение, центральную нервную систему)

Наркотические (спирты, ароматические углеводороды), действующие на центральную нервную систему;

Раздражающие (пары кислот, щелочей), которые вызывают раздражение слизистых оболочек, дыхательных путей, глаз, легких, кожи;

Удушающие (оксид углерода, оксиды азота), приводят к токсическому отеку легких;

Сенсибилизирующие (растворители, формалин) - вещества, которые действуют как аллергены;

Канцерогенные (ароматические углеводороды, циклические амины, никель, хром), приводящие к возникновению злокачественных опухолей

Мутагенные (свинец, радиоактивные вещества), которые нарушают генетический код, меняют наследственную информацию;

Такие, влияющие на репродуктивную функцию (радиоактивные изотопы, ртуть, свинец).

Важное значение при исследовании токсичности любого компонента окружающей среды имеет изучение его физико-химических свойств, что позволяет по определенным формулам вычислить параметры, характеризующие токсичность вещества и могут быть использованы при разработке методов и средств защиты от воздействия вредных веществ.

Сегодня в больших объемах в бытовой, сельскохозяйственной, промышленной сферах используются химически опасные вещества. Все они отличаются высокой токсичностью и представляют угрозу для людей и природы. Далее рассмотрим наиболее распространенные аварийно химически опасные вещества.

Характер угрозы

Аварийно химически опасные вещества (АХОВ) применяются в производстве, переработке, для транспортных и прочих нужд. При их утечке заражению подвергаются воздух, вода, животные, люди, растения, почва. При аварии химических опасных веществ на предприятии создается угроза для жизни не только людей, находящихся непосредственно в его пределах. Токсичные соединения, способные быстро перемещаться с ветром, могут создать зону поражения на десятки километров. В России ежегодно случаются катастрофы, в результате которых происходит выброс химически опасных веществ. При этом с развитием промышленности и техники угроза только возрастает.

Опасные химические вещества и объекты: общие сведения

Крупнейшие запасы ядовитых соединений сконцентрированы на предприятиях нефтеперерабатывающей, металлургической, оборонной, мясомолочной, пищевой промышленности. В больших объемах АХОВ содержатся на химических и фармацевтических заводах. Токсичные соединения присутствуют на торговых и складских базах, на предприятиях ЖКХ, в различных АО, на хладокомбинатах. Наиболее распространенные опасные химические вещества - это:

  • Синильная кислота.
  • Бензол.
  • Сернистый газ (серы двуокись).
  • Аммиак.
  • Фтористый и бромистый водород.
  • Метилмеркаптан.
  • Сероводород.

Особенности обработки

При обычных условиях химически опасные вещества в большинстве случаев имеют газообразное либо жидкое состояние. Но в процессе производства, применения, переработки, во время хранения газообразные соединения преобразовывают. Путем сжатия их приводят в жидкое состояние. За счет такого преобразования объем АХОВ значительно уменьшается.

Характеристика токсичности

В качестве показателей вредности соединений используются такие категории, как максимально допустимая концентрация и токсодоза. Предельная норма представляет собой объем, ежедневное воздействие которого в течение длительного времени не провоцирует заболеваний и каких-либо изменений в организме человека. Максимально допустимая концентрация не используется при оценке опасности аварийной ситуации, поскольку при ЧП продолжительность токсического действия АХОВ достаточно ограничена. Токсодоза - это определенное количество соединения, способное вызвать отравляющий эффект.

Хлор

В нормальных условиях это соединение представляет собой желто-зеленый газ с раздражающим резким запахом. Его масса больше, чем у воздуха, приблизительно в 2,5 раза. Из-за этого хлор накапливается в тоннелях, колодцах, подвалах и низинах. Ежегодно это соединение потребляется в количестве 40 млн т. Перевозка и хранение хлора осуществляется в стальных емкостях и ж/д цистернах под давлением. При его утечке образуется едкий дым, который раздражающе действует на кожу и слизистые. Предельно допустимое содержание соединения в воздухе:

  • 1 мг/м 3 - в цеху предприятия.
  • 0,1 мг/м 3 - разовая максимальная концентрация.
  • 0,03 мг/м 3 - среднесуточная концентрация.

Опасным для жизни считается воздействие хлора в течение 30-60 минут в концентрации 100-200 мг/м 3 .

Аммиак

В нормальных условиях это соединение представлено в виде бесцветного газа. Аммиак обладает резким запахом, небольшой массой (легче, чем воздух, вдвое). При выбросе в атмосферу образует дым и взрывоопасные смеси. Аммиак отличается высокой растворимостью в воде. Мировое производство этого соединения составляет ежегодно до 90 млн. т. Транспортировка аммиака осуществляется в сжиженном состоянии в емкостях под давлением. ПДК в воздухе:

  • Максимальная разовая и средняя суточная концентрации - 0,2 мг/м 3 .
  • В цеху предприятия - 20 мг/м 3 .

Угроза для жизни создается при концентрации в воздухе 500 мг/м 3 . В таких случаях высока вероятность смерти от отравления.

Синильная кислота

Эта прозрачная и бесцветная жидкость отличается дурманящим запахом, похожим на аромат миндаля. При нормальной температуре она обладает высокой летучестью. Капли синильной кислоты быстро испаряются: в зимнее время за час, в летнее - за 5 минут. ПДК в воздухе - 0,01 мг/м 3 . При концентрации 80 мг/м 3 возникает отравление.

Сероводород

Этот бесцветный газ обладает неприятным и очень резким запахом. Сероводород тяжелее воздуха в два раза. При авариях он накапливается в низинах, первых этажах сооружений, тоннелях, подвалах. Сероводород очень сильно загрязняет воду. При вдыхании соединение поражает слизистую, а также негативно воздействует на кожу. Среди первых признаков отравления следует отметить головную боль, светобоязнь, слезотечение и жжение в глазах, холодный пот, рвоту и тошноту, а также вкус металла во рту.

Особенности катастрофы

Как правило, при ЧП с разрушением емкости давление снижается до атмосферного. В результате опасные химические вещества вскипают и выделяются в виде аэрозоля, пара или газа. Образовавшееся непосредственно при повреждении емкости облако называют первичным. Опасные химические вещества, содержащиеся в нем, распространяются на достаточно большое расстояние. Оставшийся объем жидкости растекается по поверхности. Постепенно соединения также испаряются. Поступившие в атмосферу газообразные опасные химические вещества образуют вторичное облако поражения. Оно распространяется на меньшие расстояния.

Зоны поражения

Это территории, которые заражены вредными соединениями в концентрациях, создающих угрозу для жизни людей. От уровня содержания АХОВ будет зависеть глубина зоны поражения (расстояние, на которое распространится воздух с опасными веществами). Немаловажное значение имеет и скорость ветра. Так, при потоках 1 м/с облако удалится от места ЧП на 5-7 км, при 2 м/сек - на 10-14 км, при 3 м/сек - на 16-21 км. При повышении температуры воздуха и почвы усиливается испарение токсичных соединений. Это, в свою очередь, способствует повышению концентрации веществ. От воздушного потока также зависит вид (форма) зоны заражения. Так, при 0,5 м/сек она выглядит как окружность, 0,6-1 м/сек - как полуокружность, 1,1 м/сек - как сектор с прямым (90 градусов) углом, 2 м/сек и более - как сектор с углом 45 градусов.

Особенности поражения населенных пунктов

Необходимо сказать, что сооружения и здания в городе быстрее нагреваются от солнца, чем в сельской местности. В связи с этим в крупных населенных пунктах отмечается интенсивное перемещение воздуха. Это способствует тому, что опасные вещества проникают в тупики, подвалы, во дворы, на первые этажи домов, создавая там высокие концентрации, представляющие серьезную угрозу для населения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Немного терминологии:

Сильнодействующими ядовитыми веществами называются химические соединения, которые в определенных количествах, превышающих ПДК, оказывают вредное воздействие на людей, сельскохозяйственных животных, растения, вызывая у них поражения различной степени.

В настоящее время взамен термина СДЯВ используется термин аварийно-химически опасные вещества (АХОВ). Аварийно-химически опасное вещество (АХОВ) -- это опасное химическое вещество, применяемое в промышленности и сельском хозяйстве, при аварийном выбросе (разливе) которого может произойти заражение окружающей среды в поражающих живой организм концентрациях (токсодозах) (ГОСТ Р 22.9.05-95).

Токсичность - свойства вещества вызывать отравления (интоксикацию) организма; характеризуется дозой вещества, способной вызвать ту или иную степень отравления.

Токсодоза - количественная характеристика токсичности СДЯВ, соответствующая определенному уровню поражения при его воздействии на живой организм.

Пороговая концентрация характеризуется минимальной эффективной

концентрацией, т.е. наименьшим количеством вещества, вызывающим ощутимый физиологический эффект. Боеспособность (работоспособность) при этом сохраняется.

Предельно допустимая концентрация (ПДК) - минимальная концентрация, которую может выдержать человек определенное время без устойчивого поражения и которая регламентирует допустимую степень заражения воздуха СДЯВ в интересах соблюдения требований безопасности в производстве.

Под химически опасными объектами понимаются объекты, при авариях или разрушениях которых могут произойти массовые поражения людей, животных и растений.

Под зоной заражения понимается территория, в пределах которой будет проявляться поражающее действие СДЯВ, а под глубиной зоны -- расстояние от источника заражения, которым являются поврежденные или разрушенные емкости и коммуникации, до границ зоны.

В начале работы необходимо так же дать небольшую классификацию аварийно химически опасных веществ. Действие вредных химических веществ на организм человека обусловлено их физико-химическими свойствами. Группа химически опасных и вредных производственных факторов по характеру воздействия на организм человека подразделяются на следующие подгруппы:

1. Общетоксического действия -- большинство промышленных вредных веществ. К их числу можно отнести ароматические углеводороды, и их амидо- и нитропроизводные (бензол, толуол, ксилол, нитробензол, анилин и др.). Большой токсичностью обладают ртуть-органические соединения, фосфороорганические вещества, тетрахлорид углерода, дихлорэтан.

2. Раздражающим действием обладают кислоты, щелочи, а также хлор- фтор- серо- и азотосодержащие соединения (фосген, аммиак, оксиды серы и азота, сероводород). Все эти вещества объединяет то, что при контакте с биологическими тканями они вызывают воспалительную реакцию, причем в первую очередь страдают органы дыхания, кожа и слизистые оболочки глаз.

3. К сенсибилизирующим относятся вещества, которые после относительно непродолжительного действия на организм вызывают в нем повышенную чувствительность к этому веществу. При последующем даже кратковременном контакте с этим веществом у человека возникают бурные реакции, чаще всего приводящие к кожным изменениям, астматическим явлениям, заболеваниям крови. Такими веществами являются некоторые соединения ртути, платина, альдегиды (формальдегид).

4. Канцерогенные (бластомогенные) вещества, попадая в организм человека, вызывают развитие злокачественных опухолей. В настоящее время имеются данные о канцерогенной опасности для человека сравнительно небольшой группы химических соединений, встречающихся в производственных условиях. К их числу прежде всего относят полициклические ароматические углеводороды (ПАУ), которые могут входить в состав сырой нефти, но в основном образуются при термической (выше 350°) переработке горючих ископаемых (каменного угля, древесины, нефти, сланцев) или при неполном их сгорании. Наиболее выраженной канцерогенной активностью обладают 7,12-дилитил без(а)- антрацен; 3,4-бензапирен, 1,2-бензантрацен. Канцерогенные свойства присущи и продуктам нефтеперерабатывающей и нефтехимической промышленности (мазутам, гудрону, крекинг-остатку, нефтяному коксу, битумам, маслам, саже). Канцерогенными свойствами обладают ароматические амины, в основном являющиеся продуктами анилино-красочной промышленности, а также пыль асбеста.

5 Яды, обладающие мутагенной активностью, влияют на генетический аппарат зародышевых и соматических клеток организма. Мутации приводят к гибели клеток или к функциональным изменениям. Это может вызвать снижение общей сопротивляемости организма, раннее старение, а в некоторых случаях тяжелые заболевания. Воздействие мутагенных веществ может сказаться на потомстве (не всегда первого, а, возможно, второго и третьего поколений). Мутационной активностью обладают, например, этиленамин, уретан, органические перекиси, иприт, оксид этилена, формальдегид, гидроксиламин.

6. К веществам, влияющим на репродуктивную функцию (функцию воспроизведения потомства), относят бензол и его производные, сероуглерод, хлоропрен, свинец, сурьму, марганец, ядохимикаты, никотин, этиленамин, соединения ртути.

1. Теоретическая часть

В случае разрушения оболочки емкости, содержащей СДЯВ под давлением, и последующего разлива большого количества СДЯВ в поддон (обваловку) его поступление в атмосферу может осуществляться в течение длительного времени. Процесс испарения в данном случае можно условно разделить на три периода.

Первый период -- бурное, почти мгновенное испарение за счет разности упругости насыщенных паров СДЯВ в емкости и парциального давления в воздухе. Данный процесс обеспечивает основное количество паров СДЯВ, поступающих в атмосферу за этот период времени. Кроме того, часть СДЯВ переходит в пар за счет изменения теплосодержания жидкости, температуры окружающего воздуха и солнечной радиации. В результате температура жидкости понижается до температуры кипения. Учитывая, что за данный период времени испаряется значительное количество СДЯВ, то может образоваться облако с концентрациями СДЯВ, значительно превышающими смертельные.

Второй период -- неустойчивое испарение СДЯВ за счет тепла поддона (обваловки), изменения теплосодержания жидкости и притока тепла от окружающего воздуха. Этот период характеризуется, как правило, резким падением интенсивности испарения в первые минуты после разлива с одновременным понижением температуры жидкого слоя ниже температуры кипения.

Третий период -- стационарное испарение СДЯВ за счет тепла окружающего воздуха. Испарение в этом случае будет зависеть от скорости ветра, температуры окружающего воздуха и жидкого слоя. Подвод тепла от поддона (обваловки) практически будет равен нулю. Продолжительность стационарного периода в зависимости от типа СДЯВ, его количества и внешних условий может составить часы, сутки и более. Наиболее опасной стадией аварии в этом случае, безусловно, являются первые 10 мин, когда испарение СДЯВ происходит интенсивно. При этом в первый момент выброса сжиженного газа, находящегося под давлением, образуется аэрозоль в виде тяжелых облаков. Натурные опыты с аммиаком показывают, что первичное облако моментально поднимается вверх примерно на 20 м, а затем под действием собственной «силы тяжести» опускается на грунт. Границы облака на первом этапе очень отчетливы, так как оно имеет большую оптическую плотность и только через 2-- мин становится прозрачным. Ввиду его большой плотности на начальном этапе разбавление облака и его движение осуществляются под собственной «силой тяжести». На этом этапе формирование и направление движения облака носят крайне неопределенный характер, в результате чего при прогнозировании распространения (движения) облака СДЯВ в данном случае выделяют «зону неопределенности», в которой нельзя предсказать местоположение облака, руководствуясь только метеорологическими условиями. Радиус этой зоны может достигать 0,5-- км и более.

Рис.1 Схематическое изображение распространения облака СДЯВ.

В случае разрушения оболочки изотермического хранилища и последующего разлива большого количества СДЯВ в поддон (обваловку) испарения за счет разности упругости насыщенных паров СДЯВ в емкости и парциального давления в воздухе в связи с малым избыточным давлением практически не наблюдается. Для данного типа емкостей характерны периоды нестационарного и стационарного испарения СДЯВ. Формирование первичного облака осуществляется за счет тепла поддона (обваловки), изменения теплосодержания жидкости и притока тепла от окружающего воздуха. При этом количество вещества, переходящее в первичное облако, как правило, не превышает 3--5% при температуре окружающего воздуха 25--0° С.

При вскрытии оболочек с высококипящими жидкостями образования первичного облака не происходит. Испарение жидкости осуществляется по стационарному процессу и зависит от физико-химических свойств СДЯВ и температуры окружающего воздуха.

Учитывая малые скорости испарения таких СДЯВ, они будут представлять опасность только для личного состава и населения, находящихся непосредственно в районе аварии. Необходимо отметить, что на промышленных объектах обычно сосредоточено значительное количество различных легковоспламеняющихся веществ, в том числе СДЯВ (аммиак, окись этилена, синильная кислота, окись углерода и др.). Кроме того, многие СДЯВ взрывоопасны (гидразин, окислы азота и др.), а некоторые хотя и негорючие, но представляют значительную опасность в пожарном отношении (хлор, фосген, двуокись серы, окислы азота и др.). Это обстоятельство следует учитывать при возникновении пожаров на предприятиях. Более того, сам пожар на предприятиях может способствовать выделению различных ядовитых веществ. Например, при горении комовой серы выделяется в больших количествах двуокись серы. Горение полиуретана и других пластмасс приводит к выделению синильной кислоты, фосгена, окиси углерода, различных изоционатов, иногда диоксина и других СДЯВ в опасных концентрациях, особенно в закрытых помещениях.

Поэтому при организации работ по ликвидации химически опасной аварии на предприятии и ее последствий необходимо оценивать не только физико-химические и токсические свойства СДЯВ, но и их взрыво - и пожароопасность, возможность образования в ходе пожара новых СДЯВ и на этой основе принимать необходимые меры по защите персонала, участвующего в работах.

Анализ имевших место аварийных ситуаций и проведенные расчеты показывают, что объекты с химически опасными компонентами могут быть источником: залповых выбросов СДЯВ в атмосферу; сброса СДЯВ в водоемы; «химического» у пожара с поступлением токсичных веществ в окружающую среду; разрушительных взрывов; заражения объектов и местности в очаге аварии и на следе распространения облака; обширных зон задымления в сочетании с токсичными продуктами.

Объектом аварий является завод по производству хлора 150 тыс. тонн в год, химических средств защиты растений 5 тыс. тонн в год и других продуктов. Завод расположен на берегу реки. Наиболее опасные элементы объекта №2,3 и 5. Произошло разрушение резервуара вместимостью 150 т в хранилище жидкого хлора, и возник пожар на складе готовой продукции.

Рис.2 Распространение и деление на зоны облака АХОВ.

Характеристика поражающих факторов:

А -- при разрушении резервуара с хлором образовалось облако зараженного воздуха, которое распространилось по территории завода (до 300 м) и движется в приземном слое атмосферы по направлению ветра. Глубина распространения облака с поражающими концентрациями может составить от нескольких километров (изотермия) до нескольких десятков километров (инверсия).

Б -- в результате пожара образовалось дымовое облако, содержащее токсичные продукты, которое может распространиться в пограничном слое атмосферы на значительное расстояние. При взаимодействии с подстилающей поверхностью или с осадками возможно образование «пятен», загрязненных токсичными продуктами терморазложения и возгонки.

В -- при тушении пожара часть токсичных продуктов попала в реку, и произошло заражение воды по течению. Каждый из указанных видов опасности по месту и времени может проявляться отдельно (единичный выброс), последовательно и в сочетании с другими, а также может быть многократно повторен, в том числе в различных комбинациях. Для любой аварийной ситуации характерны стадии возникновения, развития и спада опасности. На химически опасном объекте в разгар аварии могут действовать, как правило, несколько поражающих факторов -- пожар, взрывы, химическое заражение Местности и воздуха и другие, а за пределами объекта -- заражение окружающей среды. Действие СДЯВ через органы дыхания чаще, чем через другие пути воздействия, приводит к поражению людей, реализуется на больших расстояниях и площадях со скоростью ветрового переноса. Для многих СДЯВ характерно длительное заражение окружающей среды, а также проявление отдаленных эффектов поражения людей и объектов биосферы.

Например, в 1976 году в г. Севезо (Италия) в результате разрушения на химическом заводе одного из аппаратов, в котором осуществлялся синтез трихлорфенола, в атмосферу было выброшено облако, которое кроме основного продукта синтеза содержало около 4 кг диоксина. Облако распространилось на площади около 18 км2. В результате было поражено несколько сотен человек, погибло много сельскохозяйственных животных. Пришлось осуществить эвакуацию населения. Дегазация местности продолжалась 8 лет. Масштабы поражения при химически опасных авариях очень сильно зависят от метеорологической обстановки и условий хранения СДЯВ. Так, иногда мощный выброс может не причинить значительного вреда или он будет минимальным при неблагоприятной для распространения облака метеорологической обстановке. В то же время меньший выброс в других условиях может привести к большему ущербу. Из этих особенностей химически опасных аварий следует: защитные мероприятия и, прежде всего, прогнозирование, выявление и периодический контроль за изменениями химической обстановки, оповещение персонала предприятия, населения и войск (сил), находящихся вблизи от места аварии, должны проводиться с чрезвычайно высокой оперативностью; среди личного состава войск (сил) и населения, оказавшихся в зонах распространения СДЯВ, могут быть пораженные, для обследования которых и оказания им медицинской помощи потребуются значительные силы и средства. Локализация источника поступления СДЯВ в окружающую среду имеет решающую роль в предупреждении массового поражения людей. Быстрое осуществление этой задачи может направить аварийную ситуацию в контролируемое русло, уменьшить выброс СДЯВ и существенно снизить ущерб.

Таблица 1

2. Расчет поставленной задачи

Задание. Определить глубину распространения АХОВ при аварии на химически опасном объекте при следующих исходных данных:

а) Тип АХОВ - сернистый ангидрид;

б) Количество АХОВ, Q 0 = 10 т;

в) Скорость ветра V=1м/c, изотермия;

г) Емкость обвалованная, высота поддона H=0,7м;

д) Местность - открытая;

е) Расстояние до объекта-450м;

ж) Количество людей-1000 чел;

з) Время прошедшее после аварии-3 ч;

и) Погодные условия - пасмурно;

к) Время испарения - 18 час.

Вычисляем эквивалентное количество сернистого ангидрида, перешедшее в первичное облако, по формуле:

Q э1 = К 1 К 3 К 5 К 7 Q 0 = 0,11*1*0,23*1*10 = 0,253 т,

где К 1 =0,11, К 3 =1, К 5 =0, 23, К 7 =1.

1.2. Вычисляем эквивалентное количество сернистого ангидрида, перешедшее во вторичное облако, по формуле:

Qэ2 = (1-K1)*K2*K3*K4*K5*K6*K7*Q0/(h*?)=

=(1-0,11)*0,059*1*1*0,23*2,4*1*10/(0,5*0,684) =1,2 т.

где К 2 =0,059; К 4 =1 ; К 6 =2,4; К 7 =1; h = H - 0,2= 0,7 - 0,2= 0,5;

0,684 т/м 3

1.3. Определение продолжительности поражающего действия АХОВ:

T= h*? /K2*K4*K7=0,5*0,684/0,059*1*1 =5,8 час

Максимальная глубина распространения первичного облака для 0,253 т СДЯВ при скорости ветра 1м/с, Г1=3,16 км (согласно табл.3).

Скорость переноса переднего фронта облака зараженного воздуха при V=1м/с равна V=6 км/ч (согласно табл.4).

Находим зону заражения для вторичного облака:

Г2=0,26+(9,18-4,75)*(3-1)/(11,8-10)=1,09 км.

2.2 Полная глубина заражения:

Гобщ=Г1+0,5Г2=3,16+0,5*1,09=3,705 км.

2.3 Определяем ширину зоны заражения:

Шхзх=0,2*Гобщ=0,2*3,705=0,741 км.

3. Площадь фактического заражения:

Sф=Гобщ*Шхзх=3,705*0,741=2,75 км 2 .

4. Определение времени подхода t п заражающего воздуха к рубежу на расстоянии 0,5 км:

T=R/V=0,5/6=0,083 ч.

5. Определение возможных потерь людей:

Даже при обеспеченности противогазами 100%, потери составляют 10%, это связанно с тем, что люди не могут пользоваться СИЗ, либо не вовремя их применили.

Исходными данными задана обеспеченность противогазами, которая составляет 50%. Исходя из таблицы, можно сказать, что на открытой местности в зону риска попадают 50% людей, а в укрытиях страдают 27%.

химический опасный испарение авария

В данной работе наглядно видно, что величины скоростей распространения и размеров первичного и вторичного облаков вполне внушительные. Исходя из этого, нужно сказать, что обеспеченность индивидуальными средствами защиты должен составлять 100%. По статистике на 2011г. процент реальной обеспеченности работников опасных предприятий II и III степеней химической опасности равен 71. В данном вопросе следовало бы обратить очень пристальное внимание на опыт высокоразвитых стран Азии, в частности Японии.

Так же необходимо постоянно обучать и стажировать работников по вопросам безопасности и пользования СИЗ и проводить учения. Соревнования среди работников по скорости и правильности использования средств СИЗ и действиях при ЧС так же являются очень действенными и стимулирующими мерами увеличения уровня безопасности и уменьшения жертв при ЧС на предприятии.

Размещено на Allbest.ru

Подобные документы

    Наиболее распространенные аварийно химически опасные вещества (АХОВ). Запасы ядовитых веществ на предприятиях. Разделение АХОВ по характеру воздействия на организм человека. Предельно допустимые концентрации в воздухе аммиака, хлора, синильной кислоты.

    презентация , добавлен 01.07.2013

    Основные особенности аварийно химически опасных веществ (АХОВ). Планирование мероприятий по защите. Организация защиты населения, проживающего в районах расположения химически опасных объектов. Средства защиты от АХОВ. Ликвидация последствий аварий.

    реферат , добавлен 25.07.2010

    Что такое сильнодействующие ядовитые вещества (СДЯВ). Определение опасных химических веществ, зоны химического поражения, токсодозы. Химически опасные объекты Беларуси. Классификация химических средств по степени токсичности. Аварии с выбросом СДЯВ.

    реферат , добавлен 12.11.2009

    Химически опасные объекты и аварии на них. Очаг и зона химического заражения. Безопасность на ХОО и предупреждение аварий. Организация ликвидаций химически опасных аварий. Токсичность химически опасных веществ и их воздействие на организм человека.

    курсовая работа , добавлен 05.11.2007

    Опасные химические вещества и их поражающее действие на организм человека. Химически опасные объекты. Правила безопасного поведения при авариях с выбросом сильнодействующих ядовитых веществ. Причины и последствия аварий на химически опасных объектах.

    реферат , добавлен 28.04.2015

    Аварийно-химически опасные вещества (АХОВ). Перечень опасных химических продуктов. Катастрофы с выбросами, зоны поражения. Способы и средства ликвидации химически опасных аварий. Аварийные ситуации с АХОВ в процессе их промышленного производства.

    реферат , добавлен 18.03.2009

    Химические вещества и опасные объекты. Общий порядок действия при авариях на химически опасных объектах и с выбросом сильнодействующих ядовитых веществ. Крупнейшие потребители аварийно химически опасных веществ. Первая неотложная помощь при поражениях.

    презентация , добавлен 26.10.2014

    Методика проведения оценки последствий аварии на объектах по хранению, переработке и транспортировке сжиженных углеводородных газов, необходимые расчеты и их анализ. Определение характеристик зоны заражения при аварии на химически опасном объекте.

    контрольная работа , добавлен 23.12.2012

    Данные о персонале и населении, работающем, проживающем и находящемся вблизи производственного объекта. Методика оценки химической обстановки при аварии с выбросом аммиака на заводе ТОО "Шымкент пиво". Снижение химической опасности производства.

    дипломная работа , добавлен 08.11.2014

    Действие аварийно-химических опасных веществ на организм. Обзор динамики развития пожаров на объектах с наличием ядовитых веществ. Способы и средства ликвидации последствий химически опасных аварий. Описания тушения пожара, произошедшего на ЗАО "Янтарь".



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ