Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

До сих пор мы рассматривали так назы­ваемые первичные энергоносители, но есть ещё и вторичный энергоноситель - водород, при горении которого получается вода, что и обусловило широко распространённое пред­ставление о водороде как экологически чи­стом топливе. В действительности дело обстоит существенно сложнее. Сам по себе водо­род и в самом деле относительно чист в эко­логическом плане. Правда, следует учесть, что при использовании водорода в качестве го­рючего для автомобилей в цилиндрах двига­теля развивается очень высокая температура, при которой начинает окисляться азот воз­духа, и поэтому в выхлопе присутствует не­большое количество оксидов азота.

Основные же экологические проблемы возникают ещё при получении водорода - ведь водород в чистом виде на Земле отсут­ствует, его надо синтезировать из воды или углеводородов. Отсюда следует, что для реализации красивой и заманчивой идеи под названием «водородная энергетика» водород следует получить, т. е. затратить энергию. Причём получить его экономически оправ­данным способом, чтобы стоимость энергетического эквивалента этого энергоносителя была соизмерима со стоимостью традицион­ных энергоносителей и того энергоносителя, что использовали для производства водорода.

Первая и главная задача водородной энер­гетики декларируется как замена водородом нефти, природного газа и угля. Но на сегод­няшний день мир не знает технологии, удо­влетворяющей всем требованиям этой гло­бальной задачи. Все известные сегодня спо­собы получения водорода далеки от совершенства: во-первых, они энергозатратны, во-вторых, получение водорода из углеводо­родов сопровождается выделением огромно­го количества диоксида углерода и других токсичных веществ. И если сейчас вклад угле­кислого газа в увеличение концентрации пар­никовых газов в атмосфере ещё относительно невелик и вызывает только беспокойство, то переход на водородное топливо, которое бу­дут получать, например, из метана, приведёт к увеличению выбросов углекислого газа в десятки раз.

Получение водорода электролизом воды с использованием традиционных источников энергии, естественно, приходится отвергнуть, поскольку в результате будет затрачено не­сколько больше энергии, чем получено при сжигании водорода. Поэтому ведутся интен­сивные исследования по разработке мате­риалов, расщепляющих воду под действием солнечного света. Параллельно проводятся работы, направленные на создание полупроводниковых фотоэлементов для превращения солнечной энергии в электричество, исполь­зуемое далее для электролиза воды. Перспек­тивы этих исследований пока неясны, но в случае их успеха речь пойдёт о создании новой отрасли промышленности со всеми вы­текающими отсюда последствиями. Экологические проблемы в водородной энергетике возникнут и при разработке ма­териалов для трубопроводного транспорта водорода - он взрывоопасен, обладает высо­кой диффузионной подвижностью (легко просачивается через обычные конструкцион­ные материалы), значит, потребуются мате­риалы и технологии нового поколения, кото­рые вряд ли будут экологически чистыми.

Пока далека от решения и задача хранения водорода. Департамент энергетики США сфор­мулировал требования к материалу, аккумулирующему водород: он должен содержать не менее 5,5% водорода по массе при комнатной температуре, процесс сорбции-десорбции во­дорода должен быть обратимым при темпера­туре не выше 120 °С, система должна быть безопасной и сохранять рабочее состояние не менее чем в течение 5000 разряд-зарядных циклов. Сегодня нет ни одного материала, даже приблизительно отвечающего этим тре­бованиям. Сорбенты, поглощение которыми водорода основано на физической адсорбции, не способны, в силу природы явления, при­близиться к этим требованиям, так как для них относительно высокое содержание адсорбата достижимо только при низкой температуре (77 К). Наоборот, для гидридов металлов и интерметаллидов при высоком содержании водорода требуются высокие же температуры для его выделения и связывания. Это не толь­ко усложняет технические решения при реа­лизации задачи, но и резко повышает опас­ность использования системы в целом.

Опять-таки можно надеяться, что со вре­менем задача хранения и аккумулирования водорода будет решена, но рассчитывать на полную экологическую безопасность разра­ботанных промышленных технологий не приходится.

Научно-технические проблемы водород­ной энергетики, по-видимому, будут преодо­лены, хотя на это потребуется, по разным прогнозам, от 10 до 50 лет, но экологические трудности в любом случае останутся. Поэто­му об экологической чистоте водородной энергетики говорить не приходится - водо­родная энергетика не является экологически чистой.

«Электромобили - экологически чи­стый транспорт».

Ещё один чрезвычайно живучий миф свя­зан с электромобилями: переход автомобиль­ного транспорта на электрическую тягу якобы обеспечит чистоту атмосферы. Для начала попробуем разобраться, что произойдёт, если сегодня значительную часть автомобильных двигателей внутреннего сгорания заменить электромоторами. Как известно, электромо­торы не дают никаких выбросов в атмосферу и к тому же имеют высокий КПД - выше 90%. К сожалению, в настоящее время единствен­ный источник энергии для автомобильных электромоторов - аккумуляторы. Их надо постоянно заряжать и, следовательно, ис­пользовать энергию, вырабатываемую дей­ствующими электростанциями. Но примерно 80% электричества вырабатывают тепловые электростанции (табл. 1), использующие в качестве топлива нефть, газ или уголь - эко­логически грязные виды топлива. Значит, выбросы двигателей будут заменены пример­но тем же объёмом выбросов электростанций, т. е. произойдет перенос экологических проблем из одного района в другой.

По данным МАГАТЭ в настоящее время энергетический потенциал углеводородного сырья оценивается величиной 55 10 12 МВт -ч при нынешнем ежегодном расходовании 3 10 ю МВт - ч. Оценки показывают, что с учетом роста расхода угля может хватить на 200-500 лет, а газа и нефти - всего на 20-50 лет. Им нужна срочная замена, которую следует готовить уже в настоящее время. Одним из наиболее перспективных видов энергоносителей, способных с успехом заменить углеводородное сырье и обеспечить людей дешевой энергией на многие века в неограниченном количестве, является водородное топливо.

«Перспективным топливом для двигателей внутреннего сгорания является водород... Перспективен электролиз воды для получения водорода, но при наличии дешевой электроэнергии...» (Г.А. Терентьев, В. М. Тюков,Ф.В. Смаль. Моторные топлива из альтернативных сырьевых ресурсов. 1989 г., с. 223).

Но себестоимость получения водорода при электролизе воды с использованием энергии АЭС (КПД 27%) - 1427-1732 долл./т. Для сравнения, средние текущие издержки добычи нефти оцениваются в 44 долл./т. Отсюда в настоящее время водород при всех своих достоинствах является слишком дорогой заменой традиционным топливам и доступен только для ракетных топлив. Его стоимость в 1500/44 = 34 раза дороже традиционных топлив. При использовании энергии низкотемпературного ядерного синтеза стоимость водорода становится порядка 4,33 долл./т, т. е. его стоимость станет в 10 раз дешевле бензина. Таким образом, проблема замены углеводородных топлив водородом находит свое решение в использовании изобретений низкотемпературного ядерного синтеза: «Приуспешном решении проблемы управляемых термоядерных реакций человечество было бы обеспечено практически неисчерпаемыми источниками энергии, превосходящими все остальные источники. В самом деле, в 1 литре воды содержится около 1/30 г дейтерия и его теплотворная способность в качестве термоядерного горючего эквивалентна примерно 300 л бензина.

В океанах Земли содержится около 5 ? 10 й т дейтерия. При современном уровне энергетических потребностей запасов дейтерия на Земле могло бы хватить на 20 млрд лет». (П.Е. Колпаков. Основы ядерной физики. - М., 1989, с. 328).

Реакции низкотемпературного ядерного синтеза осуществимы и позволяют превращать одно атомное ядро в другое, и при этом выделяется большое количество энергии. Так, например, если превратить атомное ядро азота-14 в атомное ядро кислорода-16, выделяется энергия порядка 23,79 МэВ. Преобразование 1 кг азота-14 в кислород сопровождается выделением 3,9-10 10 ккал энергии. Этой энергии достаточно для разложения 6 тыс. т воды на кислород и водород.

«Поскольку стоимость одного грамма дейтерия примерно в ЮОразменъ- ше стоимости грамма урана-235, а его природные запасы практически неисчерпаемы, чего нельзя сказать о запасах делящихся веществ, широкое развитие работ по изысканию путей для осуществления управляемых реакций ядерного синтеза экономически оправдано». (А. К. Вальтер, И. И. Залюбов- ский. Ядерная физика. - Харьков, 1991, с. 365).

Таким образом, если совместить получение ядерной энергии с помощью низкотемпературного ядерного синтеза с производством водорода путем электролиза воды, то при равных условиях себестоимость водорода окажется в 400-700 раз меньше, чем при использовании энергии АЭС (1 кг дейтерия способен выделить в 4-7 раз больше энергии, чем 1 кг урана-235). Откуда стоимость электролитического водорода становится 1732/400 = = 4,33 долл./т.

Так, изобретение Евсюкова Г. А. решает проблему обеспечения моторным топливом и указывает путь, как при помощи низкотемпературного ядерного синтеза, имеющего неограниченные запасы ядерного горючего, калорийность которого в миллионы раз превышает калорийность бензина, обеспечить будущим поколениям людей автомобильный транспорт дешевым экологически чистым горючим на многие века.

Более целесообразно для производства ядерной энергии в качестве реагента использовать нереализованные радиоактивные отходы ядерных реакторов, подлежащие утилизации, допустим, стронций-90, цезий-137 и др. В этом случае одновременно с производством водорода будет осуществляться производительная утилизация ядерных отходов, что отразится на еще большем снижении стоимости производимого водорода.

Другой важной задачей, решаемой данным изобретением, является снижение экологического загрязнения окружающей среды и активная утилизация ядерных отходов.

Предлагаемый способ включает следующие операции:

  • 1) в ядерный реактор, предназначенный для низкотемпературного ядерного синтеза, загружают реагент (стронций-90);
  • 2) подготавливают к работе ядерный реактор;
  • 3) подготавливают к работе электролизёры;
  • 4) включают в работу ядерный реактор и электролизёры.

В процессе работы ядерного реактора происходит облучение реагента нейтронами, производимыми основным генератором нейтронов, при этом осуществляется следующая цепочка ядерных реакций:

На этом процесс радиационного захвата нейтронов не заканчивается, он может продолжаться многократно. Реагент при этом не расходуется и не теряет способность к радиационному захвату нейтронов. Цикл работы реактора завершается после того, как ядром реагента (стронция-90) будет захвачено 40 медленных нейтронов, в результате чего оно превратится в стабильное ядро ксенона-130 в виде газообразного компонента, который будет откачан из активной зоны реактора. При этом будет выделена энергия порядка 314,3 МэВ. Таким образом, 1 кг реагента, состоящего только из ядер стронция-90, выделит энергию 20,9-10 26 МэВ, что эквивалентно сжиганию 7,18 тыс. т бензина. Это в 4 раза больше той энергии, которую может выделить 1 кг урана-235.

Энергия выделяется за счет расхода нейтронов в процессе их радиационного захвата и изменения внутриядерных связей между нуклонами и преобразованием нуклонов. В приведенном примере израсходованы 2 нейтрона. Нейтроны производятся основным генератором нейтронов за счет облучения тяжелой воды гамма-квантами или другим способом. Таким образом, израсходовано 2 дейтерона. Захваченный нейтрон выделяет энергию порядка 18,68/2 = 9,34 МэВ. Чтобы разделить дейтерон на протон и нейтрон затрачивается энергия 2,2 МэВ, следовательно, каждый прореагировавший дейтерон отдает полезную ядерную энергию связи, равную 9,34-2,2 = 7,14 МэВ (1 МэВ соответствует 2,83 10" 17 ккал).

Таким образом, израсходование 1 кг дейтерия может выделить 8,2 10 10 ккал энергии, что в 4,1 раза больше чем 1 кг урана-235. Выделенная энергия ядерного синтеза улавливается теплоносителем и поступает в контур теплообмена, где превращается в электроэнергию с КПД 27%.

Наиболее перспективным способом получения водорода для энергетических целей являются различные методы разложения воды с использованием ядерной энергии низкотемпературного ядерного синтеза. Это особенно актуально, поскольку традиционные ископаемые горючие материалы не воспроизводятся, их запасы, цена, эксплуатационные и экологические показатели не могут конкурировать с электролизным водородом, полученным предлагаемым способом.

Установка для производства экологически чистого химического горючего, содержащая блок электролиза воды и получения водорода и кислорода, подключенный к источнику электрической энергии. Отличающаяся тем, что снабжена блоком преобразования энергии и блоком низкотемпературного ядерного синтеза с ядерным реактором, выполненным с возможностью осуществления реакций низкотемпературного ядерного синтеза и с возможностью использования в качестве энерговыделяющих элементов ядерных отходов, в том числе стронция-90. Установка включает основной генератор нейтронов, выполненный с возможностью производства нейтронов путем облучения тяжелой воды гамма-лучами, умножитель нейтронов и пусковой генератор нейтронов. Блок электролиза воды связан с блоком преобразования энергии и производства электрической энергии, источником которой он служит.

Установка предназначена, во-первых, для производства водорода и кислорода путем электролиза воды с использованием наиболее дешевой электроэнергии, производимой с помощью низкотемпературного ядерного синтеза. Такая установка обеспечена собственным независимым источником энергии и не требует расхода энергии извне. Во-вторых, задачей, которую решает установка, является улучшение экологической обстановки путем полезного расходования ядерных отходов, подлежащих утилизации и захоронению, и производство дешевых экологически чистых горючих материалов, потребность в которых с течением времени возрастает быстрыми темпами.

В ее состав входят (рис. 8.1):

  • 1) блок низкотемпературного ядерного синтеза;
  • 2) блок преобразования энергии и производства электроэнергии;
  • 3) блок электролиза воды и получения водорода и кислорода.

Рис. 8.1.

Блок низкотемпературного ядерного синтеза помещен в толстостенную бетонную конструкцию, служащую защитой обслуживающего персонала и окружающей среды от радиоактивных излучений, возникающих в активной зоне ядерного реактора. Он представляет собой ядерный реактор, предназначенный для выполнения реакций низкотемпературного ядерного синтеза, работает на тепловых нейтронах с графитовым замедлителем. Ядерным горючим (реагентом) служат отходы ядерных реакторов деления тяжелых атомных ядер, например, стронций-90. Состоит из следующих функциональных элементов (рис. 8.2):

  • - реагента 1, пластины которого равномерно распределены по рабочему объему активной зоны реактора;
  • - теплоносителя, циркулирующего по тонкостенным трубкам 6, трубки теплоносителя расположены в непосредственной близости от пластин реагента, по трубкам движется дистиллированная вода или жидкий металл, охлаждающие пластины реагента и отводящие тепловую энергию от реагента в теплообменник 7 (рис. 8.3);
  • - основного генератора нейтронов 3, представляющего собой систему тонких трубок, расположенных в промежутках между пластинами реагента, по трубкам циркулирует тяжелая вода. В результате облучения гамма-лучами, исходящими от реагента, тяжелая вода излучает нейтроны, которые захватываются ядрами реагента, и происходит экзотермическая реакция синтеза;

Рис. 8.2.

  • 1 - пластины исходного реагента (строн- ция-90); 2 - пластины замедлителя нейтронов (из графита); 3 - основной генератор нейтронов на тяжелой воде; 4 - умножитель нейтронов на тяжелых делящихся ядрах; 5 - пусковой генератор нейтронов; б - трубки, по которым циркулирует теплоноситель
  • - умножителя нейтронов 4, представляющего собой тяжелые атомные ядра, способные при захвате нейтронов делиться с излучением большего числа нейтронов, чем было захвачено. Делящиеся элементы умножителя располагаются между трубками основного генератора нейтронов и пластинами реагента и обеспечивают поддержание заданного уровня отдаваемой мощности реагентом или увеличение ее до необходимого значения;
  • - замедлителя нейтронов 2, представляющего собой графитовый заполнитель всего свободного пространства активной зоны реактора. Служит для уменьшения скорости быстрых нейтронов и увеличения сечения захвата нейтронов ядрами реагента;
  • - пускового генератора нейтронов 5, представляющего собой радиоактивный изотоп с большим периодом полураспада. Он устанавливается в специальные гнезда, расположенные в активной зоне в момент включения и инициирует начальный поток нейтронов, достаточный для возбуждения реакции синтеза и включения в работу основного генератора нейтронов.

Функционально работа реактора заключается в том, что пластины исходного реагента облучаются потоком медленных нейтронов, излучаемых основным генератором нейтронов. Нейтроны излучаются тяжелой водой при облучении ее потоком гамма-лучей, исходящих от исходного реагента в процессе осуществления реакций радиационного захвата нейтронов и преобразования нейтронов в протоны. Образованные генератором нейтроны прежде чем прореагировать проходят через умножитель и замедлитель, где увеличивается поток нейтронов до требуемой плотности и замедляется скорость нейтронов до требуемой энергии, соответствующей максимальному сечению радиационного захвата нейтронов в ядерном реакторе ядром исходного реагента.

Под действием радиационного захвата нейтронов в ядерном реакторе происходит низкотемпературный ядерный синтез нуклонов в ядрах реагента, состоящий в том, что избыточная часть накопившихся нейтронов превращается в протоны и объединяется с остальными захваченными нейтронами, образуя ядра дейтерия или гелия, которые затем сливаются с исходным ядром реагента. Происходит выделение энергии за счет увеличения энергии связи между нуклонами. В процессе реакции синтеза расходуются только нейтроны, служащие строительным материалом для увеличения состава ядра, но новые поколения нейтронов, как это происходит при делении тяжелых ядер, не рождаются. Поставлять нейтроны вынуждены с помощью специального (основного) генератора нейтронов. Одним из используемых в настоящее время типов генераторов нейтронов является генератор, состоящий из системы узких трубок, пронизывающих активную зону реактора, заполненных тяжелой водой.

энергии, производимой современ-

Рис. 8.3.

В исходном состоянии тяжелая вода выведена из активной зоны и хранится в специальном резервуаре. В рабочем состоянии тяжелая вода прокачивается по трубкам, облучается потоком гамма-лучей, возникающих в процессе реакции синтеза, и производит новые поколения нейтронов для продолжения реакции синтеза. Нейтроны поступают в реагент, возбуждают реакции синтеза и принимают в них активное участие. Управление мощностью выделяемой энергии производят изменением количества тяжелой воды, находящейся в активной зоне. Чтобы уменьшить мощность, следует вытеснить из трубок часть тяжелой воды. В этом случае произойдет сокращение потока нейтронов и уменьшение актов синтеза ядер в единицу времени. Для увеличения мощности достаточно увеличить количество тяжелой воды в активной зоне. Для уменьшения непроизводительных расходов нейтронов активная зона ограничена отражателями нейтронов, в качестве которых используются графитовые пластины и графитовая обмазка. Энергия, производимая такой установкой низкотемпературного ядерного синтеза, дешевле ными АЭС, в 400-700 раз.

представляет собой типовой контур преобразования ядерной энергии в электрическую с КПД порядка 27%. (рис. 8.3). Он включает в свой состав: 1 - генератор, теплообменник 7, циркуляционные насосы 8, турбогенератор 9, конденсатор 10, питательный насос 11, обслуживающие и вспомогательные системы.

Блок электролиза воды и получения водорода и кислорода содержит ряд электролизёров наиболее перспективных известных конструкций и вновь разрабатываемых типов и конструкций, а также емкости и средства для хранения, сжатия, сжижения газов и гидрирования металлов.

Наиболее простым и широко используемым в промышленности известным способом получения водорода является электролиз воды в щелочной среде (25-30% КОН). Этот процесс энергоемок: для получения 1 м 3 водорода и 0,5 м 3 кислорода требуется затратить около 6 кВт-ч электроэнергии. Поэтому для снижения стоимости производимого водорода следует использовать дешевую электроэнергию, производимую за счет низкотемпературного ядерного синтеза.

Еще до пропускания тока щелочь как сильный электролит диссоциирует на ионы КОН? К + + ОН". Вода как слабый электролит частично диссоциирует на ионы Н 2 0 U Н + + ОН". Таким образом, в растворе содержатся ионы К + ; Н + ; ОН" (рис. 8.4).


Рис. 8.4.

При пропускании тока к катоду подходят ионы К + и Н + , к аноду - ионы ОН". На катоде будут разряжаться ионы водорода (ионы К + труднее разряжаются).

На аноде отдача электронов происходит у ионов ОН". В результате электролиза на катоде выделяется водород, а в растворе возле катода ионы ОН" с ионами К + образуют КОН.

На аноде выделяется кислород, а в растворе возле анода ионы Н + с ионами ОН" образуют Н 2 0. При перемешивании электролита щелочь растворяется в воде, диссоциирует и процесс возобновляется. В таком случае продуктами электролиза будут только водород и кислород, т. е. будет происходить разложение воды электрическим током.

Необходимость замены традиционных видов моторного топлива на более перспективные подтверждается следующими известными положениями.

Традиционными видами топлива, интенсивно используемыми в настоящее время, подаренными природой человечеству, являются ископаемые природные органические вещества: нефть, уголь, природный газ. Несмотря на высокие эксплуатационные качества, большую энергоемкость и относительно низкую стоимость имеется ряд аспектов, требующих неотложного решения. Основными из них являются:

  • 1. Ограниченные запасы природных горючих материалов, количество которых неуклонно сокращается. Опубликованные оценки подтверждают, что ресурсы минерального топлива ограничены, и при сохранении существующих темпов развития энергетики они будут исчерпаны на протяжении ближайших десятилетий (нефть, горючие газы) или столетий (уголь).
  • 2. Экологическое загрязнение окружающей среды от использования традиционных топлив слишком велико и наносит вред живым организмам и растениям. Действующий с марта 1992 г. закон об охране окружающей среды не стабилизировал экологическую ситуацию в стране. Более того, она продолжает ухудшаться. Некоторые города оказались в критическом, другие в катастрофическом положении. Самым экологически неблагополучным городом страны последних лет признан Норильск, где основным источником загрязнения окружающей среды является металлургический комбинат. Атмосфера города, а также почвы и окрестные водоемы перенасыщены вредными соединениями, в которые входят никель, медь, селен, кобальт, свинец и другие металлы. Воздушное загрязнение здесь усиливается также за счет высокой концентрации диоксида серы и окислов азота. В числе самых грязных городов не только России, но и всего мира вот уже долгое время остается и Москва. Основная часть вредных веществ в ее атмосферу поступает за счет автомобильных выхлопов, в составе которых - формальдегид, бензопирен и угарный газ. Свою долю в отравлении московской атмосферы вносят и промышленные предприятия, и в первую очередь нефтеперерабатывающий завод в Капотне. В списке 35 самых загрязненных населенных пунктов нашей страны находятся также Санкт-Петербург, Волгоград, Нижний Новгород, Чапаевск, Новокуйбышевск, Томск, Нижний Тагил, Липецк, Магнитогорск и ряд других городов. Содержание вредных примесей в воздухе здесь превышает предельно допустимые нормы в десятки раз, что, естественно, укорачивает жизнь и сильно подрывает здоровье его жителей. И на конференции ООН по окружающей среде, состоявшейся в Рио-де-Жанейро, Россия была названа в группе самых неблагополучных в экологическом отношении стран на планете.
  • 3. Выбор альтернативного экологически чистого горючего. Для замены традиционного вида топлива следует подобрать из всех существующих такое альтернативное топливо, которое удовлетворяло бы в большей мере ряду требований:
    • - по своим запасам должно многократно превышать запасы традиционных видов топлива;
    • - месторождения запасов топлива должны быть легко доступны для их массового использования и приближены к месту использования;
    • - стоимость топлива не должна заметно превышать стоимость традиционных видов топлива;
    • - экологические показатели должны существенно превосходить аналогичные показатели традиционных видов топлива (автомобиль или электромобиль не должны загрязнять окружающую среду);
    • - иметь высокие технические и эксплуатационные свойства, не уступающие аналогичным для традиционных топлив.

Среди известных альтернативных топлив наиболее подходящим видом топлива является водород, полученный электролизом воды, используя наиболее дешевую энергию низкотемпературного ядерного синтеза.

«Водород является экологически чистым энергоносителем и может производиться за счет возобновляемых источников энергии. Типичными примерами применения новых водородных технологий являются автотранспорт с низким или нулевым выбросом вредных веществ в атмосферу и жилые дома с автономным энергообеспечением» (Журнал «Энергия», 1996, 5, с. 19. «Во- Дород-96»).

«Перспективен электролиз воды для получения водорода, но при наличии дешевой электроэнергии. Этим способом производят некоторое количество водорода в Норвегии и АРЕ, ведутся работы во Франции по получению водорода различными методами с использованием дешевой электроэнергии АЭС в ночное время» (Г. А. Терентьев, В. М. Тюков, Ф. В. Смаль. Моторные топлива из альтернативных сырьевых ресурсов. 1989, с. 223).

«Интерес к водороду как моторному топливу обусловлен его высокими энергетическими показателями, отсутствием вредных веществ в продуктах сгорания и, главное - практически неограниченной сырьевой базой. Водород характеризуется наиболее высокими энергомассовыми показателями среди химических топлив» (там же, с. 176).

Заявленный способ позволяет снизить стоимость электролизного водорода в 400-700 раз, что сделает водород дополнительно к его известным достоинствам еще и наиболее экономически выгодным из всех имеющихся видов современных топлив.

Введение

Исследования Солнца, звёзд, межзвёздного пространства показывают, что самым распространённым элементом Вселенной является водород (в космосе в виде раскалённой плазмы он составляет 70 % массы Солнца и звёзд).

По некоторым расчётам, каждую секунду в глубинах Солнца примерно 564 млн. тонн водорода в результате термоядерного синтеза превращаются в 560 млн. тонн гелия, а 4 млн. тонн водорода превращаются в мощное излучение, которое уходит в космическое пространство. Нет опасений, что на Солнце скоро иссякнут запасы водорода. Оно существует миллиарды лет, а запас водорода в нём достаточен для того, чтобы обеспечить ещё столько же лет горения.

Человек живёт в водородно-гелиевой вселенной.

Поэтому водород представляет для нас очень большой интерес.

Влияние и польза водорода в наши дни очень велика. Практически все известные сейчас виды топлива, за исключением, разумеется, водорода, загрязняют окружающую среду. В городах нашей страны ежегодно проходит озеленение, но этого, как видно, недостаточно. В миллионы новых моделей автомобилей, которые сейчас выпускаются, заливают такое топливо, которое выпускает в атмосферу углекислый (СО 2) и угарный (СО) газы. Дышать таким воздухом и постоянно находиться в такой атмосфере представляет очень большую опасность для здоровья. От этого происходят различные заболевания, многие из которых практически не поддаются лечению, а уж тем более невозможно лечить их, продолжая находиться в можно сказать «заражённой» выхлопными газами атмосфере. Мы хотим быть здоровыми, и разумеется, хотим, чтобы поколения, которые пойдут за нами, тоже не жаловались и не страдали от постоянного загрязняемого воздуха, а наоборот, помнили и доверяли пословице: «Солнце, воздух и вода – наши лучшие друзья».

А пока я не могу сказать, что эти слова оправдывают себя. На воду нам уже вообще приходится закрывать глаза, поскольку сейчас, если даже брать конкретно наш город, известны факты, что из кранов течёт загрязнённая вода, и пить её ни в коем случае нельзя.

Что касается воздуха, то здесь на повестке дня уже много лет стоит не менее важная проблема. И если представить, хотя бы на секунду, что все современные двигатели будут работать на экологически чистом топливе, коим, разумеется, является водород, то наша планета встанет на путь, ведущий к экологическому раю. Но это всё фантазии и представления, которые, к великому нашему сожалению ещё не скоро станут реальностью.

Несмотря на то, что наш мир приближается к экологическому кризису, все страны, даже те, которые в большей степени загрязняют своей промышленностью окружающую среду, (ФРГ, Япония, США, и как это не прискорбно – Россия) не торопятся паниковать и начинать экстренную политику по её очищению.

Сколько бы мы не говорили о положительном влиянии водорода, на практике это можно увидеть довольно таки не часто. Но всё же разрабатывается множество проектов, и целью моей работы явился не только рассказ о самом чудесном топливе, но и о его применении. Эта тема очень актуальна, поскольку сейчас жителей не только нашей страны, но и всего мира, волнует проблема экологии и возможные пути решения этой проблемы.

Водород на Земле

Водород – один из наиболее распространённых элементов и на Земле. В земной коре из каждых 100 атомов 17 – атомы водорода. Он составляет примерно 0,88 % от массы земного шара (включая атмосферу, литосферу и гидросферу). Если вспомнить, что воды на земной поверхности более

1,5∙10 18 м 3 и что массовая доля водорода в воде составляет 11,19 %, то становится ясно, что сырья для получения водорода на Земле – неограниченное количество. Водород входит в состав нефти (10,9 – 13,8 %), древесины (6 %), угля (бурый уголь – 5,5%), природного газа (25,13 %). Водород входит в состав всех животных и растительных организмов. Он содержится и в вулканических газах. Основная масса водорода попадает в атмосферу в результате биологических процессов. При разложении в анаэробных условиях миллиардов тонн растительных остатков в воздух выделяется значительное количество водорода. Этот водород в атмосфере быстро рассеивается и диффундирует в верхние слои атмосферы. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство. Концентрация водорода в верхних слоях атмосферы составляет 1∙10 -4 %.

Что такое водородная технология?

Под водородной технологией подразумевается совокупность промышленных методов и средств для получения, транспортировки и хранения водорода, а также средств и методов его безопасного использования на основе неисчерпаемых источников сырья и энергии.

В чём же привлекательность водорода и водородной технологии?

Переход транспорта, промышленности, быта на сжигание водорода – это путь к радикальному решению проблемы охраны воздушного бассейна от загрязнения оксидами углерода, азота, серы, углеводородами.

Переход на водородную технологию и использование воды в качестве единственного источника сырья для получения водорода не может изменить не только водного баланса планеты, но и водного баланса отдельных её регионов. Так, годовая энергетическая потребность такой высокоиндустриальной страны, как ФРГ, может быть обеспечена за счёт водорода, полученного из такого количества воды, которое соответствует 1,5% среднего стока реки Рейн (2180 л воды дают 1 тут в виде H 2). Отметим попутно, что на наших глазах становится реальной одна из гениальных догадок великого фантаста Жюля Верна, который устами героя рома «Таинственный остров» (гл. XVII) заявляет: «Вода – это уголь будущих веков».

Водород, получаемый из воды, - один из наиболее энергонасыщенных носителей энергии. Ведь теплота сгорания 1 кг H 2 составляет (по низшему пределу) 120 МДж/кг, в то время как теплота сгорания бензина или лучшего углеводородного авиационного топлива – 46 – 50 МДж/кг, т.е. в 2,5 раза меньше 1 т водорода соответствует по своему энергетическому эквиваленту 4,1 тут, к тому же водород – легковозобновляемое топливо.

Чтобы накопить ископаемое горючее на нашей планете, нужны миллионы лет, а чтобы в цикле получения и использования водорода из воды получить воду, нужны дни, недели, а иногда часы и минуты.

Но водород как топливо и химическое сырьё обладает и рядом других ценнейших качеств. Универсальность водорода заключается в том, что он может заменить любой вид горючего в самых разных областях энергетики, транспорта, промышленности, в быту. Он заменяет бензин а автомобильных двигателях, керосин в реактивных авиационных двигателях, ацетилен в процессах сварки и резки металлов, природный газ для бытовых и иных целей, метан в топливных элементах, кокс в металлургических процессах (прямое восстановление руд), углеводороды в ряде микробиологических процессов. Водород легко транспортируется по трубам и распределяется по мелким потребителям, его можно получать и хранить в любых количествах. В то же время водород – сырьё для ряда важнейших химических синтезов (аммиака, метанола, гидразина), для получения синтетических углеводородов.

Как и из чего в настоящее время получают водород?

В распоряжении современных технологов имеются сотни технических методов получения водородного топлива, углеводородных газов, жидких углеводородов, воды. Выбор того или иного метода диктуется экономическими соображениями, наличием соответствующих сырьевых и энергетических ресурсов. В разных странах могут быть различные ситуации. Например, в странах, где имеется дешёвая избыточная электроэнергия, вырабатываемая на гидроэлектростанциях, можно получать водород электролизом воды (Норвегия); где много твёрдого топлива и дороги углеводороды, можно получать водород газификацией твёрдого топлива (Китай); где дешёвая нефть, можно получать водород из жидких углеводородов (Ближний Восток). Однако больше всего водорода получают в настоящее время из углеводородных газов конверсией метана и его гомологов (США, Россия).

В процессе конверсии метана водяным паром, диоксидом углерода, кислородом и оксида углерода водяным паром протекают следующие каталитические реакции. Рассмотрим процесс получения водорода конверсией природного газа (метана).

Получение водорода осуществляется в три стадии. Первая стадия – конверсия метана в трубчатой печи:

CH 4 + H 2 O = CO + 3H 2 – 206,4 кДж/моль

CH 4 +CO 2 = 2CO + 2H 2 – 248, 3 кДж/моль.

Вторая стадия связана с доконверсией остаточного метана первой стадии кислородом воздуха и введением в газовую смесь азота, если водород используется для синтеза аммиака. (Если получается чистый водород, второй стадии принципиально может и не быть).

CH 4 + 0,5O 2 = CO + 2H 2 + 35,6 кДж/моль.

И, наконец, третья стадия – конверсия оксида углерода водяным паром:

CO + H 2 O = СO 2 + H 2 + 41,0 кДж/моль.

Для всех указанных стадий требуется водяной пар, а для первой стадии – много тепла, поэтому процесс в энерготехнологическом плане проводится таким образом, чтобы трубчатые печи снаружи обогревались сжигаемым в печах метаном, а остаточное тепло дымовых использовалось для получения водяного пара.

Рассмотрим, как это происходит в промышленных условиях (схема 1). Природный газ, содержащий в основном метан, предварительно очищают от серы, которая является ядом ля катализатора конверсии, подогревают до температуры 350 – 370 o С и под давлением 4,15 – 4,2 МПа смешивают с водяным паром в соотношении объёмов пар: газ = 3,0: 4,0. Давление газа перед трубчатой печью, точное соотношение пар: газ поддерживаются автоматическими регуляторами.

Образующаяся парогазовая смесь при 350 – 370 o C поступает в подогреватель, где за счёт дымовых газов нагревается до 510 – 525 o С. Затем парогазовую смесь направляют на первую ступень конверсии метана – в трубчатую печь, в которой она равномерно распределяется по вертикально расположенными реакционным трубам (8). Температура конвертированного газа на выходе из реакционных труб достигает 790 – 820 o С. Остаточное содержание метана после трубчатой печи 9 – 11 % (объёмн.). Трубы заполнены катализатором.

Власти Москвы заинтересовались опытом Рима, где установили автоматы для приема пластиковых бутылок. Такую концепцию было бы уместно обсудить и применительно к российской столице, рассказала “РГ” глава комиссии Мосгордумы по экологической политике Зоя Зотова. Как уже писала "РГ", в Риме автоматы для пластика поставили на станциях "Чипро", "Пирамида" и "Сан-Джованни". За каждую бутылку устройство начисляет бонусные баллы через мобильное приложение. Сдашь 30 бутылок – едешь бесплатно. Аналогичный проект можно обсудить и в Мосгордуме, считает Зотова. Нужно провести обсуждение с представителями метро. Для начала было бы идеально провести эксперимент на двух-трех станциях.…

Как не превратиться в женщину, с которой невозможны длительные отношения, – вы узнаете из этой познавательной статьи психолога. Существуют женщины, которые не могут долго жить либо встречаться с мужчиной, по причине того, что своим страстным желанием привязать его к себе, они попросту отпугивают сильный пол. Создание здоровых и крепких отношений с такими женщинами становится проблематичным по ряду причин: ограничение свободы выбора мужчины, жесткое планирование развития отношений (например, завести ребенка к определенному возрасту и т.п.). Женщина, которая вредит себе Распознать такой тип женщины помогут следующие подсказки: 1. Она постоянно с кем-то…

Их чрезвычайно успешная петиция даже получила отклик – и обещание – от гиганта быстрого питания. Дети не довольны Happy Meals. Обеспокоенные количеством пластика в дешевых жестких игрушках, выданных McDonalds, и коротким промежутком времени, в которое обычно играют с ними дети, две маленькие девочки из Саутгемптона, Англия, запустили петицию, прося рестораны быстрого питания пересмотреть то, что они раздают. Кейтлин и Элла, 7 и 9 лет, написали на своей странице Change.org: «Нам нравится есть в Burger King и McDonald’s, но дети играют с пластиковыми игрушками, которые дают там, в течение нескольких минут,…

Выпущенные 27 июня и 16 июля из “китовой тюрьмы” в Приморье косатки, сошлись в одном районе вблизи Шантарских островов, сообщается на сайте Всероссийского НИИ океанографии. Вывод сделан на основании данных со спутниковых меток, установленных на животных. Морские млекопитающие находятся на расстоянии менее 30 километров друг от друга. На этом расстоянии животные могут установить акустический контакт. Теперь ученые ждут, произойдет ли их встреча в дикой природе. Младшая косатка из второй группы сейчас находится у берегов Сахалина, в заливе Байкал, удалившись от места выпуска на расстояние более ста километров. Между тем, как…

Завтракать чиа-пудингом предпочитают многие селебрити, а в Instagram и Pinterest он уже стал популярнейшим трендом! Почему все помешались на завтраке из семян чиа и как его приготовить, читай в нашем материале. Польза семян чиа Польза семян чиа в том, что они богаты многими микроэлементами и превосходят по их количеству привычные нам продукты. Именно поэтому семена чиа называют суперфудом, а добавлять их в различные блюда советуют супермодели, блогеры, актрисы и певицы. Семена чиа содержат много кальция, жирных кислот омега-3, а также магний, железо, калий, фосфор и цинк. Суперфуд поможет нормализовать работу…

Ежегодно 29 июля во всем мире отмечается Международный день тигра (International Tiger Day). Этот праздник был учрежден в 2010 году на Международном форуме «Тигриный саммит» в Санкт-Петербурге по проблемам сохранения популяции этого хищного животного. Инициаторами учреждения этой даты выступили 13 государств, участвовавшие в форуме, в которых тигры еще обитают. В ходе мероприятия также была разработана и принята программа восстановления тигриной популяции, рассчитанная на 2010-2022 годы, целью которой является увеличение количества тигров в 2 раза за обозначенный период. К сожалению, в дикой природе сохранилось всего не более 5 тысяч особей, и…

Речного транспорта становится все больше, а качество воды в Москве-реке за последние десять лет не ухудшилось. Такое заявление сделала главный гидролог, начальник отдела мониторинга воды ГПБУ “Мосэкомониторинг” Виктория Мазлова во время рейда на корабле “Экопатруль”. Это единственный корабль в городе, который следит за качеством речной воды, ведь на его борту стоит экспресс-лаборатория. Московское судно каждый будничный день уходит в рейс с пристани в Нагатинском затоне. Все 8 часов рейда специальный насос закачивает воду, которая затем проходит через ряд фильтров и попадает на анализаторы состава по десяти показателям. "На нижнем участке…

Короткая, но сложная планка-тренировка Главная Журнал Фитнес 24 0 Елена Лыжникова 29 июля 2019 У планки есть много сторонников и противников, но даже ярые противники не спорят с тем, что это очень эффективное упражнение для всего тела. Рассмотрим одно из главных преимуществ планки – возможность экономить свое время, ведь провести продуктивную тренировку можно всего за несколько минут. В этом материале ты найдешь пример такой тренировки, для ее проведения не потребуется много времени и места. При регулярном выполнении программы ты очень быстро укрепишь мышцы кора. Преимущества планки сложно перечислить в нескольких…

1. Не пытайся резко взять и перестать Организм еще припомнит эти издевательства, что выразится в головной боли, усталости и проблеме с концентрацией. 2. Снижай дозу кофеина постепенно Поставь себе цель — на одну чашку в день меньше. Через неделю убери еще одну. При неспешном подходе ты ничем не рискуешь. 3. Ешь больше белка Тогда не будешь чувствовать усталости. А вот углеводами злоупотреблять не стоит: они мешают хорошему сну. 4. Создай новый вечерний ритуал Если ты привыкла пить кофе не только утром и днем, но и вечером, ищи замену. Например, сходи прогуляйся (это взбодрит) или почитай хорошую книжку (отвлечет). В крайнем случае можно выпить чашку декафа. Со временем ты начнешь делать это автоматически, а организм…

По данным ВОЗ, от псориаза страдают около 2% людей в мире. При этом в развитых странах показатель достигает 4,6%. Многим заболевание кажется безобидным. При этом за него нередко присваивают самую тяжелую группу инвалидности - первую. Псориаз относят к неинфекционным заболеваниям кожи и называют одной из самых распространенных кожных патологий. Псориаз не смертелен, но может быть мучителен для пациента. Ведь все тело болит, зудит, жжет и т. д. Естественно, с болезнью пытаются бороться, используют разные варианты терапии, ищут пути облегчения состояния больного. и у многих возникает вопрос: можно ли вылечить псориаз?…

Содержание Польза фитнес-упражнения «Мостик» Советы поклонникам ЗОЖ по правильному выполнению упражнения Комплекс упражнений, помогающий выполнить «Мостик» Профессиональное выполнение «Мостика» Упражнение «мостик» знакомо всем с детства. Выполнять его было легко и интересно. Но с возрастом при отсутствии физических нагрузок и гибкости сделать его может далеко не каждый. Вместе с тем оно очень популярно среди поклонников ЗОЖ, поскольку этот элемент полезен для позвоночника, от состояния которого напрямую зависит здоровье человека. Польза фитнес-упражнения «Мостик» Правильное и регулярное выполнение такого упражнения позволяет: укрепить мышцы, способствующие выпрямлению позвоночника. Они расположены с двух сторон всего позвоночного…

На пороге водородной эры

Впервые о водороде как энергоносителе и, тем самым, о водородной энергетике речь зашла в романе Жюль Верна «Таинственный остров». В ходе неторопливой беседы его основных действующих лиц великий француз уже в 1874 г. высказал смелую мысль, что в будущем человечество будет получать энергию из воды, разлагая ее на водород и кислород, а затем сжигая водород.

Как бы фантастически эта идея ни звучала, она не является столь безумной, как может показаться на первый взгляд. Давайте попытаемся в меру собственных сил и способностей продолжить беседу Смита и Пенкрофа, а именно - рассмотреть (конечно, не во всех аспектах - объять необъятное невозможно) состояние дел по водородной энергетике и топливным элементам как ее важнейшей составляющей...

- Какое топливо заменит уголь?
- Bода, - ответил инженер.
- Вода? - переспросил Пенкроф. - Вода будет гореть в топках пароходов, локомотивов, вода будет нагревать воду?
- Да, но вода, разложенная на составные части, - пояснил Сайрес Смит. - Без сомнения, это будет делаться при помощи электричества, которое в руках человека станет могучей силой, ибо все великие открытия - таков непостижимый закон - следуют друг за другом и как бы дополняют друг друга.
Да, я уверен, что наступит день, и вода заменит топливо: водород и кислород, из которых она состоит, будут применяться и раздельно; они окажутся неисчерпаемым и таким мощным источником тепла и света, что углю до них далеко! Hacтупит день, друзья мои, и в трюмы пароходов, в тендеры паровозов станут грузить не уголь, а баллоны с двумя этими сжатыми газами, и они будут сгорать с огромнейшей тепловой отдачей.

Ж. Верн, «Таинственный остров»

От водорода - к топливным элементам

И все-таки - почему именно водород? До сих пор основными источниками энергии служили ископаемые углеродсодержащие топлива (уголь, нефть, газ). При их сжигании углерод окисляется кислородом воздуха, образуя всем известный углекислый газ (СО 2). Многие считают, что именно он наравне с другими так называемыми парниковыми газами несет ответственность за потепление климата в последние десятилетия, грозящее нам экологическими катастрофами.

А что, кроме энергии, получается при соединении кислорода и водорода? Правильно - обыкновенная вода! Представьте себе автомобиль на водородном топливе - что может быть чище и безопаснее для окружающей среды? Единственное, но существеннейшее препятствие для использования водорода в качестве энергоносителя заключается в том, что в свободном состоянии его в природе практически НЕТ. Поэтому для создания водородной энергетики в первую очередь необходимы технологии, позволяющие наладить крупномасштабное производство водорода, а также его хранение и транспортировку. Второе, но не менее важное условие - создание промышленных энергоустановок нового поколения, в которых в качестве топлива будет использоваться водород.

Есть серьезные основания считать, что в XXI веке произойдет постепенное вытеснение ископаемых углеродсодержащих энергоносителей (уголь, нефть, газ) новым, экологически чистым - водородом. Впервые о водороде как энергоносителе и, тем самым, о водородной энергетике речь зашла в романе Жюль Верна «Таинственный остров». В ходе неторопливой беседы его основных действующих лиц великий француз уже в 1874 г. высказал смелую мысль, что в будущем человечество будет получать энергию из воды, разлагая ее на водород и кислород, а затем сжигая водород.
Как бы фантастически эта идея ни звучала, она не является столь безумной, как может показаться на первый взгляд. Давайте попытаемся в меру собственных сил и способностей продолжить беседу Смита и Пенкрофа, а именно - рассмотреть (конечно, не во всех аспектах - объять необъятное невозможно) состояние дел по водородной энергетике и топливным элементам как ее важнейшей составляющей

Но вернемся к водороду. Нелишне заметить, что водород и водородсодержащий газ (так называемый синтез - газ ) традиционно широко применяются в различных отраслях экономики: химической, нефтеперерабатывающей, металлургической, радиоэлектронной, даже в пищевой промышленности (например, гидрированием растительных масел получают твердые жиры, маргарины).

Что же касается новых применений водорода, то при добавлении водорода или синтез-газа к обычным топливам можно получить немалый выигрыш даже при использовании их в обычных двигателях внутреннего сгорания или в газовых турбинах. В результате такого «облагораживания» топлива увеличивается КПД работы энергоустановок и улучшается состав выбросов.

Один из отцов водородной энергетики, президент Международной ассоциации по водородной энергетике Т. Н. Везирогли (США) даже утверждал, что спустя несколько десятилетий мы будем называться «водородной цивилизацией». И для такого утверждения есть все основания. Так, в 2000 г. общее производство водорода составило примерно 50 Мт, а оптимистические прогнозы на 2100 г. дают цифры примерно в 20 раз больше! В этом месте вдумчивый читатель должен уже впасть в недоумение и спросить: откуда и каким образом эти мегатонны должны появиться, если практически весь водород на планете находится в связанном виде? Прежде чем дать ответ на этот вопрос, познакомимся с тем, что скрывается за понятием топливный элемент .

Топливные элементы: «за» и «против»

Топливным элементом называют электрохимическое устройство, позволяющее превращать химическую энергию топлива в электроэнергию непосредственно, минуя процесс горения и механические преобразования типа сжатия и расширения. Помимо электричества топливный элемент, конечно, генерирует тепло.

Все типы топливных элементов устроены практически одинаково. Они представляют собой гальванические ячейки, в которых соответственно есть электролит и электроды - анод и катод . Электроэнергия вырабатывается в результате окислительно-восстановительных превращений реагентов, непрерывно поступающих к электродам извне.

Если на анод топливного элемента с протонпроводящим полимерным электролитом подавать топливо (например, водород), а на катод - воздух или кислород, то на аноде будет протекать реакция разложения водорода на протоны и электроны. Протоны переносятся через электролит к катоду, где соединяются с кислородом, образуя воду, которая в виде пара выбрасывается наружу. Электроны же двигаются от анода к катоду по внешней цепи и, естественно, генерируют электрическую энергию.

Достоинств у топливных элементов много: высокий КПД (по сравнению с обычными источниками электроэнергии), низкая токсичность выбросов, бесшумность, модульная конструкция. Недостаток на сегодня один, но существенный: высокая стоимость.

КПД топливных элементов рассчитывается как отношение величины полученной электрической энергии к теплу, которое выделяется при сжигании топлива. И теоретически для некоторых окислительно-восстановительных реакций, протекающих в топливном элементе, он может быть больше единицы, хотя реально это никогда не достигается.

Почему же два понятия - водород и топливные элементы - постоянно встречаются рядом? Ответ прост: именно водород является для последних лучшим, к тому же - экологически чистым топливом. Все остальное преобразуется в них менее эффективно. Так что водородное топливо и топливные элементы представляют собой «неразлучную пару» с большим будущим. И с позиций энергетики выигрыш здесь очевиден, поскольку того же ископаемого топлива в «водородном виде» на производство энергии в энергоустановках на топливных элементах будет расходоваться существенно меньше, чем в традиционных.

Заправь ноутбук метанолом

Топливные элементы классифицируются по природе электролита. Например, щелочные, где электролитом является раствор щелочи, или твердополимерные, в которых электролитом «работает» полимерная протонпроводящая мембрана. В качестве топлива в твердополимерных топливных элементах может использоваться метанол. Его тоже можно окислять, хотя и менее эффективно, чем водород. Метанольные топливные элементы, по-видимому, наиболее перспективны для электропитания портативных устройств: ноутбуков, фотоаппаратов, сотовых телефонов и т. п.

Известны также фосфорно-кислотные топливные элементы, где электролитом является фосфорная кислота; твердооксидные топливные элементы, в которых в качестве электролита выступает керамика на основе диоксида циркония; и, наконец, расплав-карбонатные топливные элементы, где электролитом служит расплав карбонатов калия и лития. Рабочая температура для разных типов топливных элементов также различна. Так, твердополимерные топливные элементы работают при 80-100 °С, а два последних типа - в области очень высоких (650-1000 °С) температур.

Особенность всех типов топливных элементов заключается в небольшой величине напряжения, которое снимается с единичного элемента - обычно меньше одного вольта. Чтобы получить нужное напряжение, элементы соединяют в батарею . Однако даже батарея топливных элементов не является устройством, которое можно использовать в промышленности или в быту для получения электроэнергии. Сделать это можно только с помощью электрохимического генератора , представляющего собой батарею топливных элементов вместе с системами, обеспечивающими ее работу: управления, поддержания тепла, подготовки топлива (т.е. перевода любого топлива в водородсодержащий газ) и др.

КПД современных топливных элементов составляет 40-60 %, причем максимум, как уже говорилось, достигнут в устройствах на водороде. Если в качестве первичного топлива используется метан, КПД падает - из-за того, что часть энергии тратится на конвертирование метана в водородсодержащий газ. Кстати сказать, если в системе предусмотрена рекуперация (возвращение) тепла, то суммарный КПД, естественно, возрастает на 20-30 %.

В итоге уже реально получен КПД около 70 % - не правда ли, впечатляюще? При сравнении КПД топливных элементов и других современных энергоустановок (микротурбин, двигателей внутреннего сгорания, газовых турбин, ТЭЦ, дизелей и т. д.) убеждаешься, что в области низких мощностей конкурировать с топливными элементами ничто не может. Это - идеальный вариант в случае рассредоточенной или автономной энергетики, идея которой становится все более и более популярной в обществе - особенно после катастрофических системных энергетиче­ских аварий последнего времени.

Где взять водород?

Убедившись в достоинствах топливных элементов, снова возвращаемся к водороду как лучшему для них энергоносителю. Поскольку в природе свободного водорода нет, его надо каким-то образом получать. Принцип получения в целом прост: берете водородсодержащее вещество, прикладываете к нему энергию (в идеале - из возобновляемых источников) и - пожалуйста! Источников и путей получения водорода существует несколько. В первую очередь, это ископаемые и синтетические топлива. Примерно 50 % водорода сегодня получают из природного газа, около 30 % - из нефти. А еще есть уголь, биомасса, вода, в конце концов.

Но вот на следующем этапе появляется одно немаловажное но : существуют немалые трудности с хранением, аккумулированием полученного водорода и перезаправкой им энергетических устройств. Одно из решений этой проблемы состоит в получении водорода непосредственно рядом с энергоустановкой в устрой­стве, названном топливный процессор .

Вопрос о стоимости водорода сегодня непростой, поскольку он не является биржевым продуктом, да и процесс его получения пока еще слишком материало- и энергоемкий. Соответственно цена водорода на сегодняшний день договорная и высокая. Согласно оценкам Министерства энергетики США, к 2010 г. цена за водород будет составлять от 1,5 до 2,9 доллара за килограмм. Для сравнения: теплотворная способность 1 кг водорода равна примерно таковой 1 галлона (около 4 л) бензина. Поэтому для развития водородной энергетики крайне важно в ближайшее время научиться эффективно получать водород и синтез-газ из наиболее дешевого и доступного сырья - природного газа. (К слову: наша страна обладает примерно 40 % его потенциальных мировых запасов.)

На примере природного газа можно рассмотреть и общую схему подготовки углеводородного топлива для использования в топливных элементах. Первая стадия осуществляется при высокой температуре. Это каталитические реакции парциального окисления либо паровой и автотермической конверсии природного газа. В результате получается синтез - газ - смесь водорода и оксида углерода (СО). Этот газ уже можно использовать в качестве топлива для высокотемпературных топливных элементов, поскольку оксид углерода и водород при высоких температурах окисляются с высокой скоростью.

Для более низкотемпературных фосфорнокислотных топливных элементов синтез-газ уже надо очищать от СО, доводя его концентрацию до 1 объемного процента. В противном случае топливный элемент просто не работает: оксид углерода блокирует анод. Для еще более низкотемпературных (твердополимерных) топливных элементов требования к чистоте водорода очень жесткие: на 1 млн молекул водорода должно приходиться не более 10 молекул СО. Для столь глубокой очиcтки водородсодержащего газа используется каталитическая реакция селективного окисления СО в присутствии водорода, в результате чего образуется углекислый газ (СО 2), который в этом случае не мешает.

Таким образом, подготовка углеводородного сырья наиболее проста для высокотемпературных топливных элементов. А поскольку они имеют самый высокий КПД, да к тому же для их производства не требуются драгоценные металлы, очевидно, что именно за этим типом топливных элементов будущее автономной стационарной энергетики.

«Сибирский» катализ

Наш внимательный читатель мог заметить, что в статье наконец-то прозвучало слово каталитический . Произошло это неслучайно, поскольку действительно высокоэффективные технологии получения водорода и синтез-газа из природного углеводородного сырья во всем мире разрабатываются на основе и исключительно благодаря катализаторам.

Хочется отметить, что хотя целенаправленные работы в этой области начались в нашей стране на 10-15 лет позже, чем за рубежом, отечественная наука в этом плане является, безусловно, конкурентоспособной. Так, в новосибирском Институте катализа им . Г . К . Борескова СО РАН разработаны высокоэффективные структурированные катализаторы для реакции парциального окисления метана в виде лент или блоков из термостойких металлических сплавов и керамики. На их основе созданы компактные реакторы для воздушной конверсии природного газа, обеспечивающие переработку около 4 м 3 метана в час на 1 л реактора.

Еще одна интересная разработка связана с реакцией паровой конверсии метана. Этот эндотермический процесс протекает при высоких температурах, поэтому часто лимитируется подводом тепла. Для решения проблемы была предложена «хитрая» система: с одной стороны металлической пластинки-катализатора идет реакция окисления метана с выделением тепла, с другой стороны – паровая конверсия. Тепло легко передается через пластинку, благодаря чему производительность реактора возрастает. На этом принципе при финансовой поддержке ОАО ГМК Норильский никель совместными усилиями специалистов Института катализа и Российского федерального ядерного центра ВНИИ эспериментальной физики (г. Саров) был создан первый топливный процессор для питания высокотемпературных топливных элементов.

Для портативных топливных элементов перспективным топливом считается боргидрид натрия. Реакция получения из него водорода - каталитическая. В том же Институте катализа разработаны блочные и гранулированные катализаторы, не уступающие лучшим мировым образцам, на основе которых совместно с московским Государственным научным центром РФ ГНИИ химии и технологии элементоорганических соединений уже созданы первые картриджи для питания портативных топливных элементов.

Как уже говорилось, для низкотемпературных топливных элементов требуется чистый водород, свободный как от оксида углерода, так и углекислого газа. Суть метода, предложенного сибирскими учеными, проста: если есть адсорбент, который будет поглощать в ходе паровой конверсии углеводородного топлива СО 2 и СО, то, естественно, на выходе будет получаться чистый водород. Ясно, что если один адсорбер-реактор будет работать на поглощение, а другой на регенерацию, можно организовать непрерывный процесс. Идея эта уже реализована: действительно, удается получать водород чистотой 99 %!

У института много и других перспективных разработок. Например, катализаторы для пиролиза метана с получением водорода без выбросов СО 2 ; мембранные реакторы, в которых природный газ окисляется кислородом, поступающим через специальную мембрану непосредственно из воздуха, и т. п. - упомянуть обо всех просто невозможно!

Как можно заметить, многие подобные разработки проводятся совместно с различными производственными компаниями, научными организациями и учреждениями, в том числе сибирскими. Роль Сибирского отделения РАН во многих областях, связанных с созданием водородной энергетики, может быть действительно велика. Это относится как к разработке новых технологий получения водорода и производства электрохимических устройств, так и к научному сопровождению промышленных технологий водородной энергетики, к участию в разработке прогнозов и программ российской энергетики. И, без сомнения, - к подготовке высококвалифицированных специалистов на базе Новосибирского государственного университета. Хочется думать, что и в дальнейшем российское энергетическое могущество будет прирастать Сибирью…

Не пароходы, но подводные лодки!

Подводя итог, можно констатировать, что водородная энергетика и топливные элементы как ее важнейшая часть весьма настойчиво стучатся в наши уже приоткрытые двери. Не исключено, что развитие водородной энергетики на базе топливных элементов будет одним из приоритетов мировой экономики в наступившем веке.

Многое для этого уже сделано, но предстоит еще больше. Смена энергоносителя - тернистый, длительный и капиталоемкий путь, на котором могут быть ошибки, но не должно быть «синдромов». Вспомним, как долго и трудно завоевывает место под солнцем атомная энергетика, доля которой в балансе топливно-энергетического комплекса до сих пор не превышает 7 %. Для достижения успеха на «водородном» пути нужны усилия химиков, физиков, математиков, материаловедов, энергетиков, экономистов - в конечном итоге всех землян!

Что уже сейчас есть в мире? Пока примерно 50 МВт - это вся установленная мощность реально существующих электрохимических генераторов. В демонстрационных испытаниях участвует не менее 100 компаний, но готового коммерческого продукта на этом рынке до сих пор нет.

Потребности же в энергетических установках на водороде неуклонно растут. Например, уже сейчас фактически нет ни одной автомобильной компании, которая не занималась бы разработкой автомобиля на топливных элементах. Уже созданы не только автобусы, ноутбуки, сотовые телефоны, но даже подводная лодка, использующая водородное топливо. Вот таким образом в XXI веке претворилась в жизнь мечта Жюля Верна!

Поток информации по водородной энергетике и топливным элементам сейчас нарастает лавинообразно - даже специалистам порой трудно следить за всеми новинками: более 10 периодических специализированных научных журналов, более 5 представительных ежегодных конференций, выставки, многочисленные веб-сайты. Читайте, анализируйте, делайте выводы, а время покажет, насколько пророческой оказалась мысль великого «технократического» романтика.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ