Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство Образования и Науки

Республики Казахстан

ВКГТУ им. Д. Серикбаева

Курсовая работа

по дисциплине: Физика

на тему: «Гармонические колебания методом вращающегося вектора амплитуды , или методом векторных диаграмм »

Выполнил: студент группы14- ГРК-1

Сері??анов?.Е

Проверил(а): Нуркенова Б.Д

Усть- Каменогорск - 2014 г.

  • Колебательный контур
  • Гармонические колебания
  • Вынужденные колебания
  • Резонанс
  • Автоколебания
  • Определение колебаний.
  • Графический метод сложения колебаний. Векторная диаграмма
  • Методом вращающегося вектора амплитуды.
  • Сложение взаимно перпендикулярных колебаний
  • Сложение колебаниё одного направления и одинаковой частоты.
  • Различные формы траектории суммы колебаний. Фигуры Лиссажу
  • Список литературы

Колебательный контур

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например, качания маятника часов, переменный электрический ток и т.д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электромагнитные и другие. Однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы. Например, единый подход к изучению механических и электромагнитных колебаний применялся английским физиком Д. У. Релеем (1842-1919), а А.Г. Столетовым, русским инженером-экспериментатором П.Н. Лебедевым (1866-1912). Большой вклад в развитие теории колебаний внесли: Л.И. Мандельштам (1879-1944) и его ученики.

Колебания называются свободными (или собственными ), если они совершаются за счет первоначально совершенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам:

Колебания встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому;

Различные периодические процессы (процессы, повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний.

Гармонические колебания

колебание резонанс вектор амплитуда

Гармонические колебания величины s описываются уравнением типа

s =A cos (0 t +), (1)

где

a) А - максимальное значение колеблющейся величины, называемое амплитудой колебания ,

b) 0 - круговая (циклическая) частота ,

- начальная фаза колебания в момент времени t=0,

c) (0 t +) - фаза колебания в момент времени t.

Фаза колебания определяет значения колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от 1 до -1, то s может принимать значения от +А до -А.

Определенные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени Т, называемый периодом колебания , за который фаза колебания получает приращение равное 2, т.е.

0(t+T)+ =(0t+)+2,

откуда

T=2/0 (2)

Величина, обратная периоду колебаний,

=1/T (3)

т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний . Сравнивая (2) и (3), получим

0=2 .

Единица частоты - герц (Гц): 1 Гц - частота периодического процесса, при которой за 1 секунду совершается 1 цикл процесса.

Запишем первую и вторую производные по времени от гармонически колеблющейся величины s:

(4)

(5)

т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды величин (5) и (4) соответственно равны и . Фаза величины (4) отличается от фазы величины (1) на /2, а фаза величины (5) отличается от фазы величины (1) на . Следовательно, в моменты времени, когда s =0, приобретает наибольшие значения; когда же s достигает максимального отрицательного значения, то приобретает наибольшее положительное значение .

Из выражения (5) следует дифференциальное уравнение гармонических колебаний

(6)

где s =A cos (0 t +). Решением этого уравнения является выражение (1).

Гармонические колебания изображаются графически методом вращающегося вектора амплитуды , или методом векторных диаграмм .

Для этого из произвольной точки О, выбранной на оси x под углом,равнымначальной фазе колебания, откладывается вектор А, модуль которого равен амплитуде А рассматриваемого колебания.

Если этот вектор привести во вращение с угловой скоростью 0, равной циклической частоте колебаний, то проекция конца вектора будет перемещаться по оси x и принимать значения от -А до +А, а колеблющаяся величина будет изменяться со временем по закону s =A cos (0 t +). Таким образом, гармоническое колебание можно представить проекцией на некоторую произвольно выбранную ось вектора амплитуды А, отложенного из произвольной точки оси под углом, равным начальной фазе, и вращающегося с угловой скоростью 0 вокруг этой точки.

Вынужденные колебания

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными.

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой щ, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте щ0.

Если свободные колебания происходят на частоте щ0, которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте щ внешней силы.

После начала воздействия внешней силы на колебательную систему необходимо некоторое время Дt для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания ф свободных колебаний в колебательной системе.

В начальный момент в колебательной системе возбуждаются оба процесса - вынужденные колебания на частоте щ и свободные колебания на собственной частоте щ0. Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте щ внешней вынуждающей силы.

Рассмотрим в качестве примера вынужденные колебания тела на пружине (рис. 1). Внешняя сила приложена к свободному концу пружины. Она заставляет свободный (левый на рис. 1) конец пружины перемещаться по закону

y = ym cos щt.

где ym - амплитуда колебаний, щ - круговая частота.

Такой закон перемещения можно обеспечить с помощью шатунного механизма, не показанного на рис.1.

Рисунок 1.Вынужденные колебания груза на пружине. Свободный конец пружины перемещается по закону y = ym cos щt. l - длина недеформированной пружины, k - жесткость пружины.

Если левый конец пружины смещен на расстояние y, а правый - на расстояние x от их первоначального положения, когда пружина была недеформирована, то удлинение пружины Дl равно:

Дl = x - y = x - ym cos щt.

Второй закон Ньютона для тела массой m:

ma = -k(x - y) = -kx + kym cos щt.

В этом уравнении сила, действующая на тело, представлена в виде двух слагаемых. Первое слагаемое в правой части - это упругая сила, стремящаяся возвратить тело в положение равновесия (x = 0). Второе слагаемое - внешнее периодическое воздействие на тело. Это слагаемое и называют вынуждающей силой.

Амплитуда вынужденных колебаний xm и начальная фаза и зависят от соотношения частот щ0 и щ и от амплитуды ym внешней силы.

На очень низких частотах, когда щ << щ0, движение тела массой m, прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этом x(t) = y(t), и пружина остается практически недеформированной. Внешняя сила приложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы при щ << щ0 стремится к нулю.

Резонанс

Если частота щ внешней силы приближается к собственной частоте щ0, возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом. Зависимость амплитуды xm вынужденных колебаний от частоты щ вынуждающей силы называется резонансной характеристикой или резонансной кривой (рис 2).

При резонансе амплитуда xm колебания груза может во много раз превосходить амплитуду ym колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (< 10) резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рис 2.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Рисунок 2.

Резонансные кривые при различных уровнях затухания: 1 - колебательная система без трения; при резонансе амплитуда xm вынужденных колебаний неограниченно возрастает; 2, 3, 4 - реальные резонансные кривые для колебательных систем с различной добротностью: Q2 > Q3 > Q4. На низких частотах (щ << щ0) xm ? ym. На высоких частотах (щ >> щ0) xm > 0.

Вынужденные колебания - это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными, а процесс незатухающих колебаний в таких системах - автоколебаниями. В автоколебательной системе можно выделить три характерных элемента - колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).

Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис 3 изображена схема взаимодействия различных элементов автоколебательной системы.

Рисунок 3. Функциональная схема автоколебательной системы

Автоколебания

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис 4). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник - балансиром - маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир. Источником энергии - поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.

Рисунок 4. Часовой механизм с маятником.

Определение колебаний

Колебаниями называются движения или процессы, которые полностью или почти полностью повторяются через равные промежутки времени. Колебания, описываемые уравнением

,

где x - смещение колеблющийся величины от положения равновесия; w - циклическая частота, определяющая число колебаний, совершаемые за время 2 р секунд;t - время называют гармоническими.

Графический метод сложения колебаний. Векторная диаграмма

Метод вращающегося вектора амплитуды заключается в представлении гармонического колебания с помощью вектора, длина которого равна амплитуде колебания, а направление образует с осью x угол, равный начальной фазе колебаний называют методом вращающего вектора амплитуды.

Гармонические колебания одинакового направления и частоты удобно складывать, изобразив колебания в виде векторов на плоскости - графически.

1). Выберем некоторую направленную прямую - ось, вдоль которой будем откладывать колеблющуюся величину x.

2). Из взятой на оси некоторой точки О отложим направленный отрезок - вектор длины A, образующий с осью угол некоторый б.

3). Вращая вектор А вокруг точки О с угловой скоростью щ 0, получим, что проекция конца вектора на ось будет совершать гармонические колебания с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени: проекция конца вектора будет перемещаться по оси x, принимая значения от - А до + A, а координата этой проекции будет изменяться со временем по закону

Схему, полученную таким методом представления колебаний, называют векторной диаграммой.

Сложение взаимно перпендикулярных колебаний.

Рассмотрим две взаимно перпендикулярные векторные величины x и y, изменяющиеся со временем с одинаковой частотой щ по гармоническому закону:

(1)

Где e x и e у -- орты координатных осей x и y, А и B -- амплитуды колебаний. Величинами x и у может быть, например, смещения материальной точки (частицы) из положения равновесия.

В случае колеблющейся частицы величины x и y можно представить в виде:

, (2)

Они определяют координаты частицы на плоскости xy.

Выражения (2) представляют собой заданное в параметрической форме уравнение траектории, по которой будет двигаться частица. Вид траектории зависит от разности фаз обоих колебаний.

Исключив из уравнений (2) параметр t, получим уравнение траектории в обычном виде. Из первого уравнения: (3). Соответственно

(4)

По формуле для косинуса суммы:

, тогда

Преобразуем это уравнение

(5)

Получили уравнение эллипса, оси которого повернуты относительно координатных осей х и у. Ориентация эллипса и его полуоси зависят довольно сложным образом от амплитуд A и В и разности фаз б.

Сложение колебание одного направления и одинаковой частоты.

Рассмотрим сложение двух гармонических колебаний х 1 и x 2 одного направления и одинаковой частоты:

, (1)

Оба колебания представим с помощью векторов A 1 и А 2. Используя правила сложения векторов можно найти результирующий вектор А, представляющий собой сумму двух векторов A 1 и А 2.

Вектор A представляет собой результирующее колебание, потому что из рисунка видно, что проекция этого вектора на ось x равна сумме проекций складываемых векторов:

Вектор A вращается с той же угловой скоростью щ 0, как и векторы А 1 и А 2, так что сумма x 1 и х 2 является гармоническим колебанием с частотой (щ 0, амплитудой A и начальной фазой б. Используя теорему косинусов получаем, что

(2)

(3)

Замена сложения функций сложением векторов, которая возможна при Представление гармонических колебаний с помощью векторов, значительно упрощает вычисления.

Различные формы траектории суммы колебаний. Фигуры Лиссажу.

Разность фаз б равна нулю.

При разности фаз, равной нулю, уравнение (5) упрощается следующим образом:

Отсюда:

- уравнение прямой.

Результирующее движение является гармоническим колебанием вдоль этой прямой с частотой щ и амплитудой, равной (рис. 1 а).

Разность фаз б равна ±р.

При разности фаз б равной ±р уравнение (5) имеет вид

- результирующее движение представляет собой гармоническое колебание вдоль прямой

(рис. 1 б)

Рис.1

Разность фаз равна

Случаи и отличаются направлением движения по эллипсу или окружности.

При разности фаз, равной.уравнение (5) переходит в уравнение эллипса, приведенного к координатным осям:

Полуоси эллипса равны соответствующим амплитудам колебаний. Если амплитуды А и В равны, эллипс превращается в окружность.

Равномерное движение по окружности радиуса R с угловой скоростью щ может быть представлено как сумма двух взаимно перпендикулярных колебаний:

,

(знак плюс в выражении для у соответствует движению против часовой стрелки, знак минус -- движению по часовой стрелке).

При разных частотах взаимно перпендикулярных колебаний, траектории результирующего движения будут имеют вид сложных кривых, называемых фигурами Лиссажу.

Фигура Лиссажу для отношения частот 1:2 и разности фаз р/2

Фигура Лиссажу для отношения частот 3:4 и разности фаз р /2

Список литературы

Геворкян Р.Г. Курс физики. -М, 1979, -656 с.

И. В Савельев. Курс общей физики. -М. 1990

Дж.Орир. Физика том 1, - М. 1981

Трофимова Т.И. Курс физики, -М. 2006, -560 с.

Размещено на Allbest.ru

...

Подобные документы

    Графическое изображение колебаний в виде векторов и в комплексной форме. Построение результирующего вектора по правилам сложения векторов. Биения и периодический закон изменения амплитуды колебаний. Уравнение и построение простейших фигур Лиссажу.

    презентация , добавлен 18.04.2013

    Метод векторной диаграммы. Представление гармонических колебаний в комплексной форме; сложение гармонических колебаний; биения. Сложение взаимно перпендикулярных колебаний: уравнение траектории результирующего колебания; уравнение эллипса; фигуры Лиссажу.

    презентация , добавлен 24.09.2013

    Сложение взаимно перпендикулярных механических гармонических колебаний. Дифференциальное уравнение свободных затухающих колебаний и его решение; автоколебания. Дифференциальное уравнение вынужденных колебаний. Амплитуда и фаза колебаний; резонанс.

    презентация , добавлен 28.06.2013

    Исследование понятия колебательных процессов. Классификация колебаний по физической природе и по характеру взаимодействия с окружающей средой. Определение амплитуды и начальной фазы результирующего колебания. Сложение одинаково направленных колебаний.

    контрольная работа , добавлен 24.03.2013

    Понятие и физическая характеристика значений колебаний, определение их периодического значения. Параметры частоты, фазы и амплитуды свободных и вынужденных колебаний. Гармонический осциллятор и состав дифференциального уравнения гармонических колебаний.

    презентация , добавлен 29.09.2013

    Определения и классификация колебаний. Способы описания гармонических колебаний. Кинематические и динамические характеристики. Определение параметров гармонических колебаний по начальным условиям сопротивления. Энергия и сложение гармонических колебаний.

    презентация , добавлен 09.02.2017

    Векторная диаграмма одночастотных колебаний, происходящих вдоль одной прямой. Нахождение графически амплитуды колебаний, которые возникают при сложении двух колебаний одного направления. Сложение двух гармонических колебаний одного направления.

    курсовая работа , добавлен 15.11.2012

    Резонанс как явление резкого возрастания амплитуды вынужденных колебаний, его физические основы. Вынужденные колебания. Разрушительная роль резонанса и его положительные значения. Частотометр: понятие, общий вид, функции. Резонанс и состояние человека.

    презентация , добавлен 27.10.2013

    Единый подход к изучению колебаний различной физической природы. Характеристика гармонических колебаний. Понятие периода колебаний, за который фаза колебания получает приращение. Механические гармонические колебания. Физический и математический маятники.

    презентация , добавлен 28.06.2013

    Колебания как один из самых распространенных процессов в природе и технике. График затухающих колебаний. Математический и пружинный маятники. Резонанс как резкое возрастание амплитуды колебаний. Вывод формулы для расчета периода пружинного маятника.

Решение ряда вопросов, в частности сложение нескольких колебаний одинакового направления (или, что то же самое, сложение нескольких гармонических функций), значительно облегчается и становится наглядным, если изображать колебания графически в виде векторов на плоскости. Полученная таким способом схема называется векторной диаграммой.

Возьмем ось, которую обозначим буквой х (рис. 55.1). Из точки О, взятой на оси, отложим вектор длины а, образующий с осью угол а.

Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора будет перемещаться по оси х в пределах от -а до +а, причем координата этой проекции будет изменяться со временем по закону

Следовательно, проекция конца вектора на ось будет совершать гармоническое колебание с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени.

Из сказанного следует, что гармоническое колебание может быть задано с помощью вектора, длина которого равна амплитуде колебания, а направление вектора образует с осью х угол, равный начальной фазе колебания.

Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты. Смещение х колеблющегося тела будет суммой смещений , которые запишутся следующим образом:

Представим оба колебания с помощью векторов (рис. 55.2). Построим по правилам сложения векторов результирующий вектор а.

Легко видеть, что проекция этого вектора на ось х равна сумме проекций слагаемых векторов:

Следовательно, вектор а представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью как и векторы так что результирующее движение будет гармоническим колебанием с частотой амплитудой а и начальной фазой а. Из построения видно, что

Итак, представление гармонических колебаний посредством векторов дает возможность свести сложение нескольких колебаний к операции сложения векторов. Этот прием бывает особенно полезен, например, в оптике, где световые колебания в некоторой точке определяются как результат наложения многих колебаний, приходящих в данную точку от различных участков волнового фронта.

Формулы (55.2) и (55.3) можно, конечно, получить, сложив выражения (55.1) и произведя соответствующие тригонометрические преобразования. Но примененный нами способ получения этих формул отличается большей простотой и наглядностью.

Проанализируем выражение (55.2) для амплитуда. Если разность фаз обоих колебаний равна нулю, амплитуда результирующего колебания равна сумме а и . Если разность фаз равна или , т. е. оба колебания находятся в противофазе, то амплитуда результирующего колебания равна

Если частоты колебаний неодинаковы, векторы а и будут вращаться с различной скоростью. В этом случае результирующий вектор а пульсирует по величине и вращается с непостоянной скоростью. Следовательно, результирующим движением будет в этом случае не гармоническое колебание, а некоторый сложный колебательный процесс.


Выберем ось . Из точки О, взятой на этой оси, отложим вектор длины , образующий с осью угол . Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора на ось будет меняться со временем по закону . Следовательно, проекция конца вектора на ось будет совершать гармонические колебания с амплитудой, равной длине вектора; с круговой частотой, равной угловой скорости вращения, и с начальной фазой, равной углу, образованному вектором с осью X в начальный момент времени.

Векторная диаграмма дает возможность свести сложение колебаний к геометрическому суммированию векторов. Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты, которые имеют следующий вид:

Представим оба колебания с помощью векторов и (рис. 7.5). Построим по правилу сложения векторов результирующий вектор . Легко увидеть, что проекция этого вектора на ось равна сумме проекций слагаемых векторов . Следовательно, вектор представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью , что и векторы , , так что результирующее движение будет гармоническим колебанием с частотой , амплитудой и начальной фазой . По теореме косинусов квадрат амплитуды результирующего колебания будет равен

Итак, представление гармонических колебаний посредством векторов дает возможность свести сложение нескольких колебаний к операции сложения векторов. Формулы (7.3) и (7.4) можно, конечно, получить, сложив выражения для и аналитически, но метод векторной диаграммы отличается большей простотой и наглядностью.

ЗАТУХАЮЩИЕ КОЛЕБАНИЯ

Во всякой реальной колебательной системе имеются силы сопротивления, действие которых приводит к уменьшению энергии системы. Если убыль энергии не восполняется за счет работы внешних сил, колебания будут затухать. В простейшем, и вместе с тем наиболее часто встречающемся, случае сила сопротивления пропорциональна величине скорости:

,

где r – постоянная величина, называемая коэффициентом сопротивления. Знак минус обусловлен тем, что сила и скорость имеют противоположные направления; следовательно, их проекции на ось X имеют разные знаки. Уравнение второго закона Ньютона при наличии сил сопротивления имеет вид:

.

Применив обозначения , , перепишем уравнение движения следующим образом:

.

Это уравнение описывает затухающие колебания системы. Коэффициент называется коэффициентом затухания.

Экспериментальный график затухающих колебаний при малом коэффициенте затухания представлен на рис. 7.6. Из рис. 7.6 видно, что график зависимости выглядит как косинус, умноженный на некоторую функцию, которая убывает со временем. Эта функция представлена на рисунке штриховыми линиями. Простой функцией, которая ведет себя подобным образом, является экспоненциальная функция . Поэтому решение можно записать в виде:

,

где – частота затухающих колебаний.

Величина x периодически проходит через нуль и бесконечное число раз достигает максимума и минимума. Промежуток времени между двумя последовательными прохождениями через нуль равен . Удвоенное его значение называется периодом колебаний .

Множитель , стоящий перед периодической функцией , называется амплитудой затухающих колебаний . Она экспоненциально убывает со временем. Скорость затухания определяется величиной . Время, по истечении которого амплитуда колебаний уменьшается в раз, называется временем затухания . За это время система совершает колебаний. Затухание колебаний принято характеризовать логарифмическим декрементом затухания. Логарифмическим декрементом затухания называется логарифм отношения амплитуд в моменты последовательных прохождений колеблющейся величины через максимум или минимум:

.

Он связан с числом колебаний соотношением:

Величина называется добротностью колебательной системы . Добротность тем выше, чем большее число колебаний успевает совершить система прежде, чем амплитуда уменьшится в раз.

Постоянные величины и , как и в случае гармонических колебаний, можно определить из начальных условий.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными. Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил сопротивления.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0 . Например, если дергать груз, подвешенный на пружине с частотой , то он будет совершать гармонические колебания с частотой внешней силы , даже если эта частота не совпадает с частотой собственных колебаний пружины.

Пусть на систему действует периодическая внешняя сила . В этом случае можно получить следующее уравнение, описывающее движение такой системы:

, (7.5)

где . При вынужденных колебаниях амплитуда колебаний, а, следовательно, и энергия, передаваемая колебательной системе, зависят от соотношения между частотами и , а также от коэффициента затухания .

После начала воздействия внешней силы на колебательную систему необходимо некоторое время ωt для установления вынужденных колебаний. В начальный момент в колебательной системе возбуждаются оба процесса – вынужденные колебания на частоте ω и свободные колебания на собственной частоте ω 0 . Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы. Время установления по порядку величины равно времени затухания ω свободных колебаний в колебательной системе. Установившиеся вынужденные колебания груза на пружине происходят по гармоническому закону с частотой, равной частоте внешнего воздействия. Можно показать, что в установившемся режиме решение уравнения (7.6) записывается в виде:

,

,
.

Таким образом, вынужденные колебания представляют собой гармонические колебания с частотой, равной частоте вынуждающей силы. Амплитуда вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Для данной колебательной системы (то есть системы с определенными значениями и ) амплитуда зависит от частоты вынуждающей силы. Вынужденные колебания отличаются по фазе от вынуждающей силы. Сдвиг по фазе зависит от частоты вынуждающей силы.

РЕЗОНАНС

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы приводит к тому, что при некоторой определенной для данной системы частоте амплитуда колебаний достигает максимального значения. Колебательная система оказывается особенно отзывчивой на действие вынуждающей силы при этой частоте. Это явление называется резонансом , а соответствующая частота – резонансной частотой. Графически зависимость амплитуды x m вынужденных колебаний от частоты ω вынуждающей силы описывается резонансной кривой (рис. 7.9).

Исследуем поведение амплитуды вынужденных колебаний в зависимости от частоты . Оставляя амплитуду вынуждающей силы неизменной, будем менять ее частоту. При получаем статическое отклонение под действием постоянной силы :

При возрастании частоты амплитуда смещения сначала также возрастает, затем проходит через максимум и, наконец, асимптотически стремится к нулю. Из рис. 7.9 видно также, что чем меньше , тем выше и правее лежит максимум данной кривой. Кроме того, чем меньше , тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем острее получается максимум.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей внешней силы. С явлением резонанса приходится считаться при конструировании машин и различного рода сооружений. Собственная частота этих устройств ни в коем случае не должна быть близка к частоте возможных внешних воздействий.

Примеры

В январе 1905г. в Петербурге обрушился Египетский мост. Повинны в этом были 9 прохожих, 2 извозчика и 3-й эскадрон Петергофского конногвардейского полка. Произошло следующее. Все солдаты ритмично шагали по мосту. Мост от этого стал раскачиваться – колебаться. По случайному стечению обстоятельств собственная частота колебаний моста совпала с частотой шага солдат. Ритмичный шаг строя сообщал мосту все новые и новые порции энергии. В результате резонанса мост настолько раскачался, что обрушился. Если бы резонанса собственной частоты колебаний моста с частотой шага солдат не было, с мостом ничего бы не случилось. Поэтому при прохождении солдат по слабым мостам принято подавать команду «сбить ногу».

Говорят, что великий тенор Энрико Карузо мог заставить стеклянный бокал разлететься вдребезги, спев в полный голос ноту надлежащей высоты. В этом случае звук вызывает вынужденные колебания стенок бокала. При резонансе колебания стенок могут достичь такой амплитуды, что стекло разбивается.

Проделайте опыты

Подойдите к какому-нибудь струнному музыкальному инструменту и громко крикните «а»: какая-то из струн отзовется – зазвучит. Та из них, которая окажется в резонансе с частотой этого звука, будет колебаться сильнее остальных струн – она-то и отзовется на звук.

Натяните горизонтально нетолстую веревку. Закрепите на ней маятник из нити и пластилина. Перекиньте через веревку еще один такой же маятник, но с более длинной ниткой. Длину подвески этого маятника можно изменять, подтягивая рукой свободный конец нитки. Приведите этот маятник в колебательное движение. При этом первый маятник тоже станет колебаться, но с меньшей амплитудой. Не останавливая колебаний второго маятника, постепенно уменьшайте длину его подвески – амплитуда колебаний первого маятника будет увеличиваться. В этом опыте, иллюстрирующем резонанс механических колебаний, первый маятник является приемником колебаний, возбуждаемых вторым маятником. Причиной, вынуждающей первый маятник колебаться, являются периодические колебания веревки с частотой, равной частоте колебаний второго маятника. Вынужденные колебания первого маятника будут иметь максимальную амплитуду лишь тогда, когда его собственная частота совпадает с частотой колебаний второго маятника.

АВТОКОЛЕБАНИЯ

Многочисленны и многообразны создания рук человеческих, в которых возникают и используются автоколебания. Прежде всего, это различные музыкальные инструменты. Уже в глубокой древности – рога и рожки, дудки, свистульки, примитивные флейты. Позже – скрипки, в которых для возбуждения звука используется сила трения между смычком и струной; различные духовые инструменты; гармонии, в которых звук производят металлические язычки, колеблющиеся под действием постоянного потока воздуха; органы, из труб которых вырываются через узкие щели резонирующие столбы воздуха.

Рис. 7.12

Хорошо известно, что сила трения скольжения практически не зависит от скорости. Однако именно благодаря очень слабой зависимости силы трения от скорости звучит скрипичная струна. Качественный вид зависимости силы трения смычка о струну показан на рис. 7.12. Благодаря силе трения покоя струна захватывается смычком и смещается из положения равновесия. Когда сила упругости превысит силу трения, струна оторвется от смычка и устремится к положению равновесия со все возрастающей скоростью. Скорость струны относительно движущегося смычка будет возрастать, сила трения увеличится и в определенный момент станет достаточной для захвата струны. Затем процесс повторится вновь. Таким образом, движущийся с постоянной скоростью смычок вызовет незатухающие колебания струны.

В струнных смычковых инструментах автоколебания поддерживаются силой трения, действующей между смычком и струной, а в духовых инструментах продувание струи воздуха поддерживает автоколебания столба воздуха в трубе инструмента.

Более чем в ста греческих и латинских документах разных времен упоминается пение знаменитого «мемнонского колосса» – величественного звучащего изваяния одного из фараонов, правившего в XIV веке до нашей эры, установленного вблизи египетского города Луксора. Высота статуи около 20 метров, масса достигает тысячи тонн. В нижней части колосса обнаружен ряд щелей и отверстий с расположенными за ними камерами сложной формы. «Мемнонский колосс» представляет собой гигантский орган, звучащий под воздействием естественных потоков воздуха. Статуя имитирует голос человека.

Природные автоколебания несколько экзотического свойства представляют собой поющие пески. Еще в XIV веке великий путешественник Марко Поло упоминал о «звучащих берегах» таинственного озера Лоб-Нор в Азии. За шесть веков поющие пески были обнаружены в различных местах всех континентов. У местного населения они в большинстве случаев вызывают страх, являются предметом легенд и преданий. Джек Лондон так описывает встречу с поющими песками персонажей романа «Сердца трех», отправившихся с проводником на поиски сокровищ древних майя.

«"Когда боги смеются, берегись!" – предостерегающе крикнул старик. Он начертил пальцем круг на песке и, пока он чертил, песок выл и визжал; затем старик опустился на колени, песок взревел и затрубил».

Есть поющие пески и даже целая поющая песчаная гора неподалеку от реки Или в Казахстане. Почти на 300 метров поднялась гора Калкан – гигантский природный орган. По-разному называют ее люди: «поющий бархан», «поющая гора». Сложена она из песка светлых тонов и на фоне темных отрогов Джунгарского Алатау Большого и Малого Калканов представляет необычайное зрелище благодаря цветовому контрасту. При ветре и даже при спуске с нее человека гора издает мелодичные звуки. После дождя и во время штиля гора безмолвствует. Туристы любят посещать Поющий бархан и, поднявшись на одну из трех его вершин, любоваться открывшейся панорамой Или и хребта Заилийского Алатау. Если гора молчит, нетерпеливые посетители «заставляют ее петь». Для этого надо быстро сбежать по наклону горы, песчаные струйки побегут из-под ног, и из недр бархана возникнет гудение.

Много веков прошло со времени обнаружения поющих песков, а удовлетворительного объяснения этому поразительному феномену не было предложено. В последние годы за дело принялись английские акустики, а также советский ученый В.И. Арабаджи. Арабаджи предположил, что излучающий звук верхний слой песка движется при каком-либо постоянном возмущении по нижнему, более твердому слою, имеющему волнистый профиль поверхности. Вследствие сил трения при взаимном перемещении слоев и возбуждается звук.


Вынужденные колебания – это незатухающие колебания. Неизбежные потери энергии на трение при вынужденных колебаниях компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными, а процесс незатухающих колебаний в таких системах – автоколебаниями. Схематично автоколебательную систему можно представить в виде источника энергии, осциллятора с затуханием и устройства обратной связи между колебательной системой и источником (рис. 7.10).

В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов). Источником энергии может служить деформированная пружина или груз в поле тяготения. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника.

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 7.11). В часах с анкерным ходом ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник – балансиром, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир, источником энергии – поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

В обыденной жизни мы, возможно, сами того не замечая, встречаемся с автоколебаниями чаще, чем с колебаниями, вызванными периодическими силами. Автоколебания окружают нас повсюду в природе и технике: паровые машины, двигатели внутреннего сгорания, электрические звонки, часы, звучащая скрипичная струна или органная труба, бьющееся сердце, голосовые связки при разговоре или пении – все эти системы совершают автоколебания.

Проделайте опыт!

Рис. 7.13

Колебательное движение обычно изучают, рассматривая поведение какого-нибудь маятника: пружинного, математического или физического. Все они представляют собой твердые тела. Можно создать устройство, демонстрирующее колебания жидких или газообразных тел. Для этого воспользуйтесь идеей, заложенной в конструкцию водяных часов. Две полуторалитровые пластиковые бутылки соединяют так же, как и в водяных часах, скрепив крышки. Полости бутылок соединяют стеклянной трубкой длиной 15 сантиметров, внутренним диаметром 4-5 миллиметров. Боковые стенки бутылок должны быть ровными и нежесткими, легко сминаться при сдавливании (см. рис. 7.13).

Для запуска колебаний бутылку с водой располагают сверху. Вода из нее начинает сразу же вытекать через трубку в нижнюю бутылку. Примерно через секунду струя самопроизвольно перестает течь и уступает проход в трубке для встречного продвижения порции воздуха из нижней бутылки в верхнюю. Порядок прохождения встречных потоков воды и воздуха через соединительную трубку определяется разницей давлений в верхней и нижней бутылках и регулируется автоматически.

О колебаниях давления в системе свидетельствует поведение боковых стенок верхней бутылки, которые в такт с выпуском воды и впуском воздуха периодически сдавливаются и расширяются. Поскольку

ОБРАЗОВАНИЕ ВОЛН

Как происходит распространение колебаний? Необходима среда для передачи колебаний или они могут передаваться без нее? Как звук от звучащего камертона доходит до слушателя? Каким образом быстропеременный ток в антенне радиопередатчика вызывает появление тока в антенне приемника? Как свет от далеких звезд достигает нашего глаза? Для рассмотрения подобного рода явлений необходимо ввести новое физическое понятие – волна. Волновые процессы представляют общий класс явлений, несмотря на их разную природу.

Источниками волн, будь то морские волны, волны в струне, волны землетрясений или звуковые волны в воздухе, являются колебания. Процесс распространения колебаний в пространстве называется волной. Например, в случае звука колебательное движение совершает не только источник звука (струна, камертон), но также и приемник звука – барабанная перепонка уха или мембрана микрофона. Колеблется и сама среда, через которую распространяется волна.

Волновой процесс обусловлен наличием связей между отдельными частями системы, в зависимости от которых мы имеем упругую волну той или иной природы. Процесс, протекающий в какой-либо части пространства, вызывает изменения в соседних точках системы, передавая им некоторое количество энергии. От этих точек возмущение переходит к смежным с ними и так далее, распространяясь от точки к точке, то есть создавая волну.

Упругие силы, действующие между элементами любого твердого, жидкого или газообразного тела, приводят к возникновению упругих волн. Примером упругих волн является волна, распространяющаяся по шнуру. Если движением руки вверх-вниз возбудить колебания конца шнура, то соседние участки шнура, за счет действия упругих сил связи, также придут в движение, и вдоль шнура будет распространяться волна. Общим свойством волн является то, что они могут распространяться на большие расстояния, а частицы среды совершают колебания лишь в ограниченной области пространства. Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебаний частиц среды по отношению к направлению распространения волны различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны; в поперечной – перпендикулярно к направлению распространения волны. Упругие поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн.

На рис. 8.1 показано движение частиц при распространении в среде поперечной волны и расположение частиц в волне в четыре фиксированных момента времени. Номерами 1, 2 и т.д. обозначены частицы, отстоящие друг от друга на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1 , вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2 . По прошествии еще четверти периода первая частица будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнет смещаться вверх из положения равновесия. В момент времени, равный , первая частица закончит полное колебание и будет находиться в таком же состоянии движения, как и в начальный момент. Волна к моменту времени достигнет частицы 5 .

На рис. 8.2 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево. Из рис. 8.2 видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разрежения частиц, перемещающиеся в направлении распространения волны со скоростью .

Тела, которые воздействуют на среду, вызывая колебания, называются источниками волн. Распространение упругих волн не связано с переносом вещества, но волны переносят энергию, которой обеспечивает волновой процесс источник колебаний.

Геометрическое место точек, до которых доходят возмущения к данному моменту времени, называется фронтом волны. То есть фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченного в волновой процесс, от области, которую возмущения еще не достигли.

Геометрическое место точек, колеблющихся в одинаковых фазах, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновые поверхности могут иметь любую форму. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей; в сферической волне – множество концентрических сфер.

Расстояние, на которое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны. Очевидно, что , где – скорость распространения волны.

На рис. 8.3, выполненным с помощью компьютерной графики, приведена модель распространения поперечной волны на воде от точечного источника. Каждая частица совершает гармонические колебания около положения равновесия.

Рис. 8.3. Распространение поперечной волны от точечного источника колебаний


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16

Гармоническое колебание x = a Cos (wt + a) геометрически может быть представлено проекцией на произвольное направление x вектора , вращающегося вокруг неподвижной оси с угловой скоростью w. Длина этого вектора равна амплитуде колебания, а его первоначальное направление образует с осью x угол, равный начальной фазе колебания - a. Используя это геометрическое толкование, решим задачу о сложении двух гармонических колебаний одинаковой частоты и направления.

x = x 1 + x 2 = a 1 Cos (wt + a 1) + a 2 Cos (wt + a 2).

Построим вектор (под углом a 1 к оси x ), изображающий первое колебание. Прибавим к нему векторно вектор , образующий угол a 2 с осью x (рис. 12.8). Сумма проекций этих векторов на ось x равна проекции на эту ось вектора , равного сумме и .

x = x 1 + x 2 .

Рис. 12.8

Приведем эту векторную диаграмму во вращение с угловой скоростью w вокруг оси, проходящей через начало координат - точку О. При этом равенство x = x 1 + x 2 сохранится неизменным во времени, хотя сами проекции x , x 1 и x 2 будут теперь пульсировать по гармоническому закону с одинаковой частотой w и с начальными фазами a, a 1 и a 2 - соответственно. В результате сложения двух колебаний:

x 1 = a 1 Cos (wt + a 1) и x 2 = a 2 Cos (wt + a 2) возникает новое колебание x = x 1 + x 2 =

= a Cos (wt + a), частота которого - w – совпадает с частотой складываемых колебаний. Его амплитуда равна модулю вектора , а начальная фаза a, как следует из рис. 12.8, равна:

.

Для подсчета амплитуды «а » суммарного колебания, воспользуемся теоремой косинусов:

Величина амплитуды результирующего колебания зависит не только от амплитуд складываемых колебаний а 1 и а 2 , но и от разности их начальных фаз. Колебание с максимальной амплитудой, а = a max = a 1 + a 2 возникает при сложении синфазных колебаний, то есть когда их начальные фазы совпадают: a 1 = a 2 .

Если разность фаз (a 2 – a 1) = p, то амплитуда суммарного колебания будет минимальной a = a min = |a 1 – a 2 |. Если амплитуды таких колебаний, происходящих в противофазе, равны (a 1 = a 2), то амплитуда суммарного колебания окажется равной нулю.

Этим методом векторных диаграмм нам предстоит в будущем часто пользоваться при сложении не только колебаний, но и волн.

Лекция 13 «Механические колебания»

План лекции

1. Энергия гармонического осциллятора.

2. Собственные затухающие колебания.

3. Вынужденные колебания. Резонанс. Амплитуда и фаза вынужденных колебаний.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ