Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Распространение электромагнитного поля в пространстве - это волновой процесс, описание которого можно получить из уравнений Максвелла. Уравнения Максвелла описывают свойства электромагнитных волн в наиболее общем случае, но их непосредственное использование не всегда удобно. Поэтому для случая линейных и однородных сред можно получить более простые волновые уравнения, из которых следуют все законы геометрической оптики.

1.3.1. Волновые уравнения

В оптике часто рассматривают изменение электрического и магнитного полей независимо друг от друга, и тогда векторный характер поля не является существенным, а электромагнитное поле можно рассматривать и описывать как скалярное (подобно звуковому полю). Скалярная теория значительно проще векторной, и вместе с тем дает возможность достаточно глубоко анализировать распространение световых пучков и процессы образования изображения в оптических системах. В геометрической оптике скалярная теория широко используется именно благодаря тому, что электрическое и магнитное поля в этом случае могут быть описаны независимо друг от друга, а волновые уравнения одинаковы для векторного и скалярного полей.

Рассмотрим вывод волновых уравнений непосредственно из уравнений Максвелла. Возьмем уравнение для ротора электрического поля, определяемого через производную по времени от магнитной индукции:

Векторно домножим это уравнение на :

Учитывая, что (1.5), получим:

Так как дивергенция электрического поля в диэлектрической среде , то в однородной среде , что следует из уравнений Максвелла (4, 5). Тогда получим волновое уравнение для электрической составляющей поля:

(1.3.1)
или

Поскольку , одно векторное уравнение распадается на три скалярных уравнения:

Рассуждая аналогичным образом, можно получить волновое уравнение для магнитной составляющей поля:

(1.3.3)

Поскольку , то это векторное уравнение также распадается на три скалярных уравнения:

Из уравнений Максвелла следует, что каждая из составляющих , , вектора подчиняется абсолютно одному и тому же по форме скалярному уравнению. Поэтому, если требуется знать изменение только какой-нибудь одной из составляющих вектора , мы можем рассматривать векторное поле как скалярное. Перед тем, как окончательно перейти к скалярной теории, следует заметить, что составляющие вектора не являются независимыми функциями, что вытекает из условия . Поэтому, хотя скалярные волновые уравнения являются следствием уравнений Максвелла, обратно перейти от них к уравнениям Максвелла нельзя.

Пусть скалярная величина - это любая из составляющих электрического вектора: ( , или ). Иными словами, это возмущение поля в какой-то точке пространства в какой-то момент времени . Тогда можно записать волновое уравнение в общем виде:

(1.3.5)
где - вторая производная возмущения по пространственным координатам,

Вторая производная возмущения по времени,

Смысл этого уравнения заключается в том, что волна образуется тогда, когда у некоторого возмущения вторая производная по пространственным координатам пропорциональна второй производной по времени.

Можно показать, что скорость распространения волны для диэлектриков связана с электрической и магнитной постоянной среды следующим образом:

Следовательно, скорость распространения волны в пространстве определяется так:

Тогда общий вид волнового уравнения можно записать следующим образом:

Волновое уравнение для одной оси координат:

Отношение скорости света в вакууме к скорости света в среде называется показателем преломления данной среды по отношению к вакууму (index of refraction ):

(1.3.11) где - амплитуда возмущения (функция пространственных координат),
- циклическая частота изменения поля во времени,
- фаза поля (функция пространственных координат).
Рис.1.3.1. Изменение монохроматического поля во времени.

Монохроматическое поле также характеризуется периодом колебаний или частотой :

Причем циклическую частоту можно выразить через частоту :

Гармоническую волну характеризуют также пространственный период - длина волны :

И волновое число :

Излучение с определенной длиной волны обладает соответствующим цветом (рис.1.3.2).


Рис.1.3.2. Спектр видимого излучения.

Постоянными характеристиками, не зависящими от показателя преломления, для монохроматического поля являются: частота , циклическая частота и период колебаний . Длина волны и волновое число меняются в зависимости от показателя преломления, так как меняется скорость распространения света в среде . Итак, частота в среде всегда сохраняется, а длина волны изменяется. Длину волны и волновое число в некоторой среде с показателем преломления можно определить так:

Где - длина волны в вакууме, - волновое число в вакууме.

Иногда при описании монохроматического поля вместо фазы используют другие понятия. Введем в выражение для волнового возмущения волновое число вместо циклической частоты :

Тогда волновое возмущение запишется так:

(1.3.19)

Слово "эйконал" происходит от греческого слова (эйкон - образ). В русском языке этому соответствует слово "икона".

В отличие от фазы поля эйконал более удобная величина для оценки изменения фазы от луча к лучу, так как непосредственно связан с геометрической длиной хода луча.

Оптическая длина луча (optical path difference, OPD ) - это произведение показателя преломления на геометрическую длину пути .

Приращение эйконала равно оптической длине луча:

(1.3.20)

Если фаза изменяется на , то эйконал изменяется на : ;
если фаза изменяется на , то эйконал изменяется на : ;
если фаза изменяется на , то эйконал изменяется на : .

Эйконал имеет огромное значение в теории оптического изображения, так как понятие эйконала позволяет, во-первых, описать весь процесс образования изображения с позиций волновой теории света, а во-вторых, наиболее полно проанализировать искажения передачи изображения оптическими приборами. Теория эйконала, разработанная в XIX веке Петцвалем, Зейделем и Шварцшильдом, явилась важным фундаментальным достижением геометрической оптики, благодаря которому стало возможным создание оптических систем высокого качества. . При сложении полей их комплексные амплитуды складываются, а временной экспоненциальный множитель можно вынести за скобки и не учитывать:

1.3.4. Уравнение Гельмгольца

Если поле монохроматическое, то дифференцирование по времени, сводится к умножению скалярной амплитуды на мнимый множитель . Таким образом, если подставить в волновое уравнение (1.3.18) описание монохроматического поля (1.3.23), то после преобразований мы получим волновое уравнение для монохроматического поля, в которое будет входить только комплексная амплитуда (уравнение Гельмгольца).

Уравнение Гельмгольца (Helmgolz equation ):

(конспектируем курсив)

1. Ток смещения

2. Система уравнений Максвелла

3. ЭМ волны и их характеристики

4. Получение ЭМ волн – опыты Герца

5. Применение ЭМ волн

1. В реальной жизни не существует отдельно электрического и магнитного полей, есть единое электромагнитное поле.

Теория электромагнитного поля, на­чала которой заложил Фарадей, математически была заверше­на Максвеллом. Важной выдвинутой Максвеллом идеей, была мысль о симметрии во взаимо­зависимости электрического и магнитного полей. А именно, поскольку меняющееся во времени магнитное поле (dB/dt) со­здает электрическое поле, следует ожидать, что меняющееся во времени электрическое поле (dE/dt) создает магнитное поле.

Согласно теореме о циркуля­ции вектора Н

Применим эту теорему к случаю, когда предварительно заряженный плоский конденсатор разряжается через некоторое внешнее сопротивление (рис. а).

В качестве контура Г возьмем кривую, охватывающую провод. На контур Г можно натянуть разные поверхности, на­пример S и S".Обе поверх­ности имеют «равные права», однако через поверхность S течет ток I, а через поверх­ность S" нет тока. Поверхность S" «прони­зывает» только электрическое поле. По теореме Гаусса поток вектора D сквозь замкнутую поверхность

D dS = q

Согласно определения плотности тока имеем

Сложим левые и правые части уравнений, получим

Из уравнения видно, что кроме плотности тока проводимости j имеется еще одно слагаемое dD/dt,размерность которого равна размерности плотности тока.

Максвелл назвал это слагаемое плотностью тока смещения:

J см = dD/dt.

Сумму же тока проводимости и тока смещения называют полным током.

Линии полного тока являются непрерывны­ми в отличие от линий тока проводимости. Токи проводимости, если они не замкнуты, замыкаются токами смещения.

Следует иметь в виду, что ток смещения эквивалентен току проводимости толь­ко в отношении способности создавать магнитное поле.

Токи смещения существуют лишь там, где меняется со вре­менем электрическое поле. В сущности он сам является переменным электрическим полем.

Открытие Максвеллом тока смещения - чисто теоретическое открытие, причем первосте­пенной важности.

2. С введением тока смещения макроскопическая теория электромагнитного поля была завершена. Открытие тока смещения ( dD/dt) позволило Максвеллу создать единую теорию электриче­ских и магнитных явлений. Теория Максвелла не только объяс­нила все разрозненные явления электричества и магнетизма, но и предсказала ряд новых яв­лений, существование которых подтвердилось впоследствии.

В основе электромагнитной теории Максвелла лежат четыре фунда­ментальных уравнений электродинамики, называемые уравне­ниями Максвелла.

Эти уравнения в сжатой форме выражают всю совокупность наших сведений об электромагнитном поле.


1. Циркуляция вектора Е по любому замкнутому контуру равна со знаком минус производной по времени от магнитного потока через любую поверхность, ограниченную данным конту­ром. При этом под Е понимается не только вихревое электриче­ское поле, но и электростатическое.

2. Поток вектора В сквозь произвольную замкнутую поверх­ность всегда равен нулю.

3. Циркуляция вектора Н по любому замкнутому контуру равна полному току (току проводимости и току смещения) че­рез произвольную поверхность, ограниченную данным конту­ром.

4. Поток вектора D сквозь любую замкнутую поверхность равен алгебраической сумме сторонних зарядов, охватываемых этой поверхностью.

Из уравнений Максвелла для циркуляции векторов Е и Н следует, что электрическое и магнитное поля нельзя рассмат­ривать как независимые: изменение во времени одного из этих полей приводит к появлению другого. Поэтому имеет смысл лишь совокупность этих полей, описывающая единое электро­магнитное поле.

Эти уравнения говорят о том, что электрическое поле может возникнуть по двум причинам. Во-первых, его источником яв­ляются электрические заряды, как сторонние, так и связан­ные. Во-вторых, поле Е образу­ется всегда, когда меняется во времени магнитное поле.

Эти же уравнения говорят о том, что магнитное поле В мо­жет возбуждаться либо движущимися электрическими заряда­ми (электрическими токами), либо переменными электриче­скими полями, либо тем и другим одновременно. Никаких ис­точников магнитного поля, подобных электрическим зарядам, в природе не существует, это следует из второго уравнения.

Значение уравнений Максвелла не только в том, что они выражают основные законы электро­магнитного поля, но и в том, что путем их решения (интегриро­вания) могут быть найдены сами поля Е и В.

Уравнения Максвелла обладают большей общностью, они справедливы и в тех случаях, когда существуют повер­хности разрыва - поверхности, на которых свойства среды или полей меняются скачкообразно.

Фундаментальные уравнения Максвелла еще не составляют полной системы уравнений элек­тромагнитного поля. Этих уравнений недостаточно для нахож­дения полей по заданным распределениям зарядов и токов. Их необходимо дополнить соотношениями, эти соотношения называют материаль­ными уравнениями.

Материальные уравнения наиболее просты в случае доста­точно слабых электромагнитных полей, сравнительно медленно меняющихся в пространстве и во времени. В этом случае для изотропных сред, материальные уравнения имеют следующий вид:

=εε 0

=μμ 0

=γ( + ст)

Уравнения Максвелла обладают рядом свойств.

1 свойства – линейности.

Уравнения Максвелла линейны, т.к. они содержат только пер­вые производные полей Е и В по времени и пространственным координатам и первые степени плотности электрических заря­дов и токов.

Свойство линейности уравнений Максвелла не­посредственно связано с принципом суперпозиции: если два ка­ких-нибудь поля удовлетворяют уравнениям Максвелла, то это относится и к сумме этих полей.

2 свойство – непрерывности .

Уравнения Максвелла содержат уравнение непрерывности, выражающее закон сохранения электрического заряда.

3 свойство – инвариантности.

Уравнения Максвелла выполняются во всех инерциальных системах отсчета. Они являются релятивистски инвариантны­ми. Это есть следствие принципа относительности, согласно ко­торому все инерциальные системы отсчета физически эквива­лентны друг другу. Факт инвариантности уравнений Максвел­ла подтверждается многочисленными опытными данными.

Уравнения Максвелла являются правильными реляти­вистскими уравнениями в отличие, например, от уравнений механики Ньютона.

4 свойство – симметрии.

Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это обусловлено тем, что в природе существу­ют электрические заряды, но нет зарядов магнитных.

В нейтральной од­нородной непроводящей среде уравнения Мак­свелла приобретают симметричный вид.

Из уравнений Максвелла сле­дует вывод о существовании принципиально нового физического явления: электромагнитное поле способно сущест­вовать самостоятельно - без электрических зарядов и токов. При этом изменение его состояния обязательно имеет волновой характер. Поля такого рода называют электромагнитными волнами. В вакууме они всегда распространяются со скоро­стью, равной скорости с.

Выяснилось также, что ток смещения (dD/dt)играет в этом явлении первостепенную роль. Именно его присутствие наряду с величиной dB/dtи означает возможность появления электро­магнитных волн. Всякое изменение во времени магнитного поля возбуждает поле электрическое, изменение же поля элек­трического, в свою очередь, возбуждает магнитное поле.

За счет непрерывного взаимопревращения или взаимодействия они и должны сохраняться - электромагнитное возмущение будет распространяться в пространстве.

Теория Максвелла не только предсказала возможность существования электромагнитных волн, но и позволила устано­вить все их основные свойства.

3. Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году.

Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, то есть систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов, одним из них явился вывод о существовании электромагнитных волн.

Электромагнитные волны поперечны – векторы перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис.).

Электромагнитные волны распространяются в веществе с конечной скоростью

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

4. Максвелл утверждал, что электромагнитные волны обладают свойствами отражения, преломления, дифракции и т.д. Но любая теория становится доказанной лишь после ее подтверждения на практике. Но в то время ни сам Максвелл, ни кто-либо другой еще не умели экспериментально получать электромагнитные волны. Это произошло только после 1888 года , когда Герц экспериментально открыл электромагнитные волны.

В результате экспериментов Герц создал источник электромагнитных волн, названный им "вибратором" . Вибратор состоял из двух проводящих сфер (в ряде опытов цилиндров) диаметром 10-30 см, укрепленных на концах проволочного разрезанного посредине стержня . Концы половин стержня в месте разреза оканчивались небольшими полированными шариками , образуя искровой промежуток в несколько миллиметров.

Сферы подсоединялись ко вторичной обмотке катушки Румкорфа, являвшейся источником высокого напряжения.

Из теории Максвелла известно,

1)излучать электромагнитную волну может только ускоренно движущийся заряд,

2)что энергия электромагнитной волны пропорциональна четвертой степени ее частоты.

Понятно, что ускоренно заряды движутся в колебательном контуре, поэтому проще всего их использовать для излучения электромагнитных волн. Но надо сделать так чтобы частота колебаний зарядов стала как можно выше. Из формулы Томсона для циклической частоты колебаний в контуре следует, что для повышения частоты надо уменьшать емкость и индуктивность контура .

Чтобы уменьшить емкость C надо увеличивать расстояние между пластинами (раздвигать их, делать контур открытым) и уменьшать площадь пластин. Самая маленькая емкость, которая может получиться, - просто провод.

Чтобы уменьшить индуктивность L надо уменьшать число витков. В результате этих преобразований получим просто кусок провода или открытый колебательный контур ОКК.

Суть происходящих в вибраторе явлений заключается в следующем. Индуктор Румкорфа создает на концах своей вторичной обмотки очень высокое, порядка десятков киловольт, напряжение, заряжающее сферы зарядами противоположных знаков. В определенный момент в искровом промежутке вибратора возникает электрическая искра, делающая сопротивление его воздушного промежутка столь малым, что в вибраторе возникают высокочастотные затухающие колебания, длящиеся во все время существования искры. Поскольку вибратор представляет собой открытый колебательный контур, происходит излучение электромагнитных волн.

После огромной серии трудоемких и чрезвычайно остроумно поставленных опытов с использованием простейших, так сказать, подручных средств экспериментатор достиг цели. Удалось измерить длины волн и рассчитать скорость их распространения. Были доказаны

· наличие отражения,

· преломления,

· дифракции,

  • интерференции и поляризации волн.
  • измерена скорость электромагнитной волны

5. Впервые электромагнитные волны были использованы через семь лет после опытов Герца. 7 мая 1895 г. преподаватель физики офицерских минных классов А. С. Попов (1859-1906) на заседании Русского физико-химического общества продемонстрировал первый в мире радиоприемник, открывший возможность практического использования электромагнитных волн для беспроволочной связи, преобразившей жизнь человечества. Первая переданная в мире радиограмма содержала лишь два слова: «Генрих Герц». Изобретение радио Поповым сыграло огромную роль для распространения и развития теории Максвелла.

Электромагнитные волны сантиметрового и миллиметрового диапазонов, встречая на своем пути преграды, отражаются от них. Это явление лежит в основе радиолокации - обнаружения предметов (например, самолетов, кораблей и т. д.) на больших расстояниях и точного определения их положения. Помимо этого, методы радиолокации используются для наблюдения прохождения и образования облаков, движения метеоритов в верхних слоях атмосферы и т. д.

Для электромагнитных волн характерно явление дифракции - огибание волнами различных препятствий. Именно благодаря дифракции радиоволн возможна устойчивая радиосвязь между удаленными пунктами, разделенными между собой выпук­лостью Земли. Длинные волны (сотни и тысячи метров) применяются в фототелеграфии, короткие волны (несколько метров и меньше) применяются в телевидении для передачи изображений на небольшие расстояния (немногим больше пределов прямой видимости). Электромагнитные волны используются также в радио-геодезии для очень точного определения расстояний с помощью радиосигналов, в радиоастрономии для исследования радиоизлучения небесных тел и т. д. Полное описание применения электромагнитных волн дать практически невозможно, так как нет областей науки и техники, где бы они не использовались.

Для осуществления радио- и телевизионной связи используются электромагнитные волны с частотой от нескольких сотен тысяч герц до сотен мегагерц.

При передаче по радио речи, музыки и других звуковых сигналов применяют различные виды модуляции высокочастотных (несущих) колебаний. Суть модуляции заключается в том, что высокочастотные колебания, вырабатываемые генератором, изменяют по закону низкой частоты. В этом и заключается один из принципов радиопередачи. Другим принципом является обратный процесс - детектирование. При радиоприеме из принятого антенной приемника модулированного сигнала нужно отфильтровать звуковые низкочастотные колебания.
С помощью радиоволн осуществляется передача на расстояние не только звуковых сигналов, но и изображения предметов.


Похожая информация.


Общая форма записи волнового процесса

Определение 1

Допустим, что физическая величина $s$ распространяется в направлении $X$ со скоростью $v$. Данная величина ($s$) может быть смещением, скоростью кусочков резинового шнура, когда в шнуре проходит механическая волна. Если мы имеем дело с электромагнитной волной, то под $s$ можно понимать напряженность электрического поля или индукцию магнитного поля и т.д. Общая форма записи волнового процесса представляется как:

где $t$ -- время, $x$ -- координата точки, которую рассматривают, $f$ - символ функции.

Любая произвольная функция, имеющая исключительно аргумент $\left(t-\frac{x}{v}\right)$, отражает волновой процесс.

Положим, что наблюдатель перемещается по $оси X$ со скоростью $v$. Его координата может быть определена как:

Подставим правую часть выражения (2) в формулу (1) вместо переменной $x$, получим:

Из выражения (3) следует, что функция $f\left(-\frac{x_0}{v}\right)$ не зависит от времени, что означает $s$ распространяется со скоростью $v$.

Аналогично можно получить, что если процесс записан как:

то $s$ распространяется против избранной $оси X$. Если положить, что $t=0$, то из выражений (1) и (4) имеем:

Выражение (5) определяет распределение $s$ в начальный момент времени. В том случае, если $s$ напряженность магнитного поля в электромагнитной волне, то формула (5) - задает распределение магнитного поля в пространстве при $t=0$. Получается, что вид функции $f$ зависит от начальных условий процесса.

Итак, выражения (1) и (4) являются общим выражением для волны, которая распространяется вдоль $оси X$.

Волновое уравнение

Определение 2

Функция $s$ удовлетворяет простому дифференциальному уравнению. Для его нахождения продифференцируем выражения (1) и (4), объединив их, используя знак $\mp $, дважды по координате $x$:

\[\frac{{\partial }^2s}{\partial x^2}=\frac{1}{v^2}f^{""}\left(6\right).\]

Вторая частная производная по времени будет иметь вид:

\[\frac{{\partial }^2s}{\partial t^2}=f^{""}\left(7\right).\]

Используя выражения (6) и (7) запишем:

\[\frac{{\partial }^2s}{\partial t^2}=v^2\frac{\partial^2s}{\partial x^2}\left(8\right).\]

Уравнение (8) называют волновым . В том случае, если волна распространяется не в одном, во всех направлениях пространства, то волновое уравнение примет вид:

\[\frac{{\partial }^2s}{\partial t^2}=v^2\left(\frac{{\partial }^2s}{\partial x^2}+\frac{{\partial }^2s}{\partial y^2}+\frac{{\partial }^2s}{\partial z^2}\right)\left(9\right).\]

Замечание

В том случае, если физическая величина распространяется в виде волны, то она должна удовлетворять волновому уравнению. Справедливо обратное утверждение: Если какая - либо величина подчиняется волновому уравнению, то она распространяется как волна. Скорость распространения волны будет равна квадратному корню из коэффициента, который стоит при сумме пространственных производных.

Электромагнитные волны

Рассмотрим электромагнитное поле в однородном диэлектрике ($j_x=j_y=j_z=0$). Причем будем считать задачу одномерной, то есть предположим, что векторы $\overrightarrow{E}\ и\ \overrightarrow{H}$ зависят только от одной координаты $x$ и времени $t$. Такая ситуация означает, что все пространство мы можем разделить на тонике слои (толщина слоя стремится к нулю), плоские слои, внутри них $\overrightarrow{E}\ и\ \overrightarrow{H}$ принимают одно и тоже значение во всех точках. Данная задача соответствует плоской электромагнитной волне. Для описания электромагнитного поля используем систему уравнений Максвелла:

Для одномерного случая система уравнений Максвелла существенно упрощается, так как все производные по $y$ и $z$ равны нулю. Записав уравнение (10) в скалярном представлении:

Становится очевидным, что в однородной среде для одномерного случая:

Аналогично из уравнения (11) получаем, что:

Выражения (15) и (16) означают, что данные составляющие электромагнитного поля не зависят от времени. А из уравнений (12) и (13) следует, что $D_x$и $B_x$ - не зависят от координаты. В результате мы имеем, что $D_x=const,\ B_x=const$.

Остальные уравнения из группы (14) примут вид:

От группы уравнений в скалярной форме, которые представляют выражение (11), остаются:

Уравнения (17) и (18) сгруппируем как две независимые части. Первая - связывающая $y$-составляющую электрического поля и $z$-составляющую магнитного поля:

Вторая часть связывает $z$-компоненту электрического поля и $y$-компоненту магнитного поля:

Получается, что переменное (во времени) электрическое поле ($D_y$) порождает одну $z$-составляющую магнитного поля ($H_z$), переменное магнитное поле $B_z$ вызывает появление электрического поля направленного по $оси Y$ ($E_y$) (уравнения 19). То есть в электромагнитном поле электрическое и магнитные поля перпендикулярны друг другу. Аналогичный вывод можно сделать из пары (20).

Для одномерного случая систему уравнений Максвелла можно записать в виде:

Электрическое и магнитные поля могут существовать как волны, так как из уравнения Максвелла следует существование этих волн. Так как для напряженности электрического поля выполняется уравнение вида:

Следовательно, решение этого уравнения можно представить как:

Так как для напряженности магнитного поля выполняется уравнение вида:

следовательно, решение этого уравнения можно представить как:

Пример 1

Задание: Покажите, на примере одномерного случая электромагнитного поля, что из уравнений Максвелла следует волновой характер электромагнитного поля.

Решение:

В качестве основы для решения задачи используем уравнения Максвелла для одномерного случая:

\[\frac{\partial D}{\partial t}=-\frac{\partial H}{\partial x},\ \frac{\partial B}{\partial t}=-\frac{\partial E}{\partial x}\left(1.1\right).\]

Исключим из уравнений (1.1) магнитное поле $H$. С этой целью умножим первое уравнение на $\mu {\mu }_0$ и возьмем частную производную по времени от обеих частей равенства и, используя выражение: $D=\varepsilon_0\varepsilon E$, заменим электрическую индукцию на напряженность соответствующего поля, получим:

\[{\mu {\mu }_0\varepsilon }_0\varepsilon \ \frac{{\partial }^2E}{\partial t^2}=-\mu {\mu }_0\frac{{\partial }^2H}{\partial x\partial t}\left(1.2\right).\]

Второе уравнение в группе (1.1) продифференцируем по $x$, заменим индукцию магнитного поля на его напряженность, используя выражение: $B=\mu {\mu }_0H$, при этом имеем:

\[\frac{{\partial }^2E}{\partial x^2}=-\mu {\mu }_0\frac{{\partial }^2H}{\partial x\partial t}\left(1.3\right).\]

Как мы видим, правые части выражений (1.2) и (1.3) одинаковы, следовательно, можно считать, что:

\[\frac{{\partial }^2E}{\partial x^2}={\mu {\mu }_0\varepsilon }_0\varepsilon \ \frac{{\partial }^2E}{\partial t^2}\to \frac{{\partial }^2E}{\partial t^2}=\frac{1}{{\mu {\mu }_0\varepsilon }_0\varepsilon }\frac{{\partial }^2E}{\partial x^2}\left(1.4\right).\]

Аналогичное уравнение легко получить для напряженности магнитного поля, если исключить напряженность электрического поля. Уравнение (1.4) -- есть волновое уравнение.

Ответ: Волновое уравнение для напряженности электрической составляющей электромагнитного поля получено непосредственно из уравнений Максвелла для одномерной задачи.

Пример 2

Задание: Чему равна скорость ($v$) распространения электромагнитной волны ?

Решение:

За основу решения примем волновое уравнение для напряженности электрического поля в плоской электромагнитной волне:

\[\frac{{\partial }^2E}{\partial t^2}=\frac{1}{{\mu {\mu }_0\varepsilon }_0\varepsilon }\frac{{\partial }^2E}{\partial x^2}\left(2.1\right).\]

Скоростью распространения волны является корень квадратный из коэффициента, который находится перед $\frac{{\partial }^2E}{\partial x^2}$ в волновом уравнении, следовательно:

где $c$ -- скорость распространения света в вакууме.

Ответ: $v=\frac{c}{\sqrt{\mu \varepsilon}}.$

Используем формулу Стокса , согласно которой циркуляция вектора по замкнутому контуру L равна потоку ротора этого вектора через поверхность, опирающуюся на этот контур. Тогда:

Пусть S произвольная неизменная во времени поверхность, ограниченная контуром L. Тогда система уравнений (1.2.7) перепишется так:

Поскольку контур интегрирования в полученных интегралах произволен, равенство нулю интегралов возможно только при равенстве нулю подынтегральных выражений. Тогда:

Уравнения (1.3.2) и есть уравнения Максвелла.

В большей части курса мы будем рассматривать поля, изменяющиеся во времени по гармоническому закону:

Для которых принята комплексная форма записи:

Где комплексная амплитуда. При комплексной форме записи гармонических полей производная по времени заменяется умножением на .

Тогда уравнения Максвелла (1.3.2) для полей, изменяющихся по гармоническому закону, принимают вид:

Найдем решение уравнений Масквелла для простейшего случая распространения электромагнитной волны в вакууме.

В вакууме , . Поэтому для вакуума уравнения Максвелла (1.3.4) принимают вид:

Исключим Из (1.3.5). Для этого применим операцию Rot К обеим частям первого уравнения: . Теперь подставим значение из второго уравнения. В результате получим:

Используем известное соотношение векторной алгебры

Вспомним, что в соответствии с теоремой Гаусса-Остроградского

И учтем, что в вакууме свободных зарядов нет (т. е. ). Подставим (1.3.8) и (1.3.7) в (1.3.6). В результате получаем:

Полученное уравнение носит название Волновое уравнение . Аналогичным образом можно получить волновое уравнение относительно вектора магнитного поля .

Наиболее наглядным решением волнового уравнения является сферическая волна, распространяющаяся вокруг точечного излучателя. Чтобы получить решение для сферической волны, нужно представить оператор Лапласа в уравнении (1.3.9) в сферической системе координат, что приведет к достаточно громоздким математическим выражениям. С целью упрощения математических процедур мы рассмотрим решение волнового уравнения для плоской волны, являющейся функцией одной координаты.

Рис.1.3.1. показана схема расположения силовых линий сферической электромагнитной волны. Рисунок иллюстрирует тот факт, что на больших расстояниях от излучателя электромагнитное поле можно рассматривать как плоскую волну, распространяющуюся вдоль направления, перпендикулярного плоскости постоянной фазы, причем характеристики волны зависят только от одной координаты вдоль направления распространения. Несмотря на то, что в общем случае волна имеет сферическую симметрию, в ограниченной области, обозначенной квадратом, можно говорить о плоской волне, характеристики которой зависят только от одной координаты.

Примем во внимание, что одномерный оператор Лапласа имеет следующий вид:

И получим одномерное волновое уравнение для плоской волны:

Рис.1.3.1. Схема силовых линий напряженности электрического и магнитного полей сферической электромагнитной волны.

Любое дифференциальное уравнение приобретает физический смысл, если заданы граничные условия для его решения. Решение уравнения (1.3.11) получается в виде двух волн, распространяющихся вдоль положительного и отрицательного направлений оси z. Примем в качестве граничных условий утверждение, что в рассматриваемой среде плоская волна может распространяться только в одном направлении. Итак, мы имеем решение уравнения (1.3.11) для плоской волны, распространяющейся вдоль положительного направления оси z:

Фаза волны:

Где K — волновое число (в общем случае волновой вектор).

Фиксированная ориентация вектора напряженности поля вдоль заданной координатной оси носит название Поляризации волны . Соотношение (1.3.12) задает поляризацию напряженности электрического поля вдоль оси Х .

На рис.1.3.2. показано положение плоскости постоянной фазы для двух моментов времени.

Рис.1.3.2. Движение плоскости постоянной фазы.

Для плоскости постоянной фазы (φ = const), которая движется вдоль оси z, ее производная по времени равна нулю:

В соответствии с (1.1.26) получаем:

Где - скорость движения поверхности неизменной фазы или Фазовая скорость.

Подставив (1.3.12) в (1.3.11) получим

И, сократив , получим Дисперсионное уравнение для плоской волны в свободном пространстве :

Или (1.3.16)

Разные знаки в выражении для K соответствуют волнам, распространяющимся вдоль оси Z в разных направлениях. В соответствии с (1.3.14):

В свободном пространстве , где C — скорость света.

Таким образом, из уравнений Максвелла следует, что скорость света в свободном пространстве определяется диэлектрической и магнитной проницаемостями вакуума:

Диэлектрическая и магнитная проницаемость вакуума – это характеристики пространства, связанные со статическими полями. Первая из них характеризует только диэлектрические свойства среды. А вторая – только магнитные свойства. Результат решения уравнений Масквелла, представленный формулой (1.3.18), связывает воедино электростатику, магнитостатику и динамический процесс распространения света.

Действительно, диэлектрическую проницаемость можно получить экспериментально путем измерения силы взаимодействия двух известных зарядов Q1 и Q2 расположенных на расстоянии R друг от друга:

(закон Кулона).

.

Магнитную проницаемость можно получить, измерив силу взаимодействия двух проводников длиной и с током и соответственно, расположенных на расстоянии R друг от друга:

(закон Био-Савара-Лапласа)

Таким образом, из статического эксперимента можно получить численное значение .

Следовательно, уравнения Максвелла позволяют выразить скорость света через характеристики, полученные с помощью статических измерений.

Уравнения Максвелла связывают воедино электрическое поле, магнитное поле и электромагнитные волны (свет). Создание концепции электромагнитного поля и формулировка уравнений, его описывающих, послужили одной из важнейших отправных точек физики XX века.

    Уравнения Максвелла содержат уравнение непрерывности, выражающее закон сохранения заряда. 3. Уравнения Максвелла выполняются во всех инерциальных системах отчета. 4. Уравнения Максвелла симметричны.

6.3.4. Электромагнитные волны

Из уравнений Максвелла следует, что электромагнитное поле способно существовать самостоятельно, без электрических зарядов и токов. Изменяющееся электромагнитное поле имеет волновой характер и распространяется в вакууме в виде электромагнитных волн со скоростью света.

Существование электромагнитных волн вытекает из уравнений Максвелла, которые описываются волновыми уравнениями для векторов исоответственно:


, (5.18)

, (5.19)

Изменение во времени магнитного поля возбуждает переменное электрическое поле и, наоборот, изменение во времени электрического поля возбуждает переменное магнитное поле. Вихревое электрическое поле, индуцированное переменным магнитным полем , образует с векторомлевовинтовую систему (рис. 7.2), а вихревое магнитное поле, индуцированное электрическим полем, образует с векторомправовинтовую систему (рис. 5.2).

Происходит непрерывное их взаимопревращение, что и дает возможность

существовать и распространяться им в пространстве и времени при отсутствии зарядов и токов.

Таким образом, теория Максвелла не только предсказала существование электромагнитных волн, но и установила их важнейшие свойства:

    Скорость распространения электромагнитной волны в нейтральной непроводящей и неферромагнитной среде

(5.20)

где c  скорость света в вакууме.

Рис. 5.3 Рис. 5.4

3. В электромагнитной волне векторыивсегда колеблются в одинаковых фазах (рис. 5.4), причем между мгновенными значениями Е и В в любой точке пространства

существует связь, а именно: Е = vB или
. (5.21)

Существование электромагнитных волн позволило Максвеллу объяснить волновую природу света. Свет  это электромагнитные волны.

6.3.5. Поток энергии электромагнитного поля

При распространении электромагнитных волн в пространстве и времени они несут с собой энергию. Она заключена во взаимно превращающихся электрическом и магнитном полях.

Объемная плотность энергии электрического поля

, (5.22)

где Е  напряженность электрического поля.

Объемная плотность энергии магнитного поля

, (5.23)

где В  индукция магнитного поля.

Следовательно, объемная плотность энергии электромагнитного поля в той области пространства, где находится в произвольный момент времени электромагнитная волна,

W = w э + w м =
. (5.24)

Или с учетом того, что Е = сВ и
, имеем

w =  o E 2 , (5.25)

или
. (5.26)

Энергию, переносимую электромагнитной волной в единицу времени через единичную площадку, называют плотностью потока электромагнитной энергии. Вектор плотности потока электромагнитной энергии называют вектором Пойнтинга.

Направление вектора Пойнтинга совпадает с направлением распространения электромагнитной волны, т. е. с направлением переноса энергии. Скорость переноса энергии равна фазовой скорости этой волны.

Если электромагнитная волна при распространении проходит сквозь некотoрую площадку S, перпендикулярную к направлению распространения ее, например, вдоль оси Х, то за некоторый промежуток времени dt волна пройдет расстояние dx = cdt, где с  скорость распространения волны.

Так как объемная плотность энергии электромагнитной волны

то полная энергия dW электромагнитной волны, заключенная в объеме

dW = wdV =  o E 2 cdtS. (5.27)

Следовательно, плотность потока электромагнитной энергии, проходящей через площадку S за время dt

. (5.28)

Вектор Пойнтинга совпадает по направлению со скоростью распространения электромагнитной волны, которая перпендикулярна и , т. е.

. (5.29)



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ