Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Дифракция света (от лат. diffractus - разломанный, преломлённый) - отклонение при распространении света от законов геометрической оптики, выражающееся в огибании лучами света границы непрозрачных тел, проникновение света в область геометрической тени, огибание светом малых препятствий. Дифракция наблюдается при распространении света в среде с резко выраженными неоднородностями. Дифракция света - проявление волновых свойств света в предельных условиях перехода от волновой оптики к геометрической. Явление дифракции света можно объяснить на основании принципа Гюйгенса.

Принцип Гюйгенса - принцип, согласно которому каждая точка волнового фронта в данный момент времени является центром вторичных элементарных волн, огибающая которых дает положение волнового фронта в следующий момент времени. Принцип Гюйгенса позволяет объяснить законы отражения и преломления света, однако он недостаточен для объяснения дифракционных явлений, Френелем, который дополнил принцип Гюйгенса представлением об интерференции вторичных волн.

Гюйгенса-Френеля принцип - дальнейшее развитие принципа Х. Гюйгенса О. Френелем, введшего представление о когерентности и интерференции вторичных элементарных волн. Согласно принципу Гюйгенса-Френеля волновое возмущение в некоторой точке может быть представлено как результат интерференции когерентных вторичных элементарных волн, излучаемых каждым элементом некоторой волновой поверхности (волнового фронта). Принцип Гюйгенса-Френеля позволяет объяснить и дифракционные явления. Каждый элемент волновой поверхности площадью является источником вторичной сферической волны, амплитуда которой пропорциональна площади элемента. В точку наблюдения от этого элемента приходит колебание

(6.37.21)

где - коэффициент, зависящий от угла между нормалью к поверхности и направлением на точку наблюдения; - расстояние от элемента поверхности до точки наблюдения; - фаза колебания в месте расположения элемента .

Результирующее колебание в точке наблюдения представляет собой суперпозицию когерентных колебаний от всех элементов волновой поверхности, пришедших в точку наблюдения. Для расчета амплитуды результирующего колебания для случаев, отличающихся симметрией, Френель предложил метод, получивший название метода зон Френеля. Различают два вида дифракции: дифракция Фраунгофера и дифракция Френеля.

Дифракция Фраунгофера (в параллельных лучах) - дифракция плоских волн на препятствии (источник света удалён от препятствия на бесконечно большое расстояние).

Дифракция Френеля - дифракция сферической световой волны на неоднородности (например, отверстии в экране). Дифракция Френеля осуществляется в тех случаях, когда источник света и экран, служащий для наблюдения дифракционной картины, находятся на конечных расстояниях от препятствия, вызвавшего дифракцию.


Метод зон Френеля.

Зоны Френеля - кольцевые участки, на которые разбивают сферическую поверхность фронта световой волны при рассмотрении задач о дифракции волн в соответствии с принципом Гюйгенса - Френеля для упрощения вычислений при определении амплитуды волны в заданной точке пространства. Пусть монохроматическая волна распространяется из точки в точку наблюдения . Положение волнового фронта в определенный момент времени указано на рисунке. Согласно принципу Гюйгенса - Френеля действие источника заменяют действием вторичных (воображаемых) источников, расположенных на поверхности фронта сферической волны, которую разбивают на кольцевые зоны так, чтобы расстояния от краёв соседних зон до точки наблюдения отличались на где - длина волны. (На рисунке - точка пересечения фронта волны с линией , расстояние = , = ). Тогда расстояние от края -й зоны до точки наблюдения равно

(6.37.22)

Внешний радиус -й зоны Френеля

(6.37.23)

площадь -й зоны

(6.37.24)

при не слишком больших площади зон Френеля одинаковы.

Так как колебания от соседних зон проходят до точки расстояния, отличающиеся на то в точку они приходят в противофазе. При вычислении амплитуды результирующего колебания в точке методом зон Френеля необходимо также учесть, что с ростом номера зоны амплитуды колебаний, приходящих в точку , монотонноубывают: А 1 > А 2 > А 3 > А 4 > …. Можно положить, что амплитуда колебания А m равна среднему арифметическому амплитуд примыкающих к ней зон: Поэтому амплитуда результирующего светового колебания, приходящего от всего волнового фронта в точку будет равна:

А = А 1 - А 2 + А 3 - А 4 + …….. А к.

Это выражение можно представить в следующем виде:

так как выражения в скобках равны нулю, а амплитуда от последней зоны Френеля бесконечно мала. Следовательно, амплитуда, создаваемая в точке всем сферическим волновым фронтом, равна половине амплитуды, создаваемой центральной зоной Френеля. Если 1м, 0,5 мкм, то радиус первой зоны Френеля равен 0,5 мм. Следовательно, свет от источника к точке наблюдения распространяется как бы в пределах узкого прямого канала, т.е. практически прямолинейно.

Колебания от четных и нечетных зон Френеля находятся в противофазе и взаимно ослабляют друг друга. Если какое-либо препятствие перекрывает часть сферического волнового фронта, то при расчете амплитуды результирующего колебания в точке наблюдения методом зон Френеля учитываются только открытые зоны Френеля. Если поставить на пути световой волны пластинку, которая перекрывала бы все четные или нечетные зоны Френеля, то амплитуда колебания в точке наблюдения резко возрастает. Такая пластинка называется зонной . Зонная пластинка во много раз увеличивает интенсивность света в точке , действуя подобно собирающей линзе.

В лекции 2 мы рассматривали явления перераспределения интенсивности светового потока в результате суперпозиции волн . Это явление мы называли интерференцией и рассмотрели интерференционную картину от двух источников. Настоящая лекция - непосредственное продолжение предыдущей. Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн.

По историческим причинам перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых конечным числом дискретных когерентных источников принято называть интерференцией . Перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых когерентными источниками, расположенными непрерывно, принято называть дифракцией волн. (Когда источников мало, напр. два, то результат их совместного действия обычно называют интерференцией, а если источников много, то чаще говорят о дифракции .)

Дифракцией называется любое отклонение распространения волн вблизи препятствий от законов геометрической оптики.

В геометрической оптике пользуются понятием светового луча - узкого пучка света, распространяющегося прямолинейно. Прямолинейность распространения света объясняется теорией Ньютона и подтверждается наличием тени позади непрозрачного источника, находящегося на пути света от точечного источника. Но - противоречие с волновой теорией, т.к. по принципу Гюйгенса каждую точку поля волны можно рассматривать как источник вторичных волн, распространяющихся по всем направлениям, в том числе и в область геометрической тени препятствия (волны должны огибать препятствия). Как может возникать тень? Теория Гюйгенса не могла дать ответа. Но теория Ньютона не могла объяснить явление интерференции и нарушение закона прямолинейного распространения света при прохождении света сквозь достаточно узкие щели и отверстия, а так же при освещении небольших непрозрачных препятствий.

В этих случаях на экране, установленном позади отверстий или препятствий, вместо четко разграниченных областей света и тени наблюдается система интерференционных максимумов и минимумов освещенности. Даже для препятствий и отверстий, имеющих большие размеры, нет резкого перехода от тени к свету. Всегда существует некоторая переходная область, в которой можно обнаружить слабые интерференционные максимумы и минимумы. Т. е. при прохождении волн вблизи границ непрозрачных или прозрачных тел, сквозь малые отверстия и т.д., волны отклоняются от прямолинейного распространения (законов геометрической оптики), и эти отклонения сопровождаются их интерференционными явлениями.


Свойства дифракции:

1) Дифракция волн - характерная особенность распространения волн независимо от их природы.

2) Волны могут попадать в область геометрической тени (огибать препятствия, проникать через не-большие отверстия в экранах…). На-пр., звук хорошо слышен за углом дома - звуковая волна его огибает. Дифракцией радиоволн вокруг поверхности Земли объясняется прием радиосигналов в диапазоне длинных и средних радиоволн за пределами прямой видимости излучающей антенны.

3) Дифракция волн зависит от соотношения между длиной волны и размером объекта, вызывающего дифракцию. В пределе при законы волновой оптики переходят в законы геометрической оптики отклонения от законов геометрической оптики при прочих равных условиях оказывается тем меньше, чем меньше длина волны. Поэтому легко наблюдать дифракцию звуковых, сейсмических и радиоволн, для которых ~ от м до км; гораздо труднее наблюдать без специальных устройств дифракцию света. Дифракция обнаруживается в тех случаях, когда размеры огибаемых препятствий соизмеримы с длиной волны .

Дифракция света была открыта в 17 в. итальянским физиком и астрономом Ф. Гримальди и была объяснена в начале 19 в. французским физиком О. Френелем , что стало одним из основных доказательств волновой природы света.

Явление дифракции можно объяснить с по-мощью принципа Гюйгенса-Френеля .

Принцип Гюйгенса: каждая точка, до кото-рой доходит волна в данный момент времени, служит центром вто-ричных (элементарных) волн. Огибающая этих волн дает положение волнового фронта в следующий момент времени.

Допущения:

1) волна является плоской;

2) на отверстие свет пада-ет нормально;

3) экран непрозрачный; ма-териал экрана считается в первом приближении не играющим роли;

4) волны распространяется в однородной изотропной среде;

5) обратные элементарные волны не должны приниматься во внимание.

Согласно Гюйгенсу, каждая точка выделяемого отверстием участка во-лнового фронта служит источником вто-ричных волн (в однородной изотропной среде они сферические). Построив огиба-ющую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия - наблюдается дифракция - свет является волновым процессом.

Выводы: принцип Гюйгенса

1) является геометрическим методом построения фронта волны;

2) решает за-дачу о направлении распространения во-лнового фронта;

3) дает объяснение распространения волн, согласующееся с законами геометрической оптики;

4) упрощает задачу определения влияния всего волнового процесса, совершающегося в некотором пространстве, на точку, сведя ее к вычислению действия на данную точку произвольно выбранной волновой поверхности.

5) но: справедлив при условии, что дли-на волны много меньше размеров волнового фронта;

6) не затрагивает вопро-са об амплитуде и интенсивности волн, распространяющихся по разным направлениям.

Принцип Гюйгенса дополнен Френелем

Принцип Гюйгенса-Френеля : волновое возмущение в некоторой точке Р можно рассматривать как результат интерференции ко-герентных вторичных вол, излучаемых каждым элементом некоторой волновой поверхности.

Замечание:

1) Результат интерференция вторичных элементарных волн зависит от направления.

2) Вторичные источники явл. фиктивными. Ими могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник. Обычно в ка-честве поверхности выбирают одну из волновых поверхностей, все фик-тивные источники действуют синфазно.

Допущения Френеля:

1) исключил возможность возникновения обратных вторичных волн;

2) предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии — такая же, как при отсутствии экрана.

Вывод: принцип Гюйгенса-Френеля служит приемом для расчетов направления распространения волн и распределения их интенсивности (амплитуды) по различным направлениям.

1) Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства. Амплитуда волны, прошедшей экран, определяется расчетом в точке наблюдения интерференции вторичных волн от вторичных источников, располагающихся в отверстии экрана.

2) Математически строгое решение дифракционных задач на основе волнового уравнения с граничными условиями, зависящими от характера препятствий, пред-ставляет исключительные трудности. Применяются приближенные методы решения, напр. метод зон Френеля.

3) Принцип Гюйгенса-Френеля в рамках волновой теории объяснил прямолинейное распространение света.

Принцип Гюйгенса - Френеля объясняет прямолинейность распространения света в свободной от препятствий однородной среде. Чтобы показать это, рассмотрим действие сферической световой волны от точечного источника S 0 в произвольной точке пространства P (рис. 4.1). Волновая поверхность такой волны симметрична относительно прямой S 0 P . Амплитуда искомой волны в точке P зависит от результата интерференции вторичных волн, излучаемых всеми участками dS поверхности S . Амплитуды и начальные фазы вторичных волн зависят от расположения соответствующих источников dS по отношению к точке P .


Френель предложил метод разбиения волновой поверхности на зоны (метод зон Френеля). По этому методу волновая поверхность разбивается на кольцевые зоны (рис. 4.1), построенные так, что расстояния от краев каждой зоны до точки P отличаются на l /2(l - длина световой волны). Если обозначить через b расстояние от вершины волновой поверхности 0 до точки P , то расстояния b + k (l /2) образуют границы всех зон, где k - номер зоны. Колебания, приходящие в точку P от аналогичных точек двух соседних зон, противоположны по фазе, так как разность хода от этих зон до точки P равна l /2. Поэтому при наложении эти колебания взаимно ослабляют друг друга, и результирующая амплитуда выразится суммой:

A = A 1 - A 2 + A 3 - A 4 + ... . (4.1)

Величина амплитуды A k зависит от площади DS k k -й зоны и угла a k между внешней нормалью к поверхности зоны в любой ее точке и прямой, направленной из этой точки в точку P .

Можно показать, что площадь DS k k -й зоны не зависит от номера зоны в условиях l << b . Таким образом, в рассматриваемом приближении площади всех зон Френеля равновелики и мощность излучения всех зон Френеля - вторичных источников - одинакова. Вместе с тем, с увеличением k возрастает угол a k между нормалью к поверхности и направлением на точку P , что приводит к уменьшению интенсивности излучения k -й зоны в данном направлении, т.е. к уменьшению амплитуды A k по сравнению с амплитудами предыдущих зон. Амплитуда A k уменьшается также вследствие увеличения расстояния от зоны до точки P с ростом k . В итоге

A 1 > A 2 > A 3 > A 4 > ... > A k > ...

Вследствие большого числа зон убывание A k носит монотонный характер и приближенно можно считать, что

. (4.2)

Переписав результирующую амплитуду (4.1) в виде

обнаруживаем, что, согласно (4.2) и с учетом малости амплитуды удаленных зон, все выражения в скобках равны нулю и уравнение (4.1) приводится к виду

A = A 1 / 2. (4.4)

Полученный результат означает, что колебания, вызываемые в точке P сферической волновой поверхностью, имеют амплитуду, даваемую половиной центральной зоны Френеля. Следовательно, свет от источника S 0 в точку P распространяется в пределах очень узкого прямого канала, т.е. прямолинейно. В результате явления интерференции уничтожается действие всех зон, кроме первой.



Дифракция Френеля от простейших преград

Действие световой волны в некоторой точке P сводится к действию половины центральной зоны Френеля в том случае, если волна безгранична, так как только тогда действия остальных зон взаимно компенсируются и можно пренебречь действием удаленных зон. При конечном участке волны условия дифракции существенно отличаются от описанных выше. Однако и здесь применение метода Френеля позволяет предвидеть и объяснить особенности распространения световых волн.

Рассмотрим несколько примеров дифракции Френеля от простых преград.



Дифракция на круглом отверстии . Пусть волна от источника S 0 встречает на пути непрозрачный экран с круглым отверстием BC (рис. 4.2). Результат дифракции наблюдается на экране Э , параллельном плоскости отверстия. Легко определить дифракционный эффект в точке P экрана, расположенной против центра отверстия. Для этого достаточно построить на открытой части фронта волны BC зоны Френеля, соответствующие точке P . Если в отверстии BC укладывается k зон Френеля, то амплитуда A результирующих колебаний в точке P зависит от четности и нечетности числа k , а так же от того, насколько велико абсолютное значение этого числа. Действительно, из формулы (4.1) вытекает, что в точке P амплитуда суммарного колебания

(первое уравнение системы при нечетном k , второе - при четном) или, учитывая формулу (4.2) и тот факт, что амплитуды двух соседних зон мало отличаются по величине и можно считать A k-1 приблизительно равным A k , имеем

где плюс соответствует нечетному числу зон k , укладывающихся на отверстии, а минус – четному.

При небольшом числе зон k амплитуда A k мало отличается от A 1 . Тогда результат дифракции в точке P зависит от четности k : при нечетном k наблюдается максимум дифракции, при четном – минимум. Минимумы и максимумы будут тем больше отличаться друг от друга, чем ближе A k к A 1 т.е. чем меньше k . Если отверстие открывает только центральную зону Френеля, амплитуда в точке P будет равна A 1 , она в два раза больше той, которая имеет место при полностью открытом волновом фронте (4.4), а интенсивность в этом случае в четыре раза больше, чем при отсутствии преграды. Напротив, при неограниченном увеличении числа зон k , амплитуда A k стремится к нулю (A k << A 1 ) и выражение (4.5) превращается в (4.4). Свет в этом случае фактически распространяется так же, как и при отсутствии экрана с отверстием, т.е. прямолинейно. Отсюда вытекает вывод о том, что следствия из волновых представлений и представлений о прямолинейном распространении света начинают совпадать тогда, когда число открытых зон велико.

Колебания от четных и нечетных зон Френеля взаимно ослабляют друг друга. Это приводит иногда к увеличению интенсивности света при закрывании непрозрачным экраном части волнового фронта, как это было в случае преграды с круглым отверстием, на котором укладывается только одна зона Френеля. Интенсивность света можно увеличить во много раз, если изготовить сложный экран - так называемую зонную пластинку (стеклянная пластинка с непрозрачным покрытием), которая закрывает все четные (или нечетные) зоны Френеля. Зонная пластинка действует подобно собирательной линзе. Действительно, если зонная пластинка закрывает все четные зоны, а число зон k = 2m , то из (4.1) следует

A = A 1 + A 3 +...+ A 2m-1

или при небольшом числе зон, когда A 2m-1 приблизительно равно A , A = mA 1 , т.е. интенсивность света в точке P в (2m ) 2 раз больше, чем при беспрепятственном распространении света от источника в точку P , при этом A = A 1 / 2, а интенсивность соот­вет­ствен­но / 4 .

Дифракция на круглом диске. При размещении между источником S 0 и экраном круглого непрозрачного дис­ка СВ закрывается одна или несколько пер­вых зон Френеля (рис. 4.3). Если диск закроет k зон Френеля, то в точке P амплитуда суммарной волны

и, так как выражения в скобках можно принять равными нулю, аналогично (4.3) получаем

A = A k +1 / 2. (4.6)

Таким образом, в случае круглого непрозрачного диска в центре картины (точка P ) при любом (как четном, так и нечетном) k получается светлое пятно.

Если диск закрывает лишь часть первой зоны Френеля, тень на экране отсутствует, освещенность во всех точках такая же, как и при отсутствии преграды. С ростом радиуса диска первая открытая зона отдаляется от точки P и увеличивается угол a между нормалью к поверхности этой зоны в какой-либо точке и направлением излучения в сторону точки P (см. принцип Гюйгенса - Френеля). Поэтому интенсивность центрального максимума ослабевает при увеличении размеров диска ( A k+1 << A 1 ). Если диск закрывает много зон Френеля, интенсивность света в области геометрической тени практически всюду равна нулю и лишь вблизи границ наблюдения имеет место слабая интерференционная картина. В этом случае можно пренебречь явлением дифракции и пользоваться законом прямолинейного распространения света.

Для нахождения результата интерференции вторичных волн Френель предложил метод разбиения волнового фронта на зоны, называемые зонами Френеля. 

Предположим, что источник света S (рис. 17.18) точечный и монохроматический, а среда, в которой распространяется свет, изотропная. Волновой фронт в произвольный момент времени будет иметь форму сферы радиусом \(~r=ct.\) Каждая точка на этой сферической поверхности является вторичным источником волн. Колебания во всех точках волновой поверхности происходят с одинаковой часто-той и в одинаковой фазе. Следовательно, все эти вторичные источники когерентны. Для нахождения амплитуды колебаний в точке М необходимо произвести сложение когерентных колебаний от всех вторичных источников на волновой поверхности.

Френель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до точки М отличались на \(\frac{\lambda}{2},\) т.е. \(P_1M - P_0M = P_2M - P_1M = \frac{\lambda}{2}.\)

Так как разность хода от двух соседних зон равна \(\frac{\lambda}{2},\) то колебания от них приходят в точку М в противоположных фазах и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М будет равна

\(A = A_1 - A_2 + A_3 - A_4 + \ldots \pm A_m,\) (17.5)

где \(A_1, A_2, \ldots , A_m,\) - амплитуды колебаний, возбуждаемых 1-й, 2-й, .., m-й зонами.

Френель предположил также, что действие отдельных зон в точке М зависит от направления распростронения (от угла \(\varphi_m\) (рис. 17.19) между нормалью \(~\vec n \) к поверхности зоны и направлением на точку М). С увеличением \(\varphi_m\) действие зон убывает и при углах \(\varphi_m \ge 90^\circ\) амплитуда возбуждаемых вторичных волн равна 0. Кроме того, интенсивность излучения в направлении точки М уменьшается с ростом и вследствие увеличения расстояния от зоны до точки М Учитывая оба фактора, можно записать, что

\(A_1 >A_2 >A_3 > \cdots\)

1. Объяснение прямолинейности распространения света.

Общее число зон Френеля, вмещающихся на полусфере радиусом SP 0 , равным расстоянию от источника света S до фронта волны, очень велико. Поэтому в первом приближении можно считать, что амплитуда колебаний А m от некоторой m-й зоны равна среднему арифметическому от амплитуд, примыкающих к ней зон, т.е.

\(A_m = \frac{ A_{m-1} + A_{m+1} }{2}.\)

Тогда выражение (17.5) можно записать в виде

\(A = \frac{A_1}{2} + \Bigr(\frac{A_1}{2} - A_2 + \frac{A_3}{2} \Bigl) + \Bigr(\frac{A_3}{2} - A_4 + \frac{A_5}{2} \Bigl) + \ldots \pm \frac{A_m}{2}.\)

Так как выражения, стоящие в скобках, равны 0, а \(\frac{A_m}{2}\) ничтожно мала, то

\(A = \frac{A_1}{2} \pm \frac{A_m}{2} \approx \frac{A_1}{2}.\) (17.6)

Таким образом, амплитуда колебаний, создаваемая в произвольной точке М сферической волновой поверхностью, равна половине амплитуды, создаваемой одной центральной зоной. Из рисунка 17.19 радиус г m-ной зоны зоны Френеля \(r_m = \sqrt{\Bigr(b + \frac{m \lambda}{2} \Bigl)^2 - (b + h_m)^2}.\) Так как \(~h_m \ll b\) и длина волны света мала, то \(r_m \approx \sqrt{\Bigr(b + \frac{m \lambda}{2} \Bigl)^2 - b^2} = \sqrt{mb \lambda + \frac{m^2 \lambda^2}{4}} \approx \sqrt{mb\lambda}.\) Значит, радиус первой Учитывая, что \(~\lambda\) длина волны может иметь значения от 300 до 860 нм, получим \(~r_1 \ll b.\) Следовательно, распространение света от S к М происходит так, будто световой поток распространяется внутри очень узкого канала вдоль SM, диаметр которого меньше радиуса первой зоны Френеля, т.е. прямолинейно.

2. Дифракция на круглом отверстии.

Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути экран с круглым отверстием (рис. 17.20). Вид дифракционной картины зависит от числа зон Френеля, укладывающихся в отверстии. Согласно (17.5) и (17.6) в точке B амплитуда результирующего колебания 

\(A = \frac{A_1}{2} \pm \frac{A_m}{2},\)

где знак "плюс" соответствует нечетным m, а знак "минус" - четным m.

Когда отверстие открывает нечетное число зон Френеля, то амплитуда колебаний в точке В будет больше, чем при отсутствии экрана. Если в отверстии укладывается одна зона Френеля, то в точке В амплитуда \(~A = A_1\) т.е. вдвое больше, чем в отсутствие непрозрачного экрана. Если в отверстии укладываются две зоны Френеля, то их действие в точке В практически уничтожает друг друга из-за интерференции. Таким образом, дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся темных и светлых колец с центрами в точке В (если m - четное, то в центре темное кольцо, если m - нечетное - светлое кольцо), причем интенсивность максимумов убывает с расстоянием от центра картины.

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 514-517.

Дифракция Волн - явление огибания волнами препятствий и проникновение их в область геометрической тени. Явление дифракции можно качественно объяснить применением принципа Гюйгенса к распространению волн в среде при наличии преград.

Рассмотрим плоскую преграду ab (рис. 69). На рисунке показаны построенные по принципу Гюйгенса волновые поверхности позади преграды. Видно, что волны действи-

тельно загибаются в область тени. Но принцип Гюйгенса ничего не говорит об амплитуде колебаний в волне за преградой. Ее можно найти, рассматривая интерференцию волн, приходящих в область геометрической тени. Распределение амплитуд колебаний позади преграды называетсядифракционной картиной . Полный вид дифракционной картины позади преграды зависит от соотношения между длиной волны Л, размером преграды d и расстоянием L от преграды до точки наблюдения. Если длина волны Л больше размеров преграды d, то волна его почти не замечает. Если длина волны Л одного порядка с размером преграды d, то дифракция проявляется даже на очень малом расстоянии L, и волны за преградой лишь чуть-чуть слабее, чем в свободном волновом поле с обеих сторон. Если, наконец, длины волн много меньше размеров препятствия, то дифракционную картину можно наблюдать только на большом расстоянии от преграды, величина которой зависит от Л и d.

Принцип Гюйгенса - Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка фронта (поверхности, достигнутой волной) является вторичным (т.е. новым) источником сферических волн. Огибающая фронтов волн всех вторичных источников становится фронтом волны в следующий момент времени.

Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса - Френеля и дифракционные явления.



Принцип Гюйгенса - Френеля формулируется следующим образом:

Густав Кирхгоф придал принципу Гюйгенса строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа.

Фронтом волны точечного источника в однородном изотропном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова.

Дальнейшим обобщением и развитием принципа Гюйгенса является формулировка через интегралы по траекториям, служащая основой современной квантовой механики.

Метод зон Френеля Френель предложил метод разбиения фронта волны на кольцевые зоны, который впоследствии получил название метод зон Френеля .

Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP.

Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на l/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.

Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна l/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.

Из геометрических соображениях следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответствующая ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ