Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Неравенство – обратная сторона равенства. Материал данной статьи дает определение неравенства и начальную информацию о нем в разрезе математики.

Понятие неравенства, как и понятие равенства, связывается с моментом сравнения двух объектов. В то время как равенство означает «одинаковы», то неравенство, напротив, свидетельствует о различиях объектов, которые сравниваются. К примеру, и - одинаковые объекты или равные. и - объекты, отличающиеся друг от друга или неравные.

Неравенство объектов определяется по смысловой нагрузке такими словами, как выше – ниже (неравенство по признаку высоты); толще – тоньше (неравенство по признаку толщины); длиннее – короче (неравенство по признаку длины) и так далее.

Возможно рассуждать как о равенстве-неравенстве объектов в целом, так и о сравнении их отдельных характеристик. Допустим, заданы два объекта: и . Без сомнений, эти объекты не являются одинаковыми, т.е. в целом они не равны: по признаку размера и цвета. Но, в то же время, мы можем утверждать, что равны их формы – оба объекта являются кругами.

В контексте математики смысловая нагрузка неравенства сохраняется. Однако, в этом случае речь идет о неравенстве математических объектов: чисел, значений выражений, значений величин (длина, площадь и т.д.), векторов, фигур и т.п.

Не равно, больше, меньше

В зависимости от целей поставленной задачи ценным можем являться уже просто факт выяснения неравенства объектов, но обычно вслед за установлением факта неравенства происходит выяснение того, какая все же величина больше, а какая – меньше.

Значение слов «больше» и «меньше» нам интуитивно знакомо с самого начала нашей жизни. Очевидным является навык определять превосходство объекта по размеру, количеству и т.д. Но в конечном счете любое сравнение приводит нас к сравнению чисел, которые определяют некоторые характеристики сравниваемых объектов. По сути, мы выясняем, какое число больше, а какое – меньше.

Простой пример:

Пример 1

Утром температура воздуха составила 10 градусов по Цельсию; в два часа дня этот показатель составил 15 градусов. На основе сравнения натуральных чисел мы можем утверждать, что значение температуры утром было меньше, чем ее значение в два часа дня (или в два часа дня температура увеличилась, стала больше, чем была температура утром).

Запись неравенств с помощью знаков

Существуют общепринятые обозначения для записи неравенств:

Определение 1

  • знак «не равно», представляющий собой перечеркнутый знак «равно»: ≠ . Этот знак располагается между неравными объектами. Например: 5 ≠ 10 пять не равно десяти;
  • знак «больше»: > и знак «меньше»: < . Первый записывается между большим и меньшим объектами; второй между меньшим и большим. Например, запись о сравнении отрезков вида | A B | > | C D | говорит о том, что отрезок A B больше отрезка С D ;
  • знак «больше или равно»: ≥ и знак «меньше или равно»: ≤ .

Подробнее их смысл разберем ниже. Дадим определение неравенств по виду их записи.

Определение 2

Неравенства – алгебраические выражения, имеющие смысл и записанные при помощи знаков ≠ , > , < , ≤ , ≥ .

Строгие и нестрогие неравенства

Определение 3

Знаки строгих неравенств – это знаки «больше» и «меньше»: > и < Неравенства, составленные с их помощью – строгие неравенства.

Знаки нестрогих неравенств – это знаки «больше или равно» и «меньше или равно»: ≥ и ≤ . Неравенства, составленные с их помощью – нестрогие неравенства.

Как применяются строгие неравенства, мы разобрали выше. Зачем же используются нестрогие неравенства? В практике такими неравенствами возможно задавать случаи, описываемые словами «не больше» и «не меньше». Фраза «не больше» означает меньше или столько же – этому уровню сравнения соответствует знак «меньше или равно» ≤ . В свою очередь, «не меньше» значит – столько же или больше, а это знак «больше или равно» ≥ . Таким образом, нестрогие неравенства, в отличие от строгих, дают возможность равенства объектов.

Верные и неверные неравенства

Определение 4

Верное неравенство – то неравенство, которое соответствует указанному выше смыслу неравенства. В ином случае оно является неверным .

Приведем простые примеры для наглядности:

Пример 2

Неравенство 5 ≠ 5 является неверным, поскольку на самом деле числа 5 и 5 равны.

Или такое сравнение:

Пример 3

Допустим S – площадь некой фигуры, в этом случае S < - 4 является верным неравенством, поскольку площадь всегда выражена неотрицательным числом.

Аналогичными по смыслу термину «верное неравенство» являются фразы «справедливое неравенство», «имеет место неравенство» и т.д.

Свойства неравенств

Опишем свойства неравенств. Очевидный факт, что объект никак не может быть неравным самому себе, и это есть первое свойство неравенства. Второе свойство звучит так: если первый объект не равен второму, то и второй не равен первому.

Опишем свойства, соответствующие знакам «больше» или «меньше»:

Определение 5

  • антирефлективность . Это свойство можно выразить так: для любого объекта k неравенства k > k и k < k неверны;
  • антисимметричность . Данное свойство говорит о том, что, если первый объект больше или меньше второго, то второй объект, соответственно, меньше или больше первого. Запишем: если m > n , то n < m . Или: если m < n , то n > m ;
  • транзитивность . В буквенной записи указанное свойство будет выглядеть так: если задано, что a < b и b < с, то a < c . Наоборот: a > b и b > с, а значит a > c . Данное свойство интуитивно понятно и естественно: если первый объект больше второго, а второй – больше третьего, то становится ясно, что первый объект тем более больше третьего.

Знакам нестрогих неравенств также присущи некоторые свойства:

Определение 6

  • рефлексивность : a ≥ a и a ≤ a (сюда же включается случай, когда a = a);
  • антисимметричность : если a ≤ b , то b ≥ a . Если же a ≥ b , то b ≤ a ;
  • транзитивность : если a ≤ b и b ≤ c , то очевидно, что a ≤ c . И также: если а ≥ b , а b ≥ с, то а ≥ с.

Двойные, тройные и т.п. неравенства

Свойство транзитивности дает возможность записывать двойные, тройные и так далее неравенства, по сути являющиеся цепочками неравенств. К примеру: двойное неравенство – e > f > g или тройное неравенство k 1 ≤ k 2 ≤ k 3 ≤ k 4 .

Отметим, что удобным бывает записывать неравенство как цепочки, включающие в себя различные знаки: равно, не равно и знаки строгих и нестрогих неравенств. Например, x = 2 < y ≤ z < 15 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Сегодня мы узнаем, как использовать метод интервалов для решения нестрогих неравенств. Во многих учебниках нестрогие неравенства определяются следующим образом:

Нестрогое неравенство - это неравенство вида f (x ) ≥ 0 или f (x ) ≤ 0, которое равносильно совокупности строгого неравенства и уравнения:

В переводе на русский язык это значит, что нестрогое неравенство f (x ) ≥ 0 - это объединение классического уравнения f (x ) = 0 и строгого неравенства f (x ) > 0. Другими словами, теперь нас интересуют не только положительные и отрицательные области на прямой, но и точки, где функция равна нулю .

Отрезки и интервалы: в чем разница?

Прежде чем решать нестрогие неравенства, давайте вспомним, чем интервал отличается от отрезка:

  • Интервал - это часть прямой, ограниченная двумя точками. Но эти точки не принадлежат интервалу. Интервал обозначается круглыми скобками: (1; 5), (−7; 3), (11; 25) и т.д.;
  • Отрезок - это тоже часть прямой, ограниченная двумя точками. Однако эти точки тоже являются частью отрезка. Отрезки обозначаются квадратными скобками: , [−7; 3], и т.д.

Чтобы не путать интервалы с отрезками, для них разработаны специальные обозначения: интервал всегда обозначается выколотыми точками, а отрезок - закрашенными. Например:

На этом рисунке отмечен отрезок и интервал (9; 11). Обратите внимание: концы отрезка отмечены закрашенными точками, а сам отрезок обозначается квадратными скобками. С интервалом все иначе: его концы выколоты, а скобки - круглые.

Метод интервалов для нестрогих неравенств

К чему была вся эта лирика про отрезки и интервалы? Очень просто: для решения нестрогих неравенств все интервалы заменяются отрезками - и получится ответ. По существу, мы просто добавляем к ответу, полученному методом интервалов, границы этих самых интервалов. Сравните два неравенства:

Задача. Решите строгое неравенство:

(x − 5)(x + 3) > 0

Решаем методом интервалов. Приравниваем левую часть неравенства к нулю:

(x − 5)(x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;

Справа стоит знак плюс. В этом легко в этом убедиться, подставив миллиард в функцию:

f (x ) = (x − 5)(x + 3)

Осталось выписать ответ. Поскольку нас интересуют положительные интервалы, имеем:

x ∈ (−∞; −3) ∪ (5; +∞)

Задача. Решите нестрогое неравенство:

(x − 5)(x + 3) ≥ 0

Начало такое же, как и для строгих неравенств: работает метод интервалов. Приравниваем левую часть неравенства к нулю:

(x − 5)(x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;

Отмечаем полученные корни на координатной оси:

В предыдущей задаче мы уже выяснили, что справа стоит знак плюс. Напомню, в этом легко убедиться, подставив миллиард в функцию:

f (x ) = (x − 5)(x + 3)

Осталось записать ответ. Поскольку неравенство нестрогое, а нас интересуют положительные значения, имеем:

x ∈ (−∞; −3] ∪ ∪ ∪ , а (−∞; −3] ∪

Задача. Решите неравенство:

x (12 − 2x )(3x + 9) ≥ 0

x (12 − 2x )(3x + 9) = 0;
x = 0;
12 − 2x = 0 ⇒ 2x = 12 ⇒ x = 6;
3x + 9 = 0 ⇒ 3x = −9 ⇒ x = −3.

x ≥ 6 ⇒ f (x ) = x (12 − 2x )(3x + 9) → (+) · (−) · (+) = (−) < 0;
x ∈ (−∞ −3] ∪ .

Что нужно знать о значках неравенств? Неравенства со значком больше (> ), или меньше (< ) называются строгими. Со значками больше или равно (), меньше или равно () называются нестрогими. Значок не равно () стоит особняком, но решать примеры с таким значком тоже приходится постоянно. И мы порешаем.)

Сам значок не оказывает особого влияния на процесс решения. А вот в конце решения, при выборе окончательного ответа, смысл значка проявляется в полную силу! Что мы и увидим ниже, на примерах. Есть там свои приколы...

Неравенства, как и равенства, бывают верные и неверные. Здесь всё просто, без фокусов. Скажем, 5 > 2 - верное неравенство. 5 < 2 - неверное.

Такая подготовка работает для неравенств любого вида и проста до ужаса.) Нужно, всего лишь, правильно выполнять два (всего два!) элементарных действия. Эти действия знакомы всем. Но, что характерно, косяки в этих действиях - и есть основная ошибка в решении неравенств, да... Стало быть, надо повторить эти действия. Называются эти действия вот как:

Тождественные преобразования неравенств.

Тождественные преобразования неравенств очень похожи на тождественные преобразования уравнений. Собственно, в этом и есть основная проблема. Отличия проскакивают мимо головы и... приехали.) Поэтому я особо выделю эти отличия. Итак, первое тождественное преобразование неравенств:

1. К обеим частям неравенства можно прибавить (отнять) одно и то же число, или выражение. Любое. Знак неравенства от этого не изменится.

На практике это правило применяется как перенос членов из левой части неравенства в правую (и наоборот) со сменой знака. Со сменой знака члена, а не неравенства! Правило один в один совпадает с правилом для уравнений. А вот следующие тождественные преобразования в неравенствах существенно отличается от таковых в уравнениях. Поэтому я выделяю их красным цветом:

2. Обе части неравенства можно умножить (разделить) на одно и то же положительное число. На любое положительное не изменится.

3. Обе части неравенства можно умножить (разделить) на одно и то же отрицательное число. На любое отрицательное число. Знак неравенства от этого изменится на противоположный.

Вы помните (надеюсь...), что уравнение можно умножать/делить на что попало. И на любое число, и на выражение с иксом. Лишь бы не на ноль. Ему, уравнению, от этого ни жарко, ни холодно.) Не меняется оно. А вот неравенства более чувствительны к умножению/делению.

Наглядный пример на долгую память. Напишем неравенство, не вызывающее сомнений:

5 > 2

Умножим обе части на +3, получим:

15 > 6

Возражения есть? Возражений нет.) А если умножим обе части исходного неравенства на -3, получим:

15 > -6

А это уже откровенная ложь.) Полное враньё! Обман народа! Но стоит изменить знак неравенства на противоположный, как всё становится на свои места:

15 < -6

Про враньё и обман - это я не просто так ругаюсь.) "Забыл сменить знак неравенства..." - это главная ошибка в решении неравенств. Это пустяковое и несложное правило стольких людей ушибло! Которые забыли...) Вот и ругаюсь. Может, запомнится...)

Особо внимательные заметят, что неравенство нельзя умножать на выражение с иксом. Респект внимательным!) А почему нельзя? Ответ простой. Мы же не знаем знак этого выражения с иксом. Оно может быть положительное, отрицательное... Стало быть, мы не знаем, какой знак неравенства ставить после умножения. Менять его, или нет? Неизвестно. Разумеется, это ограничение (запрет умножения/деления неравенства на выражение с иксом) можно обойти. Если очень надо будет. Но это тема для других уроков.

Вот и все тождественные преобразования неравенств. Ещё раз напомню, что они работают для любых неравенств. А теперь можно переходить к конкретным видам.

Линейные неравенства. Решение, примеры.

Линейными неравенствами называются неравенства, в которых икс находится в первой степени и нет деления на икс. Типа:

х+3 > 5х-5

Как решаются такие неравенства? Они решаются очень просто! А именно: с помощью сводим самое замороченное линейное неравенство прямо к ответу. Вот и всё решение. Главные моменты решения я буду выделять. Во избежание дурацких ошибок.)

Решаем это неравенство:

х+3 > 5х-5

Решаем точно так же, как и линейное уравнение. С единственным отличием:

Внимательно следим за знаком неравенства!

Первый шаг самый обычный. С иксами - влево, без иксов - вправо... Это первое тождественное преобразование, простое и безотказное.) Только знаки у переносимых членов не забываем менять.

Знак неравенства сохраняется:

х-5х > -5-3

Приводим подобные.

Знак неравенства сохраняется:

> -8

Осталось применить последнее тождественное преобразование: разделить обе части на -4.

Делим на отрицательное число.

Знак неравенства изменится на противоположный:

х < 2

Это ответ.

Так решаются все линейные неравенства.

Внимание! Точка 2 рисуется белой, т.е. незакрашенной. Пустой внутри. Это означает, что она в ответ не входит! Я её специально такой здоровой нарисовал. Такая точка (пустая, а не здоровая!)) в математике называется выколотой точкой.

Остальные числа на оси отмечать можно, но не нужно. Посторонние числа, не относящиеся к нашему неравенству, могут и запутать, да... Нужно только помнить, что увеличение чисел идёт по стрелке, т.е. числа 3, 4, 5, и т.д. находятся правее двойки, а числа 1, 0, -1 и т.д. - левее.

Неравенство х < 2 - строгое. Икс строго меньше двух. Если возникают сомнения, проверка простая. Подставляем сомнительное число в неравенство и размышляем: "Два меньше двух? Нет, конечно!" Именно так. Неравенство 2 < 2 неверное. Не годится двойка в ответ.

А единичка годится? Конечно. Меньше же... И ноль годится, и -17, и 0,34... Да все числа, которые меньше двух - годятся! И даже 1,9999.... Хоть чуть чуть, да меньше!

Вот и отметим все эти числа на числовой оси. Как? Тут бывают варианты. Вариант первый - штриховка. Наводим мышку на рисунок (или касаемся картинки на планшете) и видим, что заштрихована область всех иксов, подходящих под условие х < 2 . Вот и всё.

Второй вариант рассмотрим на втором примере:

х ≥ -0,5

Рисуем ось, отмечаем число -0,5. Вот так:

Заметили разницу?) Ну да, трудно не заметить... Эта точка - чёрная! Закрашенная. Это означает, что -0,5 входит в ответ. Здесь, кстати, проверка и смутить может кого-нибудь. Подставляем:

-0,5 ≥ -0,5

Как так? -0,5 никак не больше -0,5! А значок больше имеется...

Ничего страшного. В нестрогом неравенстве годится всё, что подходит под значок. И равно годится, и больше годится. Следовательно, -0,5 в ответ включается.

Итак, -0,5 мы отметили на оси, осталось ещё отметить все числа, которые больше -0,5. На этот раз я отмечаю область подходящих значений икса дужкой (от слова дуга ), а не штриховкой. Наводим курсор на рисунок и видим эту дужку.

Особой разницы между штриховкой и дужками нет. Делайте, как учитель сказал. Если учителя нет - рисуйте дужки. В более сложных заданиях штриховка менее наглядна. Запутаться можно.

Вот так рисуются линейные неравенства на оси. Переходим к следующей особенности неравенств.

Запись ответа для неравенств.

В уравнениях было хорошо.) Нашли икс, да и записали ответ, например: х=3. В неравенствах существуют две формы записи ответов. Одна - в виде окончательного неравенства. Хороша для простых случаев. Например:

х < 2.

Это полноценный ответ.

Иногда требуется записать то же самое, но в другой форме, через числовые промежутки. Тогда запись начинает выглядеть очень научно):

х ∈ (-∞; 2)

Под значком скрывается слово "принадлежит".

Читается запись так: икс принадлежит промежутку от минус бесконечности до двух не включая . Вполне логично. Икс может быть любым числом из всех возможных чисел от минус бесконечности до двух. Двойкой икс быть не может, о чём нам и говорит слово "не включая".

А где это в ответе видно, что "не включая" ? Этот факт отмечается в ответе круглой скобкой сразу после двойки. Если бы двойка включалась, скобка была бы квадратной. Вот такой: ]. В следующем примере такая скобка используется.

Запишем ответ: х ≥ -0,5 через промежутки:

х ∈ [-0,5; +∞)

Читается: икс принадлежит промежутку от минус 0,5, включая, до плюс бесконечности.

Бесконечность не может включаться никогда. Это не число, это символ. Поэтому в подобных записях бесконечность всегда соседствует с круглой скобкой.

Такая форма записи удобна для сложных ответов, состоящих из нескольких промежутков. Но - именно для окончательных ответов. В промежуточных результатах, где предполагается дальнейшее решение, лучше использовать обычную форму, в виде простого неравенства. Мы с этим в соответствующих темах разберёмся.

Популярные задания с неравенствами.

Сами по себе линейные неравенства просты. Поэтому, частенько, задания усложняются. Так, чтобы подумать надо было. Это, если с непривычки, не очень приятно.) Но полезно. Покажу примеры таких заданий. Не для того, чтобы вы их выучили, это лишнее. А для того, чтобы не боялись при встрече с подобными примерами. Чуть подумать - и всё просто!)

1. Найдите любые два решения неравенства 3х - 3 < 0

Если не очень понятно, что делать, вспоминаем главное правило математики:

Не знаешь, что нужно - делай, что можно!)

х < 1

И что? Да ничего особенного. Что нас просят? Нас просят найти два конкретных числа, которые являются решением неравенства. Т.е. подходят под ответ. Два любых числа. Собственно, это и смущает.) Подходит парочка 0 и 0,5. Парочка -3 и -8. Да этих парочек бесконечное множество! Какой ответ правильный?!

Отвечаю: все! Любая парочка чисел, каждое из которых меньше единицы, будет правильным ответом. Пишите, какую хотите. Едем дальше.

2. Решить неравенство:

4х - 3 0

Задания в таком виде встречаются редко. Но, как вспомогательные неравенства, при нахождении ОДЗ, например, или при нахождении области определения функции, - встречаются сплошь и рядом. Такое линейное неравенство можно решать как обычное линейное уравнение. Только везде, кроме знака "=" (равно ) ставить знак "" (не равно ). Так к ответу и подойдёте, со знаком неравенства:

х 0,75

В более сложных примерах, лучше поступать по-другому. Сделать из неравенства равенство. Вот так:

4х - 3 = 0

Спокойно решить его, как учили, и получить ответ:

х = 0,75

Главное, в самом конце, при записи окончательного ответа, не забыть, что мы нашли икс, который даёт равенство. А нам нужно - неравенство. Стало быть, этот икс нам как раз и не нужен.) И надо записать его с правильным значком:

х 0,75

При таком подходе получается меньше ошибок. У тех, кто уравнения на автомате решает. А тем, кто уравнения не решает, неравенства, собственно, ни к чему...) Ещё пример популярного задания:

3. Найти наименьшее целое решение неравенства:

3(х - 1) < 5х + 9

Сначала просто решаем неравенство. Ракрываем скобки, переносим, приводим подобные... Получаем:

х > - 6

Не так получилось!? А за знаками следили!? И за знаками членов, и за знаком неравенства...

Опять соображаем. Нам нужно найти конкретное число, подходящее и под ответ, и под условие "наименьшее целое". Если сразу не осеняет, можно просто взять любое число и прикинуть. Два больше минус шести? Конечно! А есть подходящее число поменьше? Разумеется. Например, ноль больше -6. А ещё меньше? Нам же самое маленькое из возможных надо! Минус три больше минус шести! Уже можно уловить закономерность и перестать тупо перебирать числа, правда?)

Берём число поближе к -6. Например, -5. Ответ выполняется, -5 > - 6. Можно найти ещё число, меньше -5, но больше -6? Можно, например -5,5... Стоп! Нам сказано целое решение! Не катит -5,5! А минус шесть? Э-э-э! Неравенство строгое, минус 6 никак не меньше минус 6!

Стало быть, правильный ответ: -5.

Надеюсь, с выбором значения из общего решения всё понятно. Ещё пример:

4. Решить неравенство:

7 < 3х+1 < 13

Во как! Такое выражение называется тройным неравенством. Строго говоря, это сокращённая запись системы неравенств. Но решать такие тройные неравенства всё равно приходится в некоторых заданиях... Оно решается безо всяких систем. По тем же тождественным преобразованиям.

Надо упростить, довести это неравенство до чистого икса. Но... Что куда переносить!? Вот тут самое время вспомнить, что перенос влево-вправо, это сокращённая форма первого тождественного преобразования.

А полная форма звучит вот как: К обеим частям уравнения (неравенства) можно прибавить/отнять любое число, или выражение.

Здесь три части. Вот и будем применять тождественные преобразования ко всем трём частям!

Итак, избавимся от единички в средней части неравенства. Отнимем от всей средней части единичку. Чтобы неравенство не изменилось, отнимем единичку и от оставшихся двух частей. Вот так:

7 -1< 3х+1-1< 13-1

6 < < 12

Уже лучше, правда?) Осталось разделить все три части на тройку:

2 < х < 4

Вот и всё. Это ответ. Икс может любым числом от двойки (не включая) до четвёрки (не включая). Этот ответ тоже записывается через промежутки, такие записи будут в квадратных неравенствах. Там они - самое обычное дело.

В конце урока повторю самое главное. Успех в решении линейных неравенств зависит от умения преобразовывать и упрощать линейные уравнения. Если при этом следить за знаком неравенства, проблем не будет. Чего я вам и желаю. Отсутствия проблем.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.


Задача 1. Турист прошёл в первый день более 20 км, а во второй более 25 км, значит, можно утверждать, что за два дня турист прошёл более 45 км. Задача 2. Длина прямоугольника меньше 13 см, а ширина меньше 5 см, значит, можно утверждать, что площадь этого прямоугольника меньше 65 см² При решении различных задач часто приходится складывать или умножать неравенства, т. е. складывать или умножать отдельно левые и правые части неравенств.


B и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 " title="При рассмотрении этих примеров надо применять следующие теоремы о сложении и умножении неравенств: Теорема 1. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 " class="link_thumb"> 3 При рассмотрении этих примеров надо применять следующие теоремы о сложении и умножении неравенств: Теорема 1. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 1,2 6,5 1,8 b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 "> b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 1,2 6,5 1,8 b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 " title="При рассмотрении этих примеров надо применять следующие теоремы о сложении и умножении неравенств: Теорема 1. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 "> title="При рассмотрении этих примеров надо применять следующие теоремы о сложении и умножении неравенств: Теорема 1. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 ">


B, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 4 Теорема 2. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: а > b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 b, то а² > b². а > b а² > b² b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 b, то а² > b². а > b а² > b²"> b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 title="Теорема 2. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: а > b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8


B и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 5 Аналогично, если а, b положительные числа, а > b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 2 и 0 > 5 4 > 7 b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 2 и 0 > 5 4 > 7"> b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 title="Аналогично, если а, b положительные числа, а > b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5


2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не" title="Блиц-опрос.Выполнить умножение неравенств: 1) 12 > 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не" class="link_thumb"> 6 Блиц-опрос.Выполнить умножение неравенств: 1) 12 > 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение невозможно 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не"> 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение невозможно"> 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не" title="Блиц-опрос.Выполнить умножение неравенств: 1) 12 > 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не"> title="Блиц-опрос.Выполнить умножение неравенств: 1) 12 > 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не">


4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше" title="Задача 1. Доказать, что если а > 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше" class="link_thumb"> 7 Задача 1. Доказать, что если а > 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше 10 ед. Каким числом квадратных единиц может быть площадь S этого прямоугольника? Решение. По условию 2 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше"> 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше 10 ед. Каким числом квадратных единиц может быть площадь S этого прямоугольника? Решение. По условию 2 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше" title="Задача 1. Доказать, что если а > 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше"> title="Задача 1. Доказать, что если а > 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше">


(больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и 8 Неравенства со знаками > (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и title="Неравенства со знаками > (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и


B или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a 9 Неравенство a b означает, что a > b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a title="Неравенство a b означает, что a > b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a





Записать условие задачи с помощью неравенств. 1)Рост Антона (h cm) не превышает роста Коли, равного 165 см, но больше роста Маши, равного 147 см. 2) Число дней в году (m) не меньше 365 и не больше) Чайник «Тефаль» (модель 208) вмещает (а л) не больше 1,7 л воды. 147____h_____ ____m_____165. а _____1,7.


Блиц-опрос. Записать условие задачи с помощью неравенства: 1) Сумма чисел х и 3 меньше 1 _________ 2) Разность чисел х и 8 больше 19 ________ 3) Произведение чисел 10 и х не больше 15 ________ 4) Утроенная сумма чисел х и 7 не больше числа 15 _________________





Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ