Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Доказательство:

Докажем вначале теорему для случая последовательности

По формуле бинома Ньютона:

Полагая получим

Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывает, поэтому величины возрастают. Поэтому последовательность возрастающая, при этом (2)*Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2: Сумму в скобке найдём по формуле суммы членов геометрической прогрессии: Поэтому (3)*

Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть Каждое значение x заключено между двумя положительными целыми числами: ,где - это целая часть x. => =>

Если ,то Поэтому, согласно пределу Имеем

По признаку (о пределе промежуточной функции) существования пределов

2. Пусть . Сделаем подстановку − x = t, тогда

Из двух этих случаев вытекает, что для вещественного x.

Следствия:

9 .) Сравнение бесконечно малых. Теорема о замене бесконечно малых на эквивалентные в пределе и теорема о главной части бесконечно малых.

Пусть функции a(x ) и b(x ) – б.м. при x ® x 0 .

ОПРЕДЕЛЕНИЯ.

1) a(x ) называется бесконечно малой более высокого порядка чем b(x ) если

Записывают: a(x ) = o(b(x )) .

2) a(x ) и b(x ) называются бесконечно малыми одного порядка , если

где С Îℝ и C ¹ 0 .

Записывают: a(x ) = O (b(x )) .

3) a(x ) и b(x ) называются эквивалентными , если

Записывают: a(x ) ~ b(x ).

4) a(x ) называется бесконечно малой порядка k относи-
тельно бесконечно малой
b(x ),
если бесконечно малые a(x ) и (b(x )) k имеют один порядок, т.е. если

где С Îℝ и C ¹ 0 .

ТЕОРЕМА 6 (о замене бесконечно малых на эквивалентные).

Пусть a(x ), b(x ), a 1 (x ), b 1 (x ) – б.м. при x ® x 0 . Если a(x ) ~ a 1 (x ), b(x ) ~ b 1 (x ),

то

Доказательство: Пусть a(x ) ~ a 1 (x ), b(x ) ~ b 1 (x ), тогда

ТЕОРЕМА 7 (о главной части бесконечно малой).

Пусть a(x ) и b(x ) – б.м. при x ® x 0 , причем b(x ) – б.м. более высокого порядка чем a(x ).

= , a так как b(x )– более высокого порядка чем a(x ) ,то , т.е. из ясно, что a(x ) + b(x ) ~ a(x )

10) Непрерывность функции в точке(на языке пределов эпсилон-дельта,геометрическое) Односторонняя непрерывность. Непрерывность на интервале, на отрезке. Свойства непрерывных функций.

1. Основные определения

Пусть f (x ) определена в некоторой окрестности точки x 0 .

ОПРЕДЕЛЕНИЕ 1. Функция f (x ) называется непрерывной в точке x 0 если справедливо равенство

Замечания .

1) В силу теоремы 5 §3 равенство (1) можно записать в виде

Условие (2) – определение непрерывности функции в точке на языке односторонних пределов .

2) Равенство (1) можно также записать в виде:

Говорят: «если функция непрерывна в точке x 0 , то знак предела и функцию можно поменять местами».

ОПРЕДЕЛЕНИЕ 2 (на языке e-d).

Функция f (x ) называется непрерывной в точке x 0 если "e>0 $d>0 такое , что

если x ÎU(x 0 , d) (т.е. | x x 0 | < d),

то f (x )ÎU(f (x 0), e) (т.е. | f (x ) – f (x 0) | < e).

Пусть x , x 0 Î D (f ) (x 0 – фиксированная, x – произвольная)

Обозначим: Dx = x – x 0 – приращение аргумента

Df (x 0) = f (x ) – f (x 0) – приращение функции в точкеx 0

ОПРЕДЕЛЕНИЕ 3 (геометрическое).

Функция f (x ) называетсянепрерывной в точке x 0 если в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции , т.е.

Пусть функция f (x ) определена на промежутке [x 0 ; x 0 + d) (на промежутке (x 0 – d; x 0 ]).

ОПРЕДЕЛЕНИЕ. Функция f (x ) называется непрерывной в точке x 0 справа (слева ), если справедливо равенство

Очевидно, что f (x ) непрерывна в точке x 0 Û f (x ) непрерывна в точке x 0 справа и слева.

ОПРЕДЕЛЕНИЕ. Функция f (x ) называется непрерывной на интервал е (a ; b ) если она непрерывна в каждой точке этого интервала .

Функция f (x ) называется непрерывной на отрезке [a ; b ] если она непрерывна на интервале (a ; b ) и имеет одностороннюю непрерывность в граничных точках (т.е. непрерывна в точке a справа, в точке b – слева).

11) Точки разрыва, их классификация

ОПРЕДЕЛЕНИЕ. Если функция f (x ) определена в некоторой окрестности точки x 0 , но не является непрерывной в этой точке, то f (x ) называют разрывной в точке x 0 , а саму точку x 0 называют точкой разрыва функции f (x ) .

Замечания .

1) f (x ) может быть определена в неполной окрестности точки x 0 .

Тогда рассматривают соответствующую одностороннюю непрерывность функции.

2) Из определения Þ точка x 0 является точкой разрыва функции f (x ) в двух случаях:

а) U(x 0 , d)ÎD (f ) , но для f (x ) не выполняется равенство

б) U * (x 0 , d)ÎD (f ) .

Для элементарных функций возможен только случай б).

Пусть x 0 – точка разрыва функции f (x ) .

ОПРЕДЕЛЕНИЕ. Точка x 0 называется точкой разрыва I рода если функция f (x ) имеет в этой точке конечные пределы слева и справа .

Если при этом эти пределы равны, то точка x 0 называется точкой устранимого разрыва , в противном случае – точкой скачка .

ОПРЕДЕЛЕНИЕ. Точка x 0 называется точкой разрыва II рода если хотя бы один из односторонних пределов функции f (x ) в этой точке равен ¥ или не существует .

12) Свойства функций, непрерывных на отрезке (теоремы Вейерштрасса(без док-ва) и Коши

Теорема Вейерштрасса

Пусть функция f(x) непрерывна на отрезке , тогда

1)f(x)ограничена на

2)f(x) принимает на промежутке своё наименьшее и наибольшее значение

Определение : Значение функции m=fзовется наименьшим, если m≤f(x) для любого x€ D(f).

Значение функции m=fзовется наибольшим, если m≥f(x) для любого x€ D(f).

Наименьшее\наибольшее значение функция может принимать в нескольких точках отрезка.

f(x 3)=f(x 4)=max

Теорема Коши.

Пусть функция f(x) непрерывна на отрезке и х – число, заключенное между f(a) и f(b),тогда существует хотя бы одна точка х 0 € такая, что f(x 0)= g

Найти замечательные пределы трудно не только многим студентам первого, второго курса обучения которые изучают теорию пределов, но и некоторым преподавателям.

Формула первого замечательного предела

Следствия первого замечательного предела запишем формулами
1. 2. 3. 4. Но сами по себе общие формулы замечательных пределов никому на экзамене или тесте не помогают. Суть в том что реальные задания построены так что к записанным выше формулам нужно еще прийти. И большинство студентов, которые пропускают пары, заочно изучают этот курс или имеют преподавателей, которые сами не всегда понимают о чем объясняют, не могут вычислить самых элементарных примеров на замечательные пределы. Из формул первого замечательного предела видим, что с их помощью можно исследовать неопределенности типа ноль разделить на ноль для выражений с тригонометрическими функциями. Рассмотрим сначала ряд примеров на первый замечательный пределу, а потом изучим второй замечательный предел.

Пример 1. Найти предел функции sin(7*x)/(5*x)
Решение: Как видите функция под пределом близка к первому замечательному пределу, но сам предел функции точно не равен единице. В такого рода заданиях на пределы следует в знаменателе выделить переменную с таким же коэффициентом, который содержится при переменной под синусом. В данном случае следует разделить и умножить на 7

Некоторым такая детализация покажется лишней, но большинству студентов которым трудно даются пределы поможет лучше понять правила и усвоить теоретический материал.
Также, если есть обратный вид функции - это также первый замечательный предел. А все потому, что замечательный предел равен единице

Это же правило касается и следствий 1 замечательного предела. Поэтому если Вас спросят "Чему равен первый замечательный предел?" Вы без колебаний должны ответить, что это - единица.

Пример 2. Найти предел функции sin(6x)/tan(11x)
Решение: Для понимания конечного результата распишем функцию в виде

Чтобы применить правила замечательного предела умножим и разделим на множители

Далее предел произведения функций распишем через произведение пределов

Без сложных формул мы нашли предел часки тригонометрических функций. Для усвоения простых формул попробуйте придумать и найти предел на 2 и 4 формулу следствия 1 замечательного предела. Мы рассмотрим более сложные задачи.

Пример 3. Вычислить предел (1-cos(x))/x^2
Решение: При проверке подстановкой получим неопределенность 0/0 . Многим неизвестно, как свести такой пример до 1 замечательного предела. Здесь следует использовать тригонометрическую формулу

При этом предел преобразится к понятному виду

Нам удалось свести функцию к квадрату замечательного предела.

Пример 4. Найти предел
Решение: При подстановке получим знакомую особенность 0/0 . Однако переменная стремится к Pi , а не к нулю. Поэтому для применения первого замечательного предела выполним такую замену переменной х , чтобы новая переменная направлялась к нулю. Для этого знаменатель обозначим за новую переменную Pi-x=y

Таким образом использовав тригонометрическую формулу, которая приведена в предыдущем задании, пример сведен к 1 замечательному пределу.

Пример 5. Вычислить предел
Решение: Сначала неясно как упростить пределы. Но раз есть пример, значит должен быть и ответ. То что переменная направляется к единице дает при подстановке особенность вида ноль умножить на бесконечность, поэтому тангенс нужно заменить по формуле

После этого получим нужную неопределенность 0/0. Далее выполняем замену переменных в пределе, и используем периодичность котангенса

Последние замены позволяют использовать следствие 1 замечательного предела.

Второй замечательный предел равен экспоненте

Это классика к которой в реальных задачах на пределы не всегда легко прийти.
В вычислениях Вам понадобятся пределы - следствия второго замечательного предела:
1. 2. 3. 4.
Благодаря второму замечательному пределу и его последствиям можно исследовать неопределенности типа ноль разделить на ноль, единица в степени бесконечность, и бесконечность разделить на бесконечность, да еще и в таком же степени

Начнем для ознакомления с простых примеров.

Пример 6. Найти предел функции
Решение: Напрямую применить 2 замечательный пределу не получится. Сначала следует превратить показатель, чтобы он имел вид обратный к слагаемому в скобках

Это и есть техника сведения к 2 замечательному пределу и по сути - вывода 2 формулы следствия предела.

Пример 7. Найти предел функции
Решение: Имеем задания на 3 формулу следствия 2 замечательного предела. Подстановка нуля дает особенность вида 0/0. Для возведения предела под правило превратим знаменатель, чтоб при переменной был тот же коэффициент что и в логарифм

Это также легко понять и выполнить на экзамене. Трудности у студентов при исчислении пределов начинаются с следующих задач.

Пример 8. Вычислить предел функции [(x+7)/(x-3)]^(x-2)
Решение: Имеем особенность типа 1 в степени бесконечность. Если не верите, можете везде вместо "икс" подставить бесконечность и убедиться в этом. Для возведения под правило поделим в скобках числитель на знаменатель, для этого предварительно выполним манипуляции

Подставим выражение в предел и превратим к 2 замечательному пределу

Предел равен экспоненте в 10 степени. Константы, которые являются слагаемыми при переменной как в скобках так и степени никакой "погоды" не вносят - об этом следует помнить. А если Вас спросят преподаватели - "Почему не превращаете показатель?" (Для этого примера в x-3 ), то скажите что "Когда переменная стремится к бесконечности то к ней хоть добавляй 100 хоть отнимай 1000, а предел останется такой как и был!".
Есть и второй способ вычислять пределы такого типа. О нем расскажем в следующем задании.

Пример 9. Найти предел
Решение: Теперь вынесем переменную в числителе и знаменателе и превратим оду особенность на другую. Для получения конечного значения используем формулу следствия 2 замечательного предела

Пример 10. Найти предел функции
Решение: Заданный предел найти под силу не каждому. Для возведения под 2 предел представим, что sin (3x) это переменная, а нужно превратить показатель

Далее показатель запишем как степень в степени


В скобках описаны промежуточные рассуждения. В результате использования первого и второго замечательного предела получили экспоненту в кубе.

Пример 11. Вычислить предел функции sin(2*x)/ln(3*x+1)
Решение: Имеем неопределенность вида 0/0. Кроме этого видим, что функцию следует превращать к использованию обеих замечательных пределов. Выполним предыдущие математические преобразования

Далее без труда предел примет значение

Вот так свободно Вы будете чувствовать себя на контрольных работах, тестах, модулях если научитесь быстро расписывать функции и сводить под первый или второй замечательный предел. Если заучить приведенные методики нахождения пределов Вам трудно, то всегда можете заказать контрольную работу на пределы у нас.
Для этого заполните форму, укажите данные и вложите файл с примерами. Мы помогли многим студентам - сможем помочь и Вам!

Данная статья: «Второй замечательный предел» посвящена раскрытию в пределах неопределенностей вида:

$ \bigg[\frac{\infty}{\infty}\bigg]^\infty $ и $ ^\infty $.

Так же такие неопределенности можно раскрывать с помощью логарифмирования показательно-степенной функции, но это уже другой метод решения, о котором будет освещено в другой статье.

Формула и следствия

Формула второго замечательного предела записывается следующим образом: $$ \lim_{x \to \infty} \bigg (1+\frac{1}{x}\bigg)^x = e, \text{ где } e \approx 2.718 $$

Из формулы вытекают следствия , которые очень удобно применять для решения примеров с пределами: $$ \lim_{x \to \infty} \bigg (1 + \frac{k}{x} \bigg)^x = e^k, \text{ где } k \in \mathbb{R} $$ $$ \lim_{x \to \infty} \bigg (1 + \frac{1}{f(x)} \bigg)^{f(x)} = e $$ $$ \lim_{x \to 0} \bigg (1 + x \bigg)^\frac{1}{x} = e $$

Стоить заметить, что второй замечательный предел можно применять не всегда к показательно-степенной функции, а только в случаях когда основание стремится к единице. Для этого сначала в уме вычисляют предел основания, а затем уже делают выводы. Всё это будет рассмотрено в примерах решений.

Примеры решений

Рассмотрим примеры решений с использованием прямой формулы и её следствий. Так же разберем случаи, при которых формула не нужна. Достаточно записать только готовый ответ.

Пример 1
Найти предел $ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} $
Решение

Подставим бесконечность в предел и посмотрим на неопределенность: $$ \lim_{x\to\infty} \bigg(\frac{x+4}{x+3} \bigg)^{x+3} = \bigg(\frac{\infty}{\infty}\bigg)^\infty $$

Найдем предел основания: $$ \lim_{x\to\infty} \frac{x+4}{x+3}= \lim_{x\to\infty} \frac{x(1+\frac{4}{x})}{x(1+\frac{3}{x})} = 1 $$

Получили основание равное единице, а это значит уже можно применить второй замечательный предел. Для этого подгоним основание функции под формулу путем вычитания и прибавления единицы:

$$ \lim_{x\to\infty} \bigg(1 + \frac{x+4}{x+3} - 1 \bigg)^{x+3} = \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = $$

Смотрим на второе следствие и записываем ответ:

$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim_{x\to\infty} \bigg(1 + \frac{1}{x+3} \bigg)^{x+3} = e $$
Пример 4
Решить предел $ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} $
Решение

Находим предел основания и видим, что $ \lim_{x\to\infty} \frac{3x^2+4}{3x^2-2} = 1 $, значит можно применить второй замечательный предел. Стандартно по плану прибавляем и вычитаем единицу из основания степени:

$$ \lim_{x\to \infty} \bigg (1+\frac{3x^2+4}{3x^2-2}-1 \bigg) ^{3x} = \lim_{x\to \infty} \bigg (1+\frac{6}{3x^2-2} \bigg) ^{3x} = $$

Подгоняем дробь под формулу 2-го замеч. предела:

$$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{3x} = $$

Теперь подгоняем степень. В степени должна быть дробь равная знаменателю основания $ \frac{3x^2-2}{6} $. Для этого умножим и разделим степень на неё, и продолжим решать:

$$ = \lim_{x\to \infty} \bigg (1+\frac{1}{\frac{3x^2-2}{6}} \bigg) ^{\frac{3x^2-2}{6} \cdot \frac{6}{3x^2-2}\cdot 3x} = \lim_{x\to \infty} e^{\frac{18x}{3x^2-2}} = $$

Предел, расположенный в степени при $ e $ равен: $ \lim_{x\to \infty} \frac{18x}{3x^2-2} = 0 $. Поэтому продолжая решение имеем:

Ответ
$$ \lim_{x\to \infty} \bigg (\frac{3x^2+4}{3x^2-2} \bigg) ^{3x} = 1 $$

Разберем случаи, когда задача похожа на второй замечательный предел, но решается без него.

В статье: «Второй замечательный предел: примеры решений» была разобрана формула, её следствия и приведены частые типы задач по этой теме.

Замечательных пределов существует несколько, но самыми известными являются первый и второй замечательные пределы. Замечательность этих пределов состоит в том, что они имеют широкое применение и с их помощью можно найти и другие пределы, встречающиеся в многочисленных задачах. Этим мы и будем заниматься в практической части данного урока. Для решения задач путём приведения к первому или второму замечательному пределу не нужно раскрывать содержащиеся в них неопределённости, поскольку значения этих пределов уже давно вывели великие математики.

Первым замечательным пределом называется предел отношения синуса бесконечно малой дуги к той же дуге, выраженной в радианной мере:

Переходим к решению задач на первый замечательный предел. Заметим: если под знаком предела находится тригонометрическая функция, это почти верный признак того, что это выражение можно привести к первому замечательнному пределу.

Пример 1. Найти предел .

Решение. Подстановка вместо x нуля приводит к неопределённости:

.

В знаменателе - синус, следовательно, выражение можно привести к первому замечательному пределу. Начинаем преобразования:

.

В знаменателе - синус трёх икс, а в числителе всего лишь один икс, значит, нужно получить три икс и в числителе. Для чего? Чтобы представить 3x = a и получить выражение .

И приходим к разновидности первого замечательного предела:

потому что неважно, какая буква (переменная) в этой формуле стоит вместо икса.

Умножаем икс на три и тут же делим:

.

В соответствии с замеченным первым замечательным пределом производим замену дробного выражения:

Теперь можем окончательно решить данный предел:

.

Пример 2. Найти предел .

Решение. Непосредственная подстановка вновь приводит к неопределённости "нуль делить на нуль":

.

Чтобы получить первый замечательный предел, нужно, чтобы икс под знаком синуса в числителе и просто икс в знаменателе были с одним и тем же коэффициентом. Пусть этот коэффициент будет равен 2. Для этого представим нынешний коэффициент при иксе как и далее, производя действия с дробями, получаем:

.

Пример 3. Найти предел .

Решение. При подстановке вновь получаем неопределённость "нуль делить на нуль":

.

Наверное, вам уже понятно, что из исходного выражения можно получить первый замечательный предел, умноженный на первый замечательный предел. Для этого раскладываем квадраты икса в числителе и синуса в знаменателе на одинаковые множители, а чтобы получить у иксов и у синуса одинаковые коэффициенты, иксы в числителе делим на 3 и тут же умножаем на 3. Получаем:

.

Пример 4. Найти предел .

Решение. Вновь получаем неопределённость "нуль делить на нуль":

.

Можем получить отношение двух первых замечательных пределов. Делим и числитель, и знаменатель на икс. Затем, чтобы коэффициенты при синусах и при иксах совпадали, верхний икс умножаем на 2 и тут же делим на 2, а нижний икс умножаем на 3 и тут же делим на 3. Получаем:

Пример 5. Найти предел .

Решение. И вновь неопределённость "нуль делить на нуль":

Помним из тригонометрии, что тангенс - это отношение синуса к косинусу, а косинус нуля равен единице. Производим преобразования и получаем:

.

Пример 6. Найти предел .

Решение. Тригонометрическая функция под знаком предела вновь наталкивает на мысль о применении первого замечательного предела. Представляем его как отношение синуса к косинусу.

В данной теме мы разберём те формулы, которые можно получить, используя второй замечательный предел (тема, посвящённая непосредственно второму замечательному пределу, находится ). Напомню две формулировки второго замечательного предела, которые понадобятся в этом разделе: $\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$ и $\lim_{x\to\ 0}\left(1+x\right)^\frac{1}{x}=e$.

Обычно формулы я привожу без доказательств, но для данной страницы, полагаю, сделаю исключение. Дело в том, что доказательство следствий из второго замечательного предела содержит некоторые приёмы, которые бывают полезны при непосредственном решении задач. Ну, и, вообще говоря, желательно знать, как доказывается та или иная формула. Это позволяет лучше понимать её внутреннюю структуру, а также границы применимости. Но так как доказательства могут быть интересны не всем читателям, то скрою их под примечания, расположенные после каждого следствия.

Следствие №1

\begin{equation} \lim_{x\to\ 0} \frac{\ln(1+x)}{x}=1\end{equation}

Доказательство следствия №1: показать\скрыть

Так как при $x\to 0$ имеем $\ln(1+x)\to 0$, то в рассматриваемом пределе наличествует неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости представим выражение $\frac{\ln(1+x)}{x}$ в таком виде: $\frac{1}{x}\cdot\ln(1+x)$. Теперь внесём множитель $\frac{1}{x}$ в степень выражения $(1+x)$ и применим второй замечательный предел:

$$ \lim_{x\to\ 0} \frac{\ln(1+x)}{x}=\left| \frac{0}{0} \right|= \lim_{x\to\ 0} \left(\frac{1}{x}\cdot\ln(1+x)\right)=\lim_{x\to\ 0}\ln(1+x)^{\frac{1}{x}}=\ln e=1. $$

Вновь имеем неопределённость вида $\frac{0}{0}$. Будем опираться на уже доказанную нами формулу . Так как $\log_a t=\frac{\ln t}{\ln a}$, то $\log_a (1+x)=\frac{\ln(1+x)}{\ln a}$.

$$ \lim_{x\to\ 0} \frac{\log_a (1+x)}{x}=\left| \frac{0}{0} \right|=\lim_{x\to\ 0}\frac{\ln(1+x)}{ x \ln a}=\frac{1}{\ln a}\lim_{x\to\ 0}\frac{\ln(1+x)}{ x}=\frac{1}{\ln a}\cdot 1=\frac{1}{\ln a}. $$

Следствие №2

\begin{equation} \lim_{x\to\ 0} \frac{e^x-1}{x}=1\end{equation}

Доказательство следствия №2: показать\скрыть

Так как при $x\to 0$ имеем $e^x-1\to 0$, то в рассматриваемом пределе наличествует неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости осуществим замену переменной, обозначив $t=e^x-1$. Так как $x\to 0$, то $t\to 0$. Далее, из формулы $t=e^x-1$ получим: $e^x=1+t$, $x=\ln(1+t)$.

$$ \lim_{x\to\ 0} \frac{e^x-1}{x}=\left| \frac{0}{0} \right|=\left | \begin{aligned} & t=e^x-1;\; t\to 0.\\ & x=\ln(1+t).\end {aligned} \right|= \lim_{t\to 0}\frac{t}{\ln(1+t)}=\lim_{t\to 0}\frac{1}{\frac{\ln(1+t)}{t}}=\frac{1}{1}=1. $$

Вновь имеем неопределённость вида $\frac{0}{0}$. Будем опираться на уже доказанную нами формулу . Так как $a^x=e^{x\ln a}$, то:

$$ \lim_{x\to\ 0} \frac{a^{x}-1}{x}=\left| \frac{0}{0} \right|=\lim_{x\to 0}\frac{e^{x\ln a}-1}{x}=\ln a\cdot \lim_{x\to 0}\frac{e^{x\ln a}-1}{x \ln a}=\ln a \cdot 1=\ln a. $$

Следствие №3

\begin{equation} \lim_{x\to\ 0} \frac{(1+x)^\alpha-1}{x}=\alpha \end{equation}

Доказательство следствия №3: показать\скрыть

Вновь мы имеем дело с неопределённостью вида $\frac{0}{0}$. Так как $(1+x)^\alpha=e^{\alpha\ln(1+x)}$, то получим:

$$ \lim_{x\to\ 0} \frac{(1+x)^\alpha-1}{x}= \left| \frac{0}{0} \right|= \lim_{x\to\ 0}\frac{e^{\alpha\ln(1+x)}-1}{x}= \lim_{x\to\ 0}\left(\frac{e^{\alpha\ln(1+x)}-1}{\alpha\ln(1+x)}\cdot \frac{\alpha\ln(1+x)}{x} \right)=\\ =\alpha\lim_{x\to\ 0} \frac{e^{\alpha\ln(1+x)}-1}{\alpha\ln(1+x)}\cdot \lim_{x\to\ 0}\frac{\ln(1+x)}{x}=\alpha\cdot 1\cdot 1=\alpha. $$

Пример №1

Вычислить предел $\lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}$.

Имеем неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости будем использовать формулу . Чтобы подогнать наш предел под данную формулу следует иметь в виду, что выражения в степени числа $e$ и в знаменателе должны совпадать. Иными словами, синусу в знаменателе не место. В знаменателе должно быть $9x$. Кроме того, при решении этого примера будет использован первый замечательный предел .

$$ \lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}=\left|\frac{0}{0} \right|=\lim_{x\to\ 0} \left(\frac{e^{9x}-1}{9x}\cdot\frac{9x}{\sin 5x} \right) =\frac{9}{5}\cdot\lim_{x\to\ 0} \left(\frac{e^{9x}-1}{9x}\cdot\frac{1}{\frac{\sin 5x}{5x}} \right)=\frac{9}{5}\cdot 1 \cdot 1=\frac{9}{5}. $$

Ответ : $\lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}=\frac{9}{5}$.

Пример №2

Вычислить предел $\lim_{x\to\ 0} \frac{\ln\cos x}{x^2}$.

Имеем неопределённость вида $\frac{0}{0}$ (напомню, что $\ln\cos 0=\ln 1=0$). Для раскрытия этой неопределённости будем использовать формулу . Для начала учтём, что $\cos x=1-2\sin^2 \frac{x}{2}$ (см. распечатку по тригонометрическим функциям). Теперь $\ln\cos x=\ln\left(1-2\sin^2 \frac{x}{2}\right)$, поэтому в знаменателе следует получить выражение $-2\sin^2 \frac{x}{2}$ (чтобы подогнать наш пример под формулу ). В дальнейшем решении будет использован первый замечательный предел .

$$ \lim_{x\to\ 0} \frac{\ln\cos x}{x^2}=\left| \frac{0}{0} \right|=\lim_{x\to\ 0} \frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{x^2}= \lim_{x\to\ 0} \left(\frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{-2\sin^2 \frac{x}{2}}\cdot\frac{-2\sin^2 \frac{x}{2}}{x^2} \right)=\\ =-\frac{1}{2}\lim_{x\to\ 0} \left(\frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{-2\sin^2 \frac{x}{2}}\cdot\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 \right)=-\frac{1}{2}\cdot 1\cdot 1^2=-\frac{1}{2}. $$

Ответ : $\lim_{x\to\ 0} \frac{\ln\cos x}{x^2}=-\frac{1}{2}$.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ