Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Наблюдения за радиоактивностью объектов окружающей среды города выполняются согласно программам и постановлениям Правительства Москвы «О мерах по повышению радиационной безопасности населения г. Москвы».

Система радиационно-экологического мониторинга (РЭМ) охватывает всю территорию г. Москвы (в старых границах по 10 административным округам и территорию «Новой Москвы» Троицкого и Новомосковского административных округов), постоянно совершенствуется и состоит из следующих основных блоков: стационарные средства контроля, мобильные средства контроля, аналитический центр.

Стационарные средства контроля включают в себя наземную режимную сеть наблюдения, сеть стационарных постов контроля воздушного и водного бассейнов, сеть измерителей радиационного фона (рис. 1).

Мобильные средства радиационно-экологического контроля включают автомобильный комплекс для проведения автомобильной гамма съемки по магистралям и улицам города, а также мобильный водный комплекс, который проводит оценку радиационных параметров поверхностных вод и донных отложений реки Москвы.

Ежегодно анализируется более 2500 проб объектов окружающей среды.

Атмосферный воздух. На стационарных постах радиационного контроля (6 постов) контролировалась радиоактивность атмосферных аэрозолей и их выпадений на подстилающую поверхность в течение всего года. Пробы аэрозолей отбирались с помощью ВФУ типа «Тайфун-4» производительностью до 1200 м 3 /ч и «Тайфун-5» производительностью до 3000 м 3 /ч, с осаждением аэрозолей на фильтр ФПП-15-1,5. Атмосферные выпадения собирались в высокобортные кюветы. После недельной экспозиции пробы поступали на радиометрический и γ-спектрометрический анализы.

В таблице 1 представлены результаты измерений объемных активностей радионуклидов в атмосферном воздухе г. Москвы.

Таблица 1. Средние объемные активности радионуклидов в атмосферном воздухе г. Москвы, Бк/м 3

3,3 . 10 -3

3,7 . 10 -7

1,7 . 10 -5

8,9 . 10 -7

8,4 . 10 -7

8,3 . 10 -7

Значения величин объемной активности радионуклидов 226 Ra, 232 Th, 40 К объясняются процессами вторичного пылеподъема (ресуспензии) с поверхности земли.

Объемная активность радионуклида йода 131 I регистрировалась в каждом месяце, но не каждую неделю. Диапазон изменения величин объемной активности 131 I составил от 1,4.10 -7 до 2,8.10 -5 Бк/м 3 при среднем значении 1,9.10 -6 Бк/м 3 .

В таблице 2 представлены результаты измерений плотности радиоактивных выпадений в г. Москве.

Таблица 2. Плотность радиоактивных выпадений в г. Москве, Бк/(м 2 ·год)

Поверхностные воды и донные отложения. Стационарные посты гидросферы (7 постов) расположены на створах рек Москвы, Сетуни, Сходни и Яузы, а также в устье Соболевского ручья, как наиболее вероятного места поступления антропогенных загрязнений.

В таблице 3 представлены результаты измерений объемной активности радиоактивных веществ в воде открытых водоемов г. Москвы.

Таблица 3. Средняя объемная активность радиоактивных веществ в воде открытых водоемов, Бк/л

В таблице 4 представлены результаты измерений средней удельной активности радиоактивных веществ в донных отложениях открытых водоемов г. Москвы.

Таблица 4. Средняя удельная активность радиоактивных веществ в донных отложениях открытых водоемов г. Москвы, Бк/кг

Мощность эквивалентной дозы контролируется сетью измерителей радиационного фона (ИРФ) - 66 датчиков. ИРФ размещены с учетом охвата всех административных округов на магистралях, на крупных предприятиях, в местах большого скопления людей. Получение данных от датчиков проводится круглосуточно.

Кроме того, носимыми приборами в 2014 г. выполнено более 3000 измерений мощности эквивалентной дозы гамма-излучения. Средняя годовая мощность эквивалентной дозы гамма-излучения на территории Москвы составила 0,12 мкЗв/ч, при максимальном значении 0,20 мкЗв/ч (Котельническая наб., 1/15), что соответствует фоновым значениям. В 134 точках режимной сети термолюминесцентными датчиками (ТЛД) определялась интегральная поглощенная доза облучения от внешних источников облучения, которая в 2014 г. составила 0,86 мГр/год.

Радиоактивность почвы определялась в каждом из 134 пунктов контроля по пробам, отобранным с площадок 10х10 м 2 методом “конверта” из 5 см верхнего слоя.

В таблице 5 представлены результаты измерений средней плотности загрязнения техногенными радионуклидами почвы г. Москвы.

Таблица 5. Средняя плотность загрязнения техногенными радионуклидами почвы г. Москвы, Бк/м 2

В таблице 6 представлены результаты измерений удельной активности естественных радионуклидов в почве г. Москвы.

Таблица 6. Средняя удельная активность естественных радионуклидов в почвах г. Москвы, Бк/кг

Радиационные обследования объектов

Проведено обследование на содержание эквивалентной равновесной объемной активности (ЭРОА) радона 215 жилых зданий, 283 зданий детских образовательных учреждения (ДОУ) и зданий школ. Среднегодовые значения ЭРОА изотопов радона в обследованных квартирах и служебных помещениях находилась в пределах от 6 до 104 Бк/м 3 , в подвалах – от 6 до 295 Бк/м 3 .

Результаты радиационно-экологического мониторинга в Троицком и Новомосковском округах («Новая Москва»)

На рис. 2 представлена схема расположения пунктов отбора проб на временной режимной сети радиационного контроля и временной режимной сети наблюдения за водными объектами в Троицком и Новомосковском административных округах г. Москвы

Условные обозначения:

Результаты контроля содержания радионуклидов в пробах почвы и снежного покрова

Основные результаты радиационных параметров отобранных проб почвы и снежного покрова, отобранных в пунктах регулярной режимной сети радиационного контроля, представлены в таблицах 7-8.

Таблица 7. Средняя удельная активность радионуклидов в почвах (грунта), Бк/кг

Территория

отбора проб

А эфф

г. Москва

Таблица 8. Средняя радиоактивность радионуклидов снежного покрова, МБк/км 2

Территория отбора проб

г. Москва

Фактически полученные и приведенные в таблицах величины радиационных параметров проб почвы (грунта) и снежного покрова не превышают значений контрольных уровней, установленных для города Москвы.

Результаты контроля содержания радионуклидов в пробах воды и донных отложениях открытых водоёмов

Основные результаты радиационных параметров отобранных проб поверхностной воды и донных отложений, отобранных в пунктах радиационного контроля на режимных створах водного бассейна ТиНАО города Москвы, представлены в таблице 9.

Таблица 9. Средние значения удельных активностей радионуклидов в поверхностной воде и донных отложениях открытых водоемов

Территория отбора проб

Поверхностные

воды, мБк/кг

Донные отложения, Бк/кг

А эфф

г. Москва

Фактически полученные и приведенные в таблицах величины радиационных параметров проб поверхностной воды и донных отложений открытых водоемов не превышают значений контрольных уровней, установленных для города Москвы.

Результаты контроля содержания радионуклидов в пробах растительности травянистого яруса

Основные результаты радиационных параметров отобранных проб растительности травянистого яруса (трава, листва кустарников и деревьев), отобранных в пунктах регулярной режимной сети радиационного контроля представлены в таблице 10.

Таблица 10. Средняя удельная активность радионуклидов растительности травянистого яруса, Бк/кг

Территория отбора проб

г. Москва

Фактически полученные и приведенные в таблице величины радиационных параметров проб растительности травянистого яруса находятся в пределах значений многолетних наблюдений характерных для города Москвы.

Результаты контроля мощности эквивалентной дозы гамма-излучения и интегральной поглощенной дозы

Мощность эквивалентной дозы гамма-излучения (МЭД ГИ) и интегральные поглощенные дозы на территории округа контролировались:

  • носимыми дозиметрами (дозиметрами - радиометрами) при отборе проб окружающей среды;
  • автоматизированными измерителями радиационного фона (ИРФ) в пунктах АСКРО круглосуточно в режиме реального времени на протяжении всего года;
  • термолюминесцентными дозиметрами (ТЛД) с экспозицией равной шести месяцам для каждой группы дозиметров.

Результаты среднегодовых значений радиационного фона представлены в таблице 11.

Таблица 11. Среднегодовые значения МЭД ГИ, радиационного фона и интегральной поглощенной

Фактически полученные и приведенные в таблицах величины радиационных параметров не превышают значений контрольных уровней, установленных для города Москвы и многолетних наблюдений.

Контроль эквивалентной равновесной объемной активности (ЭРОА) дочерних продуктов радона в помещениях

Обследование помещений государственных бюджетных образовательных учреждений (ГБОУ) в городских округах «Троицк» и «Щербинка» осуществлялось с целью определения в них показателей радиационной безопасности.

В городском округе Троицк обследованы 30 ГБОУ и 30 жилых помещений. Получены следующие результаты: величина измеренной ЭРОА дочерних продуктов радона в воздухе помещений варьируется от 4 до 85 Бк/м 3 ; в подвалах – от 7 до 235 Бк/м 3 . МЭД ГИ в обследованных помещениях изменялась от 0,08 до 0,15 мкЗв/ч.

В городском округе Щербинка обследованы 30 жилых помещений. Получены результаты: величина измеренной ЭРОА радона в воздухе помещений варьируется от 6 до 44 Бк/м 3 ; в подвалах – от 6 до 80 Бк/м 3 . МЭД ГИ в обследованных помещениях изменялась от 0,07 до 0,11 мкЗв/ч. В районе расположения этих зданий произведены замеры содержания радона в атмосфере и МЭД ГИ на прилегающей местности. В атмосферном воздухе на прилегающей к зданиям территории ЭРОА радона не превышает 6 Бк/м 3 , а значения МЭД ГИ изменяются от 0,07 до 0,10 мкЗв/ч.

Фактически полученные величины значений МЭД ГИ и ЭРОА дочерних продуктов радона не превышают нормативных данных и данных многолетних наблюдений.

Результаты автомобильной гамма съемки улично-дорожной сети округа

Методом АГС были обследованы транспортные магистрали и дороги в крупных населённых пунктах ТиНАО, а также городские и сельские поселения, находящиеся на территории этих округов. Полученные результаты обследования транспортных магистралей ТиНАО представлены в таблице 12.

Таблица 12. Результаты обследования транспортных магистралей, находящихся на территории ТиНАО

Значения МЭД ГИ на транспортных магистралях ТиНАО находились в диапазоне 0,08 – 0,27 мкЗв/ч. Среднее значение МЭД ГИ по данным АГС составляет 0,12 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Полученные результаты обследования методом АГС дорог в крупных населённых пунктах ТиНАО представлены в таблице 13.

Таблица 13. Результаты обследования дорог в крупных населённых пунктах, находящихся на территории ТиНАО

Значения МЭД ГИ на дорогах в обследованных населённых пунктах находились в диапазоне 0,08 – 0,30 мкЗв/ч. Среднее значение МЭД ГИ по данным АГС составляет 0,14 мкЗв/ч. Значения превышающие 0,20 мкЗв/ч обусловлены спецификой дорожных материалов.

Автомобильная гамма-съёмка в Новомосковском АО проводилась по основным транспортным магистралям в пределах населённых пунктов округа.

Значения МЭД ГИ на маршрутах находились в пределах от 0,08 до 0,28 мкЗв/ч, при среднем значении 0,14 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Результаты работ по обследованию методом АГС дорог городских и сельских поселений округа представлены в таблице 14.

Таблица 14. Результаты обследования городских и сельских поселений в Новомосковском АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям в пределах населённых пунктов округа и на подъездных дорогах к радиационно-опасным объектам округа.

Значения МЭД ГИ на маршрутах находились в пределах от 0,08 до 0,30 мкЗв/ч, при среднем значении - 0,14 мкЗв/ч. Значения, превышающие 0,20 мкЗв/ч, обусловлены спецификой дорожных материалов. Результаты обследования методом АГС городских и сельских поселений округа приведены в таблице 15.

Таблица 15. Результаты обследования городских и сельских поселений по Троицкому АО

№ п/п

Название поселений, находящихся на территории Троицкого АО

СП Михайлово-Ярцевское

СП Первомайское

СП Новофёдоровское

ГП Киевское

ГО Троицк

СП Щаповское

СП Клёновское

В целом по округу:

Превышений допустимых значений МЭД ГИ и участков техногенного радиоактивного загрязнения на подъездных дорогах к радиационно-опасным предприятиям округа не обнаружено.

Результаты обследования методом АГС подъездных дорог к радиационно-опасным предприятиям приведены в таблице 16.

Таблица 16. Результаты обследования подъездных дорог к радиационно-опасным предприятиям

№ п/п

Наименование предприятий

Максимальные значения МЭД ГИ, мкЗв/ч

Институт земного магнетизма им. Н.В. Пушкова (ИЗМИРАН)

Институт физики высоких давлений им. Л.Ф. Верещагина (ИФВД)

Филиал Физического института РАН (ФИАН) ОКБ (ФИАН)

Контроль мощности эквивалентной дозы и интегральной поглощенной дозы

Мощность эквивалентной дозы и интегральной поглощенной дозы на территории округа контролируется следующими методами:

  • мощность эквивалентной дозы гамма-излучения (МЭД ГИ) - носимыми радиометрами при отборе проб окружающей среды;
  • методом термолюминесцентной дозиметрии (ТЛД) с непрерывной экспозицией по шесть месяцев (интегральная поглощенная доза - Д).

Результаты среднегодовых значений радиационного фона даны в таблице 17.

Таблица 17. Мощность эквивалентной дозы и интегральная поглощенная доза

Территория

МЭД ГИ, мкЗв/ч

Д, мГр/год

г. Москва

Автомобильная гамма-съёмка территории Новомосковского АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям, на территориях в пределах населённых пунктов округа и на подъездных путях к радиационно-опасным объектам округа. Значения МЭД ГИ на обследованных маршрутах находились в пределах естественного радиационного фона от 0,06 до 0,25 мкЗв/ч. Значения МЭД ГИ около радиационно-опасных объектов определялись в фиксированных контрольных точках (КТ), расположенных в местах наибольшей потенциальной радиационной опасности. Результаты обследования объектов и магистралей приведены в таблице 18.

Таблица 18. Результаты АГС

Название магистралей и объектов, находящихся на территории НАО

Значения МЭД ГИ, мкЗв/ч

макс.

Киевское ш.

Калужское ш.

Варшавское ш.

Боровское ш.

Трасса между Калужским ш. и Киевским ш. через деревню Летово, Валуево, свхз. Московский

Завод «Мосрентген»

Автомобильная гамма-съёмка территории Троицкого АО

Автомобильная гамма-съёмка проводилась по основным транспортным магистралям, на территориях в пределах населённых пунктов округа и на подъездных путях радиационно-опасным объектам округа. Значения МЭД ГИ на обследованных маршрутах находились в пределах естественного радиационного фона от 0,06 до 0,25 мкЗв/ч. Значения МЭД ГИ около радиационно-опасных объектах определялись в фиксированных контрольных точках (КТ), расположенных в местах наибольшей потенциальной радиационной опасности. Результаты обследования объектов и магистралей приведены в таблице 19.

Таблица 19. Результаты АГС

Название магистралей и объектов, находящихся на территории ТАО

Значения МЭД ГИ, мкЗв/ч

макс.

Киевское ш.

Калужское ш.

Подольское ш.

Боровское ш.

Трасса между Калужским ш. и Киевским ш. через д. Птичное, Первомайское

Трасса между Калужским ш. и Подольским ш. через Щапово, Шаганино

Бетонное кольцо (часть) (трасса А107)

Троицкий институт инновационных и термоядерных исследований (ТРИНИТИ)

Институт земного магнетизма имени Н.В.Пушкова (ИЗМИРАН)

Институт физики высоких давлений имени Л.Ф.Верещагина, Троицкий филиал (ИФВД)

Филиал Физического института РАН (ФИАН), ОКБ ФИАН

Институт спектроскопии РАН (ИСАН)

Институт ядерных исследований РАН (ИЯИ РАН)

Пешеходный радиационный контроль территорий ТиНАО

Проведен пешеходный радиационный контроль территорий, прилегающих к радиационно-опасным объектам, определенным распоряжением Правительства РФ от 14.09.2009 №1311-р (в ред. от 11.04.2011 г.).

Проведен поисковый (пешеходный) радиационный контроль территорий Троицкого и Новомосковского административных округов в городе Москве на площадях 225 000 м 2 и 275 000 м 2 соответственно, общей площадью - 500 000 м 2 .

В Троицком административном округе в ГО Троицк обследованы территории микрорайона Солнечный (между улицами Физическая, Солнечная и Октябрьским проспектом), парка усадьбы Троицкое, территория по Октябрьскому проспекту вокруг Детской школы искусств им. М.И. Глинки. В СП Краснопахорское обследована территория спортивного парка «Красная Пахра».

В Новомосковском административном округе в поселке Мосрентген обследована территория вокруг прудов между улицей Мосрентген (напротив завода Мосрентген) и проездом Героя России Соломатина и территория городского парка по улице Мосрентген.

В ГП Московский обследована территория вблизи деревни Саларьево в 1,2 км от полигона ТБО «Саларьево» рядом с площадкой под строительство электродепо метро «Саларьево».

Максимальное значение МЭД ГИ на обследованной территории равно 0,23 мкЗв/ч, что не превышает допустимых значений по ОСПОРБ 99/2010 п.5.1.6. Источников ионизирующих излучений и локальных радиационных аномалий на обследованной территории не выявлено.

Выводы

  1. Контролируемые радиационные параметры объектов окружающей среды в 2014 году находились в пределах значений, соответствующих радиационному фону, характерному для города Москвы, и не превышали установленных контрольных уровней («Контрольные уровни обеспечения радиоэкологической безопасности населения г. Москвы» М., 2008).
  2. Значения интегральных поглощенных доз находятся в пределах естественных вариаций и не превышают средних доз по городу Москве.
  3. Наличие в Москве большого количества радиационно-опасных объектов и предприятий-владельцев радиоактивных веществ (РВ) и радиоактивных отходов (РАО) создает потенциальную опасность радиационного инцидента.

Заключение

Анализ радиационно-экологической обстановки в Москве за 2014 г. показал, что значения контролируемых радиационных параметров объектов окружающей среды находились в пределах многолетних колебаний техногенного фона столицы.

1

1 ФГАОУ ВПО «Южный федеральный университет»

Проведена оценка мощности эквивалентной дозы гамма-излучения природных и урбанизированных территорий Ростовской области, Краснодарского края и республики Адыгея. Представленные результаты в целом соответствуют среднемировым значениям гамма-фона. В отдельных районах были выявлены отклонения от типичных значений. Приведено объяснение полученных результатов для природных и урбанизированных территорий. В районах проведения исследований на территории республики Адыгея были обнаружены аномалии, в которых измеренные значения сильно отличались от средних показателей. Оценены годовые значения эквивалентной дозы для исследованных территорий. На основании полученных сведений был сделан вывод о необходимости дальнейших радиоэкологических наблюдений в данном регионе. Подчеркнута важность работы по выявлению радиоактивных аномалий с целью предотвращения получения излишней дозовой нагрузки населением.

гамма-излучение

эквивалентная доза

природные территории

промышленные территории

1. Джамилова С.М. Оценка характеристик гамма-поля территорий городов и поселков Акмолинской области // Вестник Алтайского государственного аграрного университета. – 2011. – № 9 (83).– С. 51–54.

2. Давыдов М.Г. Радиоэкология: учебник для вузов. / М.Г. Давыдов, Е.А. Бураева, Л.В. Зорина, В.С. Малышевский, В.В. Стасов. – Ростов-н/Д.: Феникс, 2013. – 635 с.

3. СанПин 2.6.1.2523-09 Нормы радиационной безопасности (НРБ-99/2009). Утверждены и введены в действие постановлением Главного государственного санитарного врача Российской Федерации Г.Г. Онищенко от 7 июля 2009 г № 47 с 01 сентября 2009 г.

4. Chernyago B.P. Current radiation environment in the Central Ecological Zone of the Baikal Natural Territory / B.P. Chernyago, A.I. Nepomnyashchikh, V.I. Medvedev // Russian Geology and Geophysics. – 2012. – Vol. 53. – P. 926–935.

5. Chougankar M.P. Profiles of doses to population living in the high background radiation areas in Kerala / M.P. Chougankar, K.P. Eappen, T.V. Ramachandran // J. Environ. Radioact. – 2003. – № 71. – P. 275–295.

6. Fasasi M.K. Natural radioactivity of the tar-sand deposits of Ondo State, Southwest Nigeria / M.K. Fasasi, A.A. Oyawale, C.E. Mokobia, P. Tchosossa, T.R. Ajayi, F.A. Balogun // Nucl. Instrum. and Methods. – 2003. – № 505. – P. 449–453.

7. Gupta M. Measurement of natural radioactivity and radon exhalation rate in fly ash samples from a thermal power plant and estimation of radiation doses. / M. Gupta, A.K. Mahur, R. Varshney, R.G. Sonkawade, K.D. Verma, R. Prasad. // Radiation Measurements. – 2013. Vol. 50. – P. 160–165.

8. Hewamanna R. Natural radioactivity and gamma dose from Sri Lankan clay bricks used in building construction. / R. Hewamanna, C.S. Sumithrarachchi, P. Mahawatte, H.L.C. Nanayakkara, H.C. Ratnayake // Appl. Rad. Isotopes. – 2001. – Vol. 54. – P. 365–369.

9. Isinkaye O.M. Radiometric assessment of natural radioactivity levels of bituminous soil in Agbabu, southwest Nigeria // Radiation Measurements. – 2008. – Vol. 43. – P. 125–128.

10. Ravisankar R. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry / R. Ravisankar, K. Vanasundari, A. Chandrasekaran, A. Rajalakshmi, M. Suganya, P. Vijayagopal, V. Meenakshisundaram // Appl. Rad. and Isotopes. – 2012. – Vol. 70. – P. 699–704.

11. Sabyasachi P. Detection of low level gaseous releases and dose evaluation from continuous gamma dose measurements using a wavelet transformation technique / P. Sabyasachi, D.D. Rao, P.K. Sarkar // Appl. Rad. and Isotopes. – 2012. – Vol. 70. – P. 2569–2580.

12. Shweikani R. Natural radiation background in the ancient city of Palmyra. / R. Shweikani, M.S. Al-Masri, M. Hushari, G. Raja, M. Aissa, R. Al-Hent // Radiation Measurements. – 2012. –Vol. 47. – P. 557–560.

13. Song G. Natural radioactivity levels in topsoil from the Pearl River Delta Zone, Guangdong, China / G. Song, D. Chen, Z. Tang, Z. Zhang, W. Xie. // J. of Env. Radioactivity. – 2012. – Vol. 103. – P. 48–53.

Изучению радиоактивности природных и урбанизированных территорий посвящено множество публикаций. В качестве основного критерия оценки загрязнения территории используется мощность эквивалентной дозы гамма-излучения (МЭД) . В зависимости от территориальных особенностей значения естественного гамма фона могут меняться в достаточно широких пределах. Значительные вариации МЭД связаны как с особенностями геологического и тектонического строения регионов, так и с наличием техногенного влияния - разработкой месторождений полезных ископаемых, выбросами в результате ядерных инцидентов, внесением удобрений и др. .

В большинстве исследуемых природных регионов мира гамма-фон варьируется в пределах 0,2-0,4 мкЗв/ч . В то же время существуют зоны с аномально высокими значениями МЭД, например, в Национальном парке Агбабу (юго-западная часть Нигерии) значения фона варьируются от 10 до 30 мкЗв/ч при среднем его значении 20 мкЗв/ч . На урбанизированных территориях гамма-фон также в целом составляет от 0,03-0,25 мкЗв/ч , при среднемировом значении 0,1 мкЗв/ч .

В целом достаточно широкие значения МЭД различных регионов и наличие радиоактивных аномалий на отдельных участках делают актуальной проблему оценки радиоактивности объектов и территорий. Подобные исследования позволяют определить естественный гамма-фон изучаемых районов, оценить дозы облучения населения от природных источников гамма-излучения и выявить непригодные для деятельности человека территории.

Материалы и методы их исследования

В качестве объектов исследования был выбран ряд участков, находящихся в Ростовской области, Краснодарском крае и Республике Адыгея.

В Ростовской области оценка мощности эквивалентной дозы гамма-излучения проводилась в городах: Ростов-на-Дону, Новочеркасск, Таганрог, а также в ст. Старочеркасской. В качестве природных территорий Ростовской области в данной работе были выбраны целинные и залежные участки в Орловском, Аксайском, Цимлянском, Дубовском и Волгодонском районах, включая 30-километровую зону наблюдения Ростовской АЭС. Ландшафт Ростовской области представлен степями и пойменными участками реки Дон, почвы которых сформированы преимущественно на известняках, желтых глинах и аллювиальных отложениях. В данном регионе сильно развиты промышленность, производство, сельское хозяйство и атомная энергетика (Ростовская атомная электростанция).

В Краснодарском крае наблюдения на природных участках проводились в Кущевском районе. Урбанизированные территории Краснодарского края представлены в основном селами, расположенными в предгорной части Главного Кавказского хребта вдоль побережья Черного моря (Вардане, Верхнениколаевское, Высокое и др.). Краснодарский край делится рекой Кубань на две части: северную - равнинную (2/3 территории), расположенную на Кубано-Приазовской низменности, и южную - предгорную и горную (1/3 территории), расположенную в западной высокогорной части Большого Кавказа. Ведущее место в структуре промышленности принадлежит перерабатывающим производствам и пищевой отрасли. Достаточно развиты электроэнергетика, топливная отрасль, машиностроение и металлообработка, туризм и курортное дело. Доля химической, лесной и легкой промышленности незначительна.

Территорию Республики Адыгея можно условно разделить на северную часть, которая представлена равнинами и поймами рек, и южную, которая находится в предгорьях и горах Главного Кавказского хребта. Около 40 % территории занимают широколиственные леса. Оценка мощности эквивалентной дозы гамма-излучения проводилась в г. Майкоп и ряде населенных пунктов Майкопского района, а также на луговых и лесных участках предгорий. Урбанизированные территории представлены населенными пунктами: г. Майкоп, п. Каменомостский, с. Победа, с. Никель, ст. Даховская, ст. Абадзехская, с. Севастопольское и с. Новосвободное и месторождениями полезных ископаемых Майкопского района. В основном населенные пункты данной территории имеют малую численность населения и невысокую плотность застройки.

Мощность эквивалентной дозы гамма-излучения измеряли пешеходной гамма-съемкой с помощью дозиметров-радиометров ДРБП-03, СРП-88н и ДКС-96 на высоте 1 м от поверхности почвенного покрова. Погрешность оценки МЭД не превышает 15 %.

Результаты исследования и их обсуждение

Мощность эквивалентной дозы гамма-излучения по районам Ростовской области и Краснодарского края варьируется в пределах от 0,05 до 0,29 мкЗв/ч, при среднем значении мощности эквивалентной дозы 0,15 мкЗв/ч (табл. 1, рисунок 1, а-г). На большинстве природных территорий данных регионов гамма-фон находится в пределах 0,08-0,20 мкЗв/ч (рисунок 1, б, г), что не превышает значений МЭД, установленных в (0,2 мкЗв/ч) и соответствует среднемировому гамма-фону (0,1 мкЗв/ч). Для г. Ростова-на-Дону мощность эквивалентной дозы гамма-излучения соответствует данным по Ростовской области (табл. 1).

Для городских (урбанизированных) территорий Ростовской области (рисунок 1, а) распределение мощности эквивалентной дозы гамма-излучения неоднородное. Имеют место как районы с гамма-фоном на уровне 0,09-0,15 мкЗв/ч, так и участки с фоном в пределах 0,22-0,29 мкЗв/ч. Подобное распределение мощности эквивалентной дозы гамма-излучения на урбанизированных территориях связано с неоднородностью застройки, чередованием парковых зон и загруженных автомобильных магистралей, а также с использованием различных строительных материалов при возведении зданий и объектов.

Республика Адыгея имеет крайне неоднородный и сложный рельеф с горными и равнинными участками. Радиоактивность данных территорий в значительной мере зависит от глубины залегания материнских пород, наличия проявлений урана и зон тектонических разломов .

На природных территориях измерения проводились в ущельях рек Белая и Сюк, в смешанных лесах, прилегающих к пойме реки Белая, и на луговых территориях, в том числе на плато Лаго-Наки. Радиационный фон на данных территориях также варьируется в значительных пределах (табл. 2). Дополнительные дозовые нагрузки могут вносить эманации радона и выходы гранитов на поверхность Земли. Коренные породы залегают неглубоко - от 20 см до 1 м и вследствие оползней и селей могут быть оголены.

На территории Республики Адыгея имеют место радиоактивные аномалии с повышенным гамма-фоном. Они могут быть как естественного происхождения, например, участки с проявлениями урана, так и искусственного, например, штольни и отвалы, а также некоторые источники водоснабжения, которые ведут забор воды из водоносных слоев, сформированных на радиоактивных пластах. В табл. 2 приведены сведения для аномалий, которые были обнаружены как на территориях населенных пунктов, так и на природных участках в экспедициях 2003 и 2010-2012 гг. Разброс значений мощности эквивалентной дозы крайне велик. Сами аномалии распределены неравномерно.

а б в

г д е

Диаграмма распределения мощности эквивалентной дозы гамма-излучения урбанизированных территорий Ростовской области (а), природных территорий Ростовской области (б), урбанизированных территорий Краснодарского края (в), природных территорий Краснодарского края (г), урбанизированных территорий Республики Адыгея (д), природных территорий Республики Адыгея (е)

Распределение мощности эквивалентной дозы варьируется в широких пределах (табл. 2, рисунок д-е). Источниками высоких значений мощности эквивалентной дозы урбанизированных районов могут служить объекты питьевого водоснабжения (колодцы, колонки, скважины), строительные материалы, а также эманации радона. 222Rn хорошо растворим в воде, обладает высокой скоростью эманации с поверхности земли и может свободно выходить на поверхность по трещинам и разломам горных пород.

Выявленные в аномалиях значения МЭД свыше 1 мкЗв/ч делают их потенциально опасными для здоровья человека. Измеренные величины свидетельствуют о высокой вероятности превышения предельно допустимых значений законодательно нормируемых характеристик установленных в для радионуклидов. Длительное нахождение в таком месте может привести к получению заметной дозы облучения. Отдельную опасность представляет случайное попадание концентрированных количеств радионуклидов из областей аномалий в организм человека. Поиск, локализация и изоляция таких участков является важной задачей. Пешеходная гамма-съемка хоть и дает хорошее разрешение, но не в силах охватить большие территории, на которых могут присутствовать радиоактивные аномалии, как например, на территории Республики Адыгея. Кроме того необходимо проводить учет аномальных участков и устанавливать в местах их нахождения предупреждающие знаки.

Таблица 1

Мощность эквивалентной дозы гамма-излучения

Таблица 2

Гамма-фон территорий Республики Адыгея

Также в данной работе оценивалась годовая эффективная доза для населения . Расчет годовой эффективной дозы проводился, исходя из принципа, что фон в течение года стабилен и человек облучается равномерно.

Таблица 3

Оценка годовой эффективной дозы для урбанизированных и природных территорий Ростовской области

Территории

Минимальное значение, мЗв/г

Максимальное значение, мЗв/г

Среднее значение, мЗв/г

Стандартное отклонение

Ростовская область

Урбанизированные

Природные

Краснодарский край

Урбанизированные

Природные

Республика Адыгея

Урбанизированные

Природные

Аномалии

В целом на урбанизированных и природных территориях население получает примерно одинаковые дозы (табл. 3). Однако годовая эффективная доза, получаемая населением на урбанизированных и природных территориях горных районов, может значительно разниться. Аномальные участки могут вносить значительный вклад в индивидуальную дозовую нагрузку человека как за счет внутреннего, так и внешнего облучения.

Допустимые значения для эффективной дозы в условиях воздействия естественных радионуклидов, согласно , не устанавливаются. Но существуют ограничения по МЭД на участках застройки, на которых её значение не должно превышать мощности дозы на открытой местности более чем на 0,2 мкЗв/ч . Установлены нормы качества питьевой воды по радиационной безопасности в условиях воздействия как техногенных, так и природных радионуклидов .

Отметим, что в случае радиационной аварии, согласно , территории со значениями годовой эффективной дозы от 1 до 5 мЗв/г относятся к зонам радиационного контроля. При этом большинство исследуемых районов Северного Кавказа (табл. 3) относятся к территориям, в которых годовая эффективная доза гамма-излучения населения, обусловленная исключительно естественными радионуклидами также может составлять от 1 до 5 и даже более мЗв/г. Поэтому эти районы требуют организации радиоэкологического мониторинга.

Оценены мощности эквивалентных доз гамма-излучения природных и урбанизированных территорий (табл. 1, 2). Данные хорошо согласуются друг с другом и со среднемировыми значениями в интервале 0,1 мкЗв/ч.

На территории Республики Адыгея присутствуют радиоактивные аномалии. Определена годовая эффективная доза облучения населения природных и городских территорий для фоновых территорий и районов с радиоактивными аномалиями (табл. 3). Все исследованные участки относятся к зонам вмешательства, для которых требуется дозиметрический контроль объектов и территорий.

Работа выполнена при финансовой поддержке Минобрнауки России в рамках Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» (№ 14.А18.21.0633).

Рецензенты:

Вардуни Т.В., д.п.н., к.б.н., профессор, заведующая отделом экологических инноваций Научно-исследовательского института биологии, ФГАОУ ВПО «Южный федеральный университет», г. Ростов-на-Дону;

Симонович Е.И., д.б.н., старший научный сотрудник Научно-исследовательского института биологии, ФГАОУ ВПО «Южный федеральный университет», г. Ростов-на-Дону.

Работа поступила в редакцию 18.09.2013.

Библиографическая ссылка

Бураева Е.А., Малышевский В.С., Нефедов В.С., Тимченко А.А., Горлачев И.А., Семин Л.В., Шиманская Е.И., Триболина А.Н., Кубрин С.П., Гуглев К.А., Толпыгин И.Е., Мартыненко С.В. МОЩНОСТЬ ЭКВИВАЛЕНТНОЙ ДОЗЫ ГАММА-ИЗЛУЧЕНИЯ ПРИРОДНЫХ И УРБАНИЗИРОВАННЫХ ТЕРРИТОРИЙ СЕВЕРНОГО КАВКАЗА // Фундаментальные исследования. – 2013. – № 10-5. – С. 1073-1077;
URL: http://fundamental-research.ru/ru/article/view?id=32455 (дата обращения: 24.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

2.1. При прохождении через вещество узкого (парал­лельного) пучка γ-излучения его интенсивность J умень­шается по экспоненциальному закону. Из этого следует, что мощность поглощенной дозы .

где (см 2 /г) - массовый коэффициент истинного по­глощения анергии γ-излучения в данном веществе.

Для узкого пучка моноэнергетического γ-излучения с энергией Е γ (МэВ) имеет место соотношение между мощ­ностью поглощенной дозы в воздухе р (Гр/с) и плотностью потока фотонов φ (см -2 ·с -1):

(1)

где относится к воздуху. В табл. 1.3 приведены линей­ные коэффициенты ослабления μ и массовые коэффициен­ты поглощения μ am для воздуха, воды и свинца.

В случае немоноэнергетического γ-излучения в формулу (1.16) нужно подставить среднюю энергию фотонов E γ и усредненное по энергиям фотонов значение μ am .

Мощность поглощенной дозы направленного пучка γ-излучения в любом веществе, в том числе в мягкой биологи­ческой ткани (воде), определяется при подстановке в (1.16) вместо значения μ am для этого вещества.

Таблица 2.1.

Линейные коэффициенты ослабления μ (см -1)

и массовые коэффициенты поглощения энергии μ am (см 2 /г)

для узкого пучка γ-излучения

2.2. Соотношение между мощностью дозы и активностью источника γ-излучения. Активность радионуклида в ис­точнике измеряется в беккерелях, Бк. Внесистемная единица активности - кюри, 1 Ки = 3,7 10 10 Бк.

Пусть имеется точечный γ-источник активностью А (Бк), испускающий γ-излучение изотропно во все стороны пространства. Найдем мощность поглощенной дозы в (воз­духе на расстоянии R (м) от источника, пренебрегая погло­щением -у-излучения на пути от источника к данной точке. Поскольку плотность потока фотонов от точечного источ­ника убывает обратно пропорционально квадрату расстоя­ния, то мощность поглощенной дозы в воздухе р (Гр/с) равна

Здесь Г СИ - гамма-постоянная радионуклида, выраженная в единицах СИ - Гр·м 2 /(с·Бк). Она показывает, какую мощность поглощенной дозы в воздухе создает нефильтрованное γ-излучение точечного источника активностью 1 Бк на расстоянии 1 м. Величина гамма-постоянной зависит от схемы распада радионуклида и энергии его γ-излучения. В табл. 1.4 (последний столбец) приведены значения Г СИ для некоторых радионуклидов, выраженные в аГр·м 2 /(с·Бк); приставка а (атто) означает 10 -18 .

Таблица 2.2.

Характеристики γ- из лучения некоторых радиоактивных нуклидов

* Радий в равновесии с продуктами распада до RaD.

** То же при платиновом фильтре 0,5 мм.

Пример 1. Определить мощность поглощенной дозы γ-излучения в воздухе на расстоянии 2 м от точечного ис­точника 60 Со активностью 3,7-10 s Бк. Из табл. 14 нахо­дим Г СИ = 84,63·10 -18 Гр·м 2 / (с·Бк). По формуле (1.17): р = 3,7·10 8 ·84,63·10 -18:4 = 7,83·10 -9 Гр/с = 2,8·10 -5 Гр/ч.

Для расчета мощности экспозиционной дозы от точеч­ного γ-источника на практике применяют ионизационную гамма-постоянную.

Ионизационная гамма-постоянная Г радионуклида пока­зывает, какую мощность экспозиционной дозы р экс (Р/ч) создает нефильтрованное γ-излучение точечного изотропно­го источника активностью 1 мКи на расстоянии 1 см. Она выражается во внесистемных единицах - Р-см 2 /(ч-мКи). В табл. 1.4 приведены значения полной ионизационной гам­ма-постоянной Г для некоторых радионуклидов.

Соотношение между мощностью экспозиционной до­зы и активностью точечного γ -источника имеет следующий вид:

Здесь: р экс - мощность экспозиционной дозы (Р/ч), А - активность (мКи), r - расстояние (см), Г - полная иони­зационная гамма-постоянная (Р·см 2 /ч·мКи).

Пример 2. Определить мощность экспозиционной до­зы в условиях предыдущего примера (А = 10 мКи).

Из табл. 1.4 для 60 Со находим Г= 12,91 Р-см 2 /(ч·мКи). Так как А = 10 мКи, г = 200 см, то по формуле (1.18) р Экс = = 10-12,91: 40000 = 0,0032 Р/ч=3,2 мР/ч.

2.3. Для сравнения радиоактивных источников по ионизирующему действию их у-излучения часто используют внесистемную величину - гамма-эквивалент.

Гамма-экивалент источника М (или т Ra) - это ус­ловная масса точечного источника 226 Ra, создающего на данном расстоянии такую же мощность экспозиционной до­зы, как и данный источник [б]. Специальные единицы гам­ма-эквивалента: кг-экв Ra, г-экв Ra, мг-экв Ra.

Миллиграм-эквивалент радия (1 мг-экв Ra) - это гамма-эквивалент радиоактивного источника, Y-излучение которого при тождественных условиях измере­ния создает такую же мощность экспозиционной дозы, что и γ-излучение 1 мг Ra при платиновом фильтре толщиной 0,5 мм.

Установлено, что точечный источник радия массой 1 мг в равновесии с продуктами распада, заключенный в пла­тиновую оболочку толщиной 0,5 мм, создает на расстоянии 1 см мощность экспозиционной дозы 8,4 Р/ч. Следователь­но, такую же мощность дозы создает 1 мг-экв Ra любого радионуклида на расстоянии 1 см.

Поскольку величина М численно равна отношению мощ­ностей экспозиционных доз от данного источника я от 1 мг Ra на одном и том же расстоянии, то применяя формулу (3) для r =1см, получим

М=АГ/8,4, (4)

где М - гамма-эквивалент источника (мг-экв Ra),

А - активность (мКи),

Г - ионизационная гамма-постоянная [Р·см 2 /(ч·мКи)].

Пример 3 . Активность источника 137 Cs равна 10 мКи. Найти гамма-эквивалент источника М. Из табл. 1.4 Г = 3,26 Р·см 2 /(ч·мКи). По (1.19) М= 10-3,26: 8,4 = 3,88 мг-экв Ra.

И, наоборот, если известен гамма-эквивалент источника, то из формулы (3) можно найти активность А данного радионуклида.

Объединяя формулы (2) и (3), получаем соотно­шение между мощностью экспозиционной дозы и гамма-эк­вивалентом точечного источника:

где р экс выражается вР/ч, М - в мг-экв Ra, г - в см.

Умножив величину р экс, рассчитанную по формуле (5), на энергетический эквивалент рентгена 8,73 · 10 -3 Гр/Р, получим мощность поглощенной дозы от источника излучения в воздухе в условиях электронного равновесия, р (Гр/ч).

Пример 4 . Гамма-эквивалент точечного источника М =1 г-эквRa = 10 3 мг-экв Ra. Найти мощность экспозици­онной и поглощенной дозы в воздухе на расстоянии г = = 100 см от источника. По (5) р экс = 8,4-10 3: 10 4 = = 0,84 Р/ч. Мощность поглощенной дозы в воздухе при со­блюдении электронного равновесия р = 0,84 · 8,73· 10 -3 = 7,3 · 10 -3 Гр/ч = 7,3 мГр/ч.

Итак, мощность экспозиционной дозы р экс от точечного γ -источника находят по формулам (2) или (5). Мощ­ность поглощенной дозы в воздухе р определяют либо по формуле (1), либо умножая р экс на η.

2.4. На основании (1.11) между мощностью поглощен­ной дозы γ -излучения в биологической ткани р тк и в воз­духе р в имеется связь:

Для γ-излучения широком диапазоне энергии 0,1 - 3 МэВ отношение коэффициентов μ ат равно 1,09-1,11 (см. табл. 1.3) и, следовательно, с достаточной точностью мож­но принять р тк ≈1,1 р в.

Мощность эквивалентной дозы ^""Излучения в ткани по­лучим, имея в виду, что коэффициент качества /с=1. Для указанного выше диапазона энергии γ-фотонов

р экс = Р тк ·к=1,1· р в, (6)

где р в выражено в Гр/с, р экв - в Зв/с.

Г осударственное санитарно-эпидемиологическое нормирование
Р оссийской Ф едерации

2.6.1. ИОНИЗИРУЮЩЕЕ
ИЗЛУЧЕНИЕ, РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Р адиационный контроль
и санитарно-эпидемиологическая оценка
жилых, общественных и производственных
зданий и сооружений
после окончания их строительства,
по показателям радиационной
безопасности

Методические указания

МУ 2.6.1.2838-11

Москва

2011

1. Разработаны Федеральным государственным учреждением науки «Санкт-Петербургский научно-исследовательский институт радиационной гигиены имени профессора П.В. Рамзаева» Роспотребнадзора (И.П. Стамат - руководитель, В.А. Венков, А.В. Колотвина, Д.В. Кононенко, Т.А. Кормановская, А.В. Световидов); Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека (В.С. Степанов); Управлением Роспотребнадзора по г. Санкт-Петербургу (Г.А. Горский); Управлением Роспотребнадзора по г. Москве (С.Е. Охрименко); ФГУЗ «Центр гигиены и эпидемиологии по г. Санкт-Петербургу» (А.В. Еремин); Управлением Роспотребнадзора по Калининградской области (Н.О. Гарри); ФГУП НТЦ Радиационно-химической безопасности и гигиены ФМБА России (А.М. Маренный); Центром метрологии ионизирующих излучений ФГУП «ВНИИФТРИ» (В.П. Ярына); группой компаний РЭИ (М.А. Маренный, Л.А. Белянина); Управлением Роспотребнадзора по Самарской области (С.А. Шерстнева).

2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 28 декабря 2010 г. № 3).

3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г. Онищенко 28 января 2011 г.

5. Введены взамен методических указаний «Проведение радиационно-гигиенического обследования жилых и общественных зданий. МУ 2.6.1.715-98 от 24.08.1998».

2.6.1. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ, РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Радиационный контроль
и санитарно-эпидемиологическая оценка жилых,
общественных и производственных зданий
и сооружений после окончания их строительства,
капитального ремонта, реконструкции
по показателям радиационной безопасности

Методические указания

МУ 2.6.1.2838-11

1. Область применения

1.1. Настоящие методические указания (далее - МУ) распространяются на организацию и порядок проведения радиационного контроля на соответствие санитарно-эпидемиологическим и гигиеническим требованиям по показателям радиационной безопасности жилых домов, общественных и производственных зданий и сооружений.

1.2. МУ предназначены для организаций, осуществляющих радиационное обследование жилых домов, общественных и производственных зданий и сооружений. Ими могут руководствоваться также индивидуальные предприниматели и юридические лица, деятельность которых связана с проектированием, строительством (капитальным ремонтом или реконструкцией) и эксплуатацией жилых домов, общественных и производственных зданий и сооружений, а также с проведением радиационного контроля.

1.3. Настоящими МУ руководствуются организации (структурные подразделения) федеральных органов исполнительной власти, осуществляющие государственный санитарно-эпидемиологический надзор за обеспечением радиационной безопасности населения при облучении природными источниками излучения.

1.4. Показатели радиационной безопасности производственных помещений, расположенных в жилых и общественных зданиях, должны соответствовать требованиям, установленным для помещений производственных зданий и сооружений.

1.5. Владельцы зданий и сооружений, используемых в личных целях, соблюдают требования настоящих МУ на добровольной основе.

2. Нормативные ссылки

В настоящих методических указаниях использованы ссылки на следующие нормативные и методические документы:

2.1. Нормы радиационной безопасности (НРБ-99/2009): СанПиН 2.6.1.2523-09 от 2.07.2009 (зарегистрированы в Министерстве юстиции Российской Федерации 14 августа 2009 г., регистрационный номер 14534).

2.2. Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010): СП 2.6.1.2612-10 от 26.04.2010 (зарегистрированы в Министерстве юстиции Российской Федерации 11 августа 2010 г., регистрационный номер 18115).

2.3. Гигиенические требования по ограничению облучения населения за счет природных источников ионизирующего излучения: от 18.04.2003 (зарегистрированы в Министерстве юстиции Российской Федерации 13 мая 2003 г., регистрационный номер 4535).

2.4. Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях: СанПиН 2.1.2.2645-10 от 10.06.2010 (зарегистрированы в Министерстве юстиции Российской Федерации 15 июля 2010 г., регистрационный номер 17833).

2.5. Радиационный контроль и санитарно-эпидемиологическая оценка земельных участков под строительство жилых домов, зданий и сооружений общественного и производственного назначения в части обеспечения радиационной безопасности: МУ 2.6.1.2398-08 от 02.07.2008.

3. Общие положения

3.1. Мощность дозы гамма-излучения и среднегодовая эквивалентная равновесная объемная активность изотопов радона в воздухе помещений зданий жилищного и общественного назначения, сдающихся в эксплуатацию после окончания строительства, капитального ремонта и реконструкции, должна соответствовать требованиям п. 5.3.2 НРБ-99/2009 , а в помещениях производственных зданий и сооружений требованиям п. 5.2.1 ОСПОРБ-99/2010 .

3.2. Целью настоящих МУ является установление единых требований к организации и проведению радиационного контроля и санитарно-эпидемиологической оценки по показателям радиационной безопасности жилых домов, общественных и производственных зданий и сооружений, сдающихся в эксплуатацию. Требования настоящих МУ направлены на обеспечение соблюдения действующих нормативов по ограничению облучения населения за счет природных источников ионизирующего излучения при проектировании, строительстве и эксплуатации жилых домов, общественных и производственных зданий и сооружений.

Оценка соответствия жилых домов, общественных и производственных зданий и сооружений санитарно-эпидемиологическим требованиям и гигиеническим нормативам радиационной безопасности при сдаче их в эксплуатацию производится по результатам радиационного контроля.

3.3. В соответствии с п.п. 2 и 3 статьи 15 Федерального закона «О радиационной безопасности населения» от 9.01.1996 № 3-ФЗ «В целях защиты населения и работников от влияния природных радионуклидов должны осуществляться: <...> приемка зданий и сооружений в эксплуатацию с учетом уровня содержания радона в воздухе помещений и гамма-излучения природных радионуклидов. <...> При невозможности выполнения нормативов путем снижения уровня содержания радона и гамма-излучения природных радионуклидов в зданиях и сооружениях должен быть изменен характер их использования».

3.4. Настоящие МУ устанавливают минимальный объем и порядок проведения радиационного контроля, необходимые для санитарно-эпидемиологической оценки соответствия жилых домов, общественных и производственных зданий и сооружений при вводе их в эксплуатацию по показателям радиационной безопасности.

3.5. При проведении радиационного контроля жилых домов, общественных и производственных зданий и сооружений определению подлежат следующие показатели радиационной безопасности:

Мощность эквивалентной дозы гамма-излучения (далее - мощность дозы) в помещениях зданий;

Среднегодовое значение ЭРОА изотопов радона в воздухе помещений зданий.

3.6. Радиационный контроль помещений зданий включает поиск и выявление локальных радиационных аномалий в ограждающих конструкциях зданий.

Радиационный контроль зданий начинается с оценки мощности дозы гамма-излучения. При выявлении локальных радиационных аномалий в ограждающих конструкциях здания измерения ЭРОА радона в помещениях не проводятся до установления причин возникновения аномалий и при необходимости их полной ликвидации.

3.7. Радиационный контроль жилых домов, общественных и производственных зданий и сооружений для оценки их соответствия требованиям санитарных правил и гигиенических нормативов по показателям радиационной безопасности проводят испытательные лаборатории, аккредитованные в установленном порядке в соответствующих областях измерений (испытаний).

3.8. Результаты радиационного контроля жилых домов, общественных и производственных зданий и сооружений оформляются протоколом испытательной лаборатории.

4. Требования к методикам и средствам радиационного контроля

4.1. Методики выполнения измерений показателей радиационной безопасности жилых домов, зданий и сооружений общественного и производственного назначения, результаты которых используются для оценки их соответствия требованиям санитарных правил и гигиенических нормативов, проходят аттестацию в порядке, установленном законодательством.

4.2. На средства измерений, используемые для контроля показателей радиационной безопасности жилых домов, общественных и производственных зданий и сооружений, следует иметь действующие свидетельства о государственной поверке.

4.3. Для измерений мощности дозы применяются дозиметры гамма-излучения с техническими характеристиками:

Для 1-го этапа (гамма-съемка ограждающих конструкций) применяются поисковые гамма-радиометры (например, типа СРП-68-01, СРП-88Н и др.) или высокочувствительные дозиметры гамма-излучения, имеющие поисковый режим работы со звуковой индикацией. Поисковые гамма-радиометры (высокочувствительные дозиметры в поисковом режиме работы) должны обеспечивать регистрацию потока гамма-квантов в диапазоне энергий 0,05 - 3,0 МэВ при скорости счета импульсов от 10 с -1 и выше;

Для 2-го этапа контроля (измерения мощности дозы гамма-излучения) применяются дозиметры, у которых нижний предел диапазона измерения мощности дозы гамма-излучения при суммарной относительной неопределенности (Р = 0,95) не выше 60 % должна составлять не более 0,1 мкЗв/ч; суммарная относительная неопределенность измерений мощности дозы на уровне 0,3 мкЗв/ч и выше должна быть не более 30 %.

4.4. Для определения ЭРОА изотопов радона в воздухе помещений следует применять средства измерений с техническими характеристиками:

Нижний предел диапазона измерения ЭРОА радона (ОА радона) в воздухе на уровне не выше 20 Бк/м 3 (40 Бк/м 3) с суммарной относительной неопределенностью (Р = 0,95) не более 50 %;

Суммарная относительная неопределенность (Р = 0,95) измерения ЭРОА радона (ОА радона) в воздухе на уровне более 20 Бк/м 3 (40 Бк/м 3) - не более 30 %;

Нижний предел диапазона измерения ЭРОА торона в воздухе на уровне не выше 5 Бк/м 3 с суммарной относительной неопределенностью не более 30 %.

4.5. Ограничения на условия выполнения измерений при определении мощности дозы гамма-излучения и ЭРОА изотопов радона в воздухе помещений устанавливаются в соответствующих методиках выполнения измерений.

Поиск и выявление локальных радиационных аномалий на прилегающей территории (при необходимости) и измерения мощности дозы гамма-излучения рекомендуется проводить при толщине снежного покрова на территории не более 0,1 м.

5. Определение мощности дозы гамма-излучения

5.1. Контролируемой величиной в жилых домах и общественных зданиях и сооружениях является разность между мощностью эквивалентной дозы гамма-излучения в помещениях и на прилегающей территории, которая не должна превышать 0,3 мкЗв/ч.

Контролируемой величиной в производственных зданиях и сооружениях, сдающихся в эксплуатацию после окончания строительства, капитального ремонта или реконструкции, является мощность эквивалентной дозы гамма-излучения в помещениях, которая не должна превышать 0,6 мкЗв/ч с учетом фона.

5.2. Контроль мощности дозы гамма-излучения на территориях благоустройства жилых домов, общественных и производственных зданий и сооружений следует проводить в соответствии с п. 5 МУ 2.6.1.2398-08 .

5.3. Измерения мощности дозы гамма-излучения на прилегающей территории, результаты которых используются для оценки соответствия помещений требованиям НРБ-99/2009 , производятся вблизи обследуемого здания не менее чем в 5 точках, по возможности расположенных на расстоянии от 30 до 100 м от существующих зданий и сооружений.

Для измерений по возможности выбирают участки с естественным грунтом, не имеющим локальных техногенных изменений (щебень, песок, асфальт). При использовании дозиметров типа ДРГ-01Т1, ДБГ-06Т и т.п. число измерений в каждой точке должно быть не менее 10, а при использовании дозиметров с неограниченным временем интегрирования длительность измерения должна выбираться такой, чтобы статистическая погрешность результата измерения не превышала 20 %.

В качестве численного значения мощности дозы гамма-излучения в каждой контрольной точке на прилегающей территории принимают среднее значение по результатам измерений.

5.4. Контроль мощности дозы гамма-излучения в помещениях жилых домов, общественных и производственных зданий и сооружений следует проводить в два этапа.

5.5. На первом этапе проводится гамма-съемка поверхности ограждающих конструкций помещений здания с целью выявления и исключения в сдающемся здании мощных источников гамма-излучения, представляющих непосредственную угрозу жизни и здоровью населения.

Гамма-съёмка проводится с использованием поисковых радиометров со сцинтилляционными детекторами и удобными выносными датчиками типа СРП-68-01 и осуществляется путем обхода всех помещений здания по свободному маршруту по центру помещений при непрерывном наблюдении за показаниями поискового радиометра с постоянным прослушиванием скорости счета импульсов в головной телефон.

5.6. Если по результатам гамма-съемки в стенах и полах помещений не выявлено зон, в которых показания радиометра в 2 раза или более превышают среднее значение, характерное для остальной части ограждающих конструкций помещения, и при этом мощность дозы не превышает значения 0,3 мкЗв/ч в помещениях жилых и общественных зданий или 0,6 мкЗв/ч - в помещениях производственных зданий и сооружений, то считается, что локальные радиационные аномалии в конструкциях зданий отсутствуют.

При обнаружении локальных радиационных аномалий в конструкциях зданий принимаются меры по их устранению.

5.7. На втором этапе проводятся измерения мощности дозы гамма-излучения в квартирах жилых домов и помещениях общественных и производственных зданий и сооружений. При этом в число контролируемых обязательно включаются помещения, в которых зафиксированы максимальные показания поисковых радиометров (дозиметров), а также помещения после ликвидации обнаруженных локальных радиационных аномалий.

Измерения мощности дозы гамма-излучения в помещении выполняют в точке, расположенной в его центре на высоте 1 м от пола. Для измерений выбирают типичные помещения, ограждающие конструкции которых изготовлены из различных строительных материалов.

5.8. Объем контроля следует определять достаточным для выявления всех помещений, в которых мощность дозы гамма-излучения может превышать установленный норматив, а также для оценки ее максимальных значений в типичных помещениях (по функциональному назначению, занимаемой площади, на этаже, в подъезде, а также по типу использованных строительных материалов). Число квартир (помещений) выбирается в зависимости от этажности здания, общего числа квартир (помещений), наличия достоверных сведений о показателях радиационной безопасности земельного участка, содержании природных радионуклидов в строительном сырье и материалах и других характеристик здания.

Если имеются документальные сведения о соответствии показателей радиационной безопасности земельного участка требованиям п.п. 5.1.6 и 5.2.3 ОСПОРБ-99/2010 , а строительного сырья и материалов, использованных при строительстве здания , требованиям п. 5.3.4. НРБ-99/2009 , то объем контроля выбирается минимальным с учетом:

Для односемейных домов, школьных и дошкольных детских учреждений измерения проводятся во всех помещениях для постоянного пребывания людей;

В многоквартирных домах при числе квартир до 10 и зданиях и сооружениях общественного и производственного назначения при числе помещений для постоянного пребывания людей до 30 оптимальное число квартир (помещений), где проводятся измерения, может составлять 25 % от их общего числа;

В многоквартирных домах при числе квартир до 100 и зданиях и сооружениях общественного и производственного назначения при числе помещений для постоянного пребывания людей до 100 оптимальное число квартир (помещений), где проводятся измерения, может составлять 10 %;

При числе квартир в жилом здании (помещений для постоянного пребывания людей в зданиях и сооружениях общественного и производственного назначения) свыше 100 до 1000 оптимальное число обследуемых квартир (помещений), где проводятся измерения, может составлять 5 %, но не менее 20 квартир (помещений);

При большем числе квартир (помещений для постоянного пребывания людей в зданиях и сооружениях общественного и производственного назначения) оптимальное число обследуемых квартир (помещений), где проводятся измерения, может составлять 50 квартир (помещений).

При отсутствии достоверных сведений о соответствии показателей радиационной безопасности земельного участка и/или содержания природных радионуклидов в строительном сырье и материалах установленным требованиям объем контроля следует увеличить. Решение об увеличении объема контроля принимает организация, осуществляющая радиационное обследование здания .

5.9. В жилых многоквартирных домах измерения в каждой выбранной для контроля квартире следует проводить не менее чем в двух помещениях, которые отличаются по функциональному назначению. В общественных и производственных зданиях и сооружениях измерения мощности дозы следует проводить в помещениях, в которых время пребывания людей (работников) максимально.

В жилых многоэтажных домах (общественных и производственных зданиях и сооружениях) в число контролируемых следует включать квартиры (помещения) в каждом подъезде и обязательно помещения на первом этаже зданий.

МкЗв/ч, где (1)

Максимальное значение мощности дозы по результатам измерений в помещениях квартиры (в помещении общественного здания), мкЗв/ч 1 ;

Наименьшее из результатов измерений мощности дозы в контрольных точках на прилегающей территории по п. МУ, мкЗв/ч. При этом измерения мощности дозы гамма-излучения для расчета разности между мощностью дозы в помещении и на прилегающей территории выполняются одним и тем же экземпляром дозиметра.

1 Дозиметры гамма-излучения разного типа характеризуются разным значением собственного фона и отклика на космическое излучение (H ф+о ), значение которого при необходимости может быть определено над водной поверхностью при глубине воды не менее 5 м и расстоянии до берега не менее 50 м.

Для производственных зданий и сооружений определяют среднее значение мощности дозы гамма-излучения для каждого помещения, в котором проводились измерения.

5.11. Если для мощности дозы гамма-излучения в помещениях жилых и общественных зданий выполняется условие:

то они соответствуют требованиям НРБ-99/2009 и ОСПОРБ-99/2010 по данному показателю.

Помещения производственных зданий и сооружений соответствуют требованиям санитарных правил и гигиенических нормативов по мощности дозы гамма-излучения, если для них выполняется условие:

При соблюдении этих условий и предварительной выдержке здания при закрытых окнах и дверях (как в помещениях, так и в подъездах) и штатном режиме работы принудительной вентиляции (при ее наличии) не менее 12 ч, оценка среднегодового значения ЭРОА изотопов радона в воздухе здания проводится по формуле:

Измерения ЭРОА изотопов радона в воздухе помещений по возможности следует проводить при наиболее высоком для данной местности барометрическом давлении и слабом ветре.

6.10. Если для всех обследованных помещений (не считая технических помещений в подвальных этажах) в жилых домах и общественных зданиях и сооружениях выполняется условие:

6.13. Обследование и оценку среднегодового значения ЭРОА изотопов радона в воздухе помещений производственных зданий и сооружений проводят в соответствии с п.п. - МУ, при этом в правой части условий () и () вместо среднегодового значения ЭРОА изотопов радона 100 Бк/м 3 , принимают значение 150 Бк/м 3 .

7. Термины и определения

В дополнение к принятым в НРБ-99/09 и ОСПОРБ-99/2010 в настоящих МУ использованы следующие термины и определения:

7.1. Жилой дом - здание, предназначенное для постоянного или временного проживания людей, включая общежития.

7.2. Изотопы радона - 222 Rn (радон) и 220 Rn (торон).

7.3. Короткоживущие дочерние продукты радона (ДПР) и торона (ДПТ) - изотопы RaA (218 Po), RaB (214 Pb), RaC (214 Bi) и ThB (212 Pb), ThC (212 Bi) соответственно.

7.4. Природные радионуклиды - радиоактивные элементы рядов урана-238 (238 U ), тория-232 (232 Th) и калия-40 (40 К) 1 .

1 Перечисленные радионуклиды вносят основной вклад в облучение населения за счет природных источников излучения. Сведения о некоторых других наиболее распространенных природных радионуклидах приведены в .

7.5. Источник излучения природный - источник ионизирующего излучения природного происхождения, на который распространяется действие НРБ-99/2010. Проявление природных источников излучения связано с присутствием природных радионуклидов в объектах среды обитания и окружающей среды, а также с космическим излучением.

7.6. Локальная радиационная аномалия - ограниченная зона на участке контролируемой территории (ограждающих конструкций здания), в границах которой значение мощности дозы гамма-излучения на поверхности почвы (ограждающих конструкций здания) в 2 или более раз выше, чем на остальной территории.

7.7. Мощность эквивалентной дозы гамма-излучения в помещении - мощность эквивалентной дозы гамма-излучения в воздухе, измеренная в центре помещения на высоте 1 м от пола. В условиях отсутствия в ограждающих конструкциях помещения радиационных аномалий она характеризует среднее значение мощности дозы гамма-излучения в помещении.

7.8. Мощность эквивалентной дозы гамма-излучения на открытой местности - мощность эквивалентной дозы гамма-излучения в воздухе на высоте 1 м от поверхности земли на достаточном удалении от радиационных аномалий и зданий.

7.9. Общественные здания и сооружения - дома и дворцы культуры, выставочные здания и сооружения, театры, гостиницы, предприятия торговли и общественного питания, в т.ч. кафе, рестораны, стадионы и спортивные залы и т.п.

7.10. Ограждающие конструкции зданий (помещений) - наружные и внутренние стены помещений зданий, включая перегородки.

7.11. Помещение с постоянным пребыванием людей - помещение, в котором предусмотрено пребывание людей непрерывно в течение более 2 ч.

7.12. Производственные здания и сооружения - здания и сооружения, предназначенные для организации производственных процессов или обслуживающих операций с размещением постоянных или временных рабочих мест. На отдельных производствах рабочие места могут размещаться на открытой территории производственного здания или сооружения.

7.13. Прилегающая территория - территория вне контура застройки здания, в пределах которой проектом строительства предусмотрено благоустройство (территория благоустройства).

7.14. Протокол исследований (испытаний) - документ, удостоверяющий факт проведения исследования, испытания, содержащий порядок их проведения и полученные результаты.

7.15. Рабочее место - это неделимое в организационном отношении (в данных конкретных условиях) звено производственного процесса, обслуживаемое одним или несколькими рабочими, предназначенное для выполнения одной или нескольких производственных или обслуживающих операций, оснащенное соответствующим технологическим оборудованием.

7.16. Среднегодовое значение ЭРОА изотопов радона в воздухе помещений - среднее за год значение ЭРОА изотопов радона в воздухе помещений. Наилучшим приближением к действительному среднегодовому значению ЭРОА изотопов радона является его среднее значение по данным двух интегральных измерений с экспозицией не менее 2 месяцев каждое, выполненных в холодный и теплый периоды года.

7.17. Эквивалентная равновесная объемная активность (ЭРОА) изотопов радона А экв = А экв, Rn + 4,6 × А экв, T n - взвешенная сумма объемных активностей смеси ДПР и ДПТ в воздухе, которая создает такую же эффективную дозу внутреннего облучения, что и смесь ДПР и ДПТ, находящихся в радиоактивном равновесии с материнскими радионуклидами - 222 Rn и 220 Rn соответственно.

7.18. Экспертное заключение - документ, выдаваемый федеральными государственными учреждениями здравоохранения - центрами гигиены и эпидемиологии, другими аккредитованными в установленном порядке организациями, экспертами, подтверждающий проведение санитарно-эпидемиологической экспертизы, обследования, исследования, испытания и токсикологических, гигиенических и иных видов оценок в соответствии с техническими регламентами, государственными санитарно-эпидемиологическими правилами и нормативами, с использованием методов и методик, утвержденных в установленном порядке, и содержащий обоснованные заключения о соответствии (несоответствии) предмета санитарно-эпидемиологической экспертизы, обследования, исследования, испытания и токсикологических, гигиенических и иных видов оценок государственным санитарно-эпидемиологическим правилам и нормативам, техническим регламентам.

Приложение 1

М. П.

№ протокола, дата

Характеристика объекта:

здание общей площадью... м 2 , в т.ч. подземная автостоянка площадью... м 2 и встроенные офисные помещения на 1-м этаже здания площадью... м 2 ; подвал, ... секции по... этажей

Материал стен:

монолит

Тип фундамента:

бетонный

Тип окон:

двухкамерные стеклопакеты

Система вентиляции здания:

естественная, во встроенных помещениях - принудительная (в момент проведения измерений принудительная вентиляция включена)

Отопление:

выключено

Объект для измерений ЭРОА изотопов радона:

готов (не готов)

Цель обследования:

радиационное обследование после окончания строительства (реконструкции, капитального ремонта)

Дата и время:

закрытия окон и дверей в здании и включения системы вентиляции (при ее наличии):

«__» _________ 20___ г.

___________________

Дата и время:

начала измерений ЭРОА изотопов радона в воздухе помещений:

«__» _________ 20___ г.

___________________

Средства измерений

, мкЗв/ч

Тип прибора

№ свидетельства о госповерке

Срок действия свидетельства

Кем выдано свидетельство

Основная погрешность измерения

Минимальное значение Н , мкЗв/ч

D Н , мкЗв/ч

Юг, 20 м от здания

Север, 10 м от здания

Восток, 15 м от здания

2. Мощность дозы гамма-излучения в помещениях здания

Дата измерения

Показания поискового прибора, мкР/ч

Результат измерения, , мкЗв/ч

D Н , мкЗв/ч

1-й этаж, оф. 1

1-й этаж, оф. 2

Примечания :

1. Поисковая гамма-съемка проведена во всех помещениях здания; мощность дозы гамма-излучения измерена в помещениях с максимальными показаниями поискового прибора.

2. Во всех остальных помещениях показания поискового прибора не превышают.... мкР/ч.

3. Поверхностных радиационных аномалий в конструкциях здания не обнаружено.

3. Результаты измерений ЭРОА изотопов радона в воздухе помещений

Место измерения: этаж, номер помещения

Дата измерения

ЭРОА ± D , Бк/м

Оценка среднегодовой ЭРОА изотопов радона, ССГ, Бк/м 3

1-й этаж, оф. 2

63 ± 20

2 ± 0,6

2-й этаж, кв. 122

42 ± 13

2 ± 0,6

2-й этаж, кв. 126

80 ± 24

6 ± 1,8

Примечание :

Оценка численного значения С max производилась по формуле:

С max = (ЭРОА Rп + D контроля мощности дозы гамма -излучения

Порядок контроля ЭРОА изотопов радона в воздухе помещений


Основные способы защиты в случае радиационного заражения:
1. Изоляция людей от воздействия излучения.
Защитные свойства зданий, сооружений, убежищ, противорадиационных укрытий:
коэффициент ослабления (во сколько раз меньше): К >1000 - капитальное бомбоубежище; К осл = 50-400 - подвал; К = 5 - в окопе глубиной >1 метра; Kосл = 2 - дом деревянный, легковой автомобиль.
2. Защита органов дыхания.
3. Герметизация жилых помещений.
4. Защита продуктов питания и воды.
5. Применение радиозащитных препаратов, отказ от употребления свежего молока.
6. Строгое соблюдение режимов радиационной защиты.
7. Обеззараживание и санитарная обработка.
8. Эвакуация населения в безопасные районы.

Респираторы эффективны на 75-85% в зависимости от того, насколько плотно к лицу прилегает маска. Лёгкие двух-четырёхслойные марлевые повязки («лепестки») - имеют меньший процент. Надёжная защита органов дыхания - уменьшит риск нахвататься внутреннего облучения от радиоактивной пыли. Общевойсковые фильтрующие противогазы - очищают вдыхаемый воздух, дополнительно, от дыма, тумана отравляющих веществ и бактериальных аэрозолей. На гражданских моделях противогазов, цвет окраски коробки фильтрующего элемента, защищающего от рад-х частиц, в том числе, йода - Оранжевая, текстовая маркировка типа фильтра - Reaktor.

Одежда - с капюшоном, водонепроницаемая, например, плащ. Если такой нет - сверху можно накинуть самодельный плёночный дождевик из полиэтилена. Это защитит от оседающей радиоактивной пыли и, в какой-то степени - от бета-ожога. Жёсткое гамма-излучение (распространяется от источника - прямолинейно) - никакая одежда не остановит.

Диагностика и лечение лучевой болезни

"Лучевая болезнь острая" (ОЛБ) возникает в результате воздействия на организм радиации в дозе более 1 Грэй (величина при кратковременной экспозиции облучением). При меньших значениях - возможна "лучевая реакция".

Хроническая лучевая болезнь (ХЛБ) - развивается в результате длительного облучения организма в дозах 0,1-0,5 сантигрэй (~1-5 миллизиверт) в сутки при суммарной дозе, превышающей 0,7-1 Гр (~700-1000 мЗв).

Наибольшей проникающей способностью обладают гамма-лучи и быстрые нейтроны. Альфа- и бета-излучения вызывают ожоги кожи, слизистых оболочек, внутренних органов и тканей (при попадании изотопов внутрь, с вдыхаемым воздухом, пищей и водой). При аварии на японской атомной станции Фукусима, в первые дни, основная радиоактивность была от йода-131 (более 50%) и цезия-137.

Проникающая радиация поражает ткани и органы тела. Наиболее чувствительны быстроделящиеся клетки: костного мозга, кишечника и кожи. Больше устойчивость - у клеток печени, почек и сердца.

При очень больших величинах радиации, в сотни и тысячи рентген в час - человек видит свечение радиоактивного источника, ощущает исходящее от него тепло, жар и чувствует, вблизи, резкий запах озона в сильно ионизированном воздухе (как после грозы). На примере аварии на Чернобыльской АЭС - у развороченного взрывом реактора, светящего в десяток тысяч Рентген, могла выходить из строя, ломаться и переставать работать электронная аппаратура на полупроводниковых кристаллах (вследствие стирания данных из ячеек памяти - ПЗУ и ОЗУ, деградации n-p переходов в транзисторах и микросхемах, повреждения центрального процессора компьютера и матрицы фотоаппарата), моментально засвечиваться фотоплёнка и, даже, темнеть кварцевое стекло. Обычные, бытовые дозиметры-радиометры - зашкаливает (только прибор, типа старой, допотопной военной модели ДП-5 - покажет хоть что-то, до уровня в 200 Рентген). При такой мощности излучения, с быстрым, по времени (в считанные минуты и часы), набором смертельной дозы в 5-10 Грэй - у людей появляются симптомы, обусловленные сильным облучением: резкая слабость и головная боль, тошнота и рвота. Может повыситься температура тела. В результате сильных лучевых ожогов, появляется гиперемия кожи (покраснение или бронзовый загар) и инъекция сосудов склер (красные белки глаз).

Немедленно госпитализируют всех лиц, у которых общая доза (по критериям первичной реакции) составляет 4 Гр и более.

Точная доза радиации, полученная человеком, определяется по показаниям датчиков излучения (индивидуальных дозиметров) с уточнением по анализу крови и другим клиническим показателям.

Лечение должно проводиться в специализированных клиниках, с последующим регулярным онкоосмотром. Рентгеновские исследования (в том числе флюорографию), по возможности, исключают.

Аптечка с "антидотом от радиации"

Всемирная организация здравоохранения (ВОЗ) предостерегает от бесконтрольного и ажиотажного применения препаратов йода, после аварий на японской АЭС Фукусима. Эксперты ВОЗа подчеркивают, что йодид калия и другие йодсодержащие средства из аптеки не являются универсальными «антидотами радиации»... Они не защищают ни от каких других радиоактивных веществ, кроме радиоактивных изотопов йода. Кроме того, возможно развитие серьезных осложнений от приема этих средств, к примеру, у людей с хронической почечной недостаточностью. Универсального "лекарства от радиации" - пока не существует.

В профилактике и лечении лучевых поражений большое значение имеют "средства дезактивации", применяемые для удаления радиоактивных веществ с поверхности тела и из объектов внешней среды.

Радиопротекторы (различные группы модификаторов лучевого поражения, выпускаемых в виде таблеток, порошков и растворов) - вводятся в организм, заранее, до облучения. К противолучевым средствам относятся, так же, фенольные соединения пищевых и лекарственных растений (мандарин, облепиха, боярышник, пустырник, бессмертник, солодка) и пчелиный прополис. К "чудодейственным", эффективным препаратам, широкого спектра действия, упорно не признаваемым официальной медициной, относятся - АСД-2 фракция (ветеринарный антисептик-стимулятор Дорогова, производства Армавирской биофабрики, или с Московской - дезодорированный)...

Для снятия симптомов интоксикации от химио-лучевой терапии, ускорения наступления ремиссии - применяют Тактивин и другие медицинские препараты-иммунокорректоры и иммуномодуляторы.

При лучевом поражении кожи (ядерный загар) - для лечения её полезны настои / отвары листьев каштана или грецкого ореха на подсолнечном или амарантовом масле. Ореховое масло - может помочь и при обычном солнечном ожоге любой степени, регенерируя повреждённые ткани.

Фруктовые и ягодные напитки (соки, морсы, алкоголь - красное вино), а так же фрукты и некоторые овощи - усиливают обмен веществ и вывод из организма радионуклидов. Повреждающее действие на ткани проникающей радиации - уменьшает растительное масло (обычное, подсолнечное, а лучше - ореховое, облепиховое или оливковое) или приём витамина Е, заранее, перед облучением. Так же, на свободные радикалы в крови, действует гипоксия (при редком дыхании или невысоком содержании кислорода во вдыхаемом воздухе), нужная в момент облучения и в течение нескольких часов - после. При обработке продуктов питания и воды постоянным магнитным полем (магнитом), с индукцией, в рабочей зоне омагничивания, порядка 50-400 миллитесл (500-4000 Гаусс) - лечебный и оздоровительный эффект усиливается, благодаря улучшению водно-солевого обмена (повышается растворимость солей) и состава жидких сред организма (кровь, лимфа и межклеточная жидкость). Эффект омагничивания сохраняется, на действенном уровне, в течение нескольких часов после обработки.


Биологически активные точки (БАТ) для ускорения вывода радиации

Точки акупунктуры для очищения организма от радионуклидов и улучшения метаболизма: V49 на спине, в районе поясницы (и-шэ, нормализует работу сердца, почек и надпочечников), E21 на животе справа (лян-мэнь) и ножные тчк - V40 (вэй-чжун), R8 (цзяо-синь), E36 (цзу-сань-ли). Растирание, массаж всех суставов и основания шеи (легче, особенно там, где лимфатические сосуды и узлы) - очистка костной ткани от радиоактивных изотопов и тяжелых металлов. Должна проводиться чистка био-энергетических меридианов (оздоровление нервной системы, кроветворных органов, прочистка кровеносных и лимфатических сосудов).


Светосоставы постоянного действия (СПД)

С начала прошлого, ХХ века и до 60-х годов, светящуюся в темноте радиевую краску (эффект радиолюминесценции светосостава, на основе реакции 226Ra с медью и цинком) наносили на циферблаты и стрелки настенных и наручных часов, будильников, а так же, использовали для покрытия люминофором ювелирных изделий, сувениров и даже детских игрушек и ёлочных украшений. Радий-226 широко применяли в военной технике, в компасах и оружейных прицелах - на самолётах, кораблях и подводных лодках.

Уровень радиоактивного излучения, в непосредственной близости от светящихся поверхностей этих антикварных старинных вещей, мог достигать больших величин - сотен (у некоторых экземпляров - тысяч) микрорентген в час (так как, изотопом 226Ra, помимо альфа-частиц, испускаются и гамма-лучи с энергией 0.2 МэВ), и приближается к фоновым значениям - на расстоянии 1-2 метра от источника (эффект рассеивания гаммалучей с невысокой энергией). Обычный цвет светящейся радиевой краски - желтоватый или кремовый. Яркость свечения, через год или два, после нанесения - заметно уменьшается (сернистый цинк постепенно разлагается, "выгорает", но излучение остаётся, т.к. период полураспада 226Ra - длительный, более полутора тысяч лет, с нехорошим букетом "дочерних" изотопов). Радий226, по химическому строению, является аналогом кальция и при попадании его молекул в организм человека - может накапливаться в костях, вызывая внутреннее облучение тела.

До 1930-х годов, пока, в Европе, не поняли опасность и последствия воздействия сильной радиации на здоровье человека - долгоживущие изотопы добавляли, там, в продукты питания, в косметику и средства гигиены. Из-за очень высокой цены радия, масштабы и объёмы его применения в гражданских целях - были ограничены.

В современных промышленных безопасных (если не нарушена герметичность прибора) светосоставах постоянного действия (СПД) с близкодействующими источниками радиоактивного излучения - используется, в основном, смесь радиотория (альфа-частицы) и мезотория или тритиевый / прометий-147 (чистая бета) люминофор.

Доза облучения накапливается в организме в виде необратимых изменений тканей и органов (особенно интенсивно - при высоких уровнях проникающей радиации и получении от неё больших доз) и радионуклидов, оседающих в костях и тканях, вызывающих внутреннее облучение (радиоактивный цезий-137 и стронций-90 - имеют период полураспада - около 30 лет, йод-131 - 8 дней).

Уровень, способный оказать заметное вредное влияние на здоровье человека - более 10 миллизивертов в день.

Получив дозу облучения 5 зиверт за несколько часов подряд - человек может умереть в течение нескольких недель.

Уровни вмешательства: для начала временного отселения населения - 30 мЗв в месяц, для окончания - 10 мЗв в месяц. Если прогнозируется, что накопленная за один месяц доза будет находиться выше указанных уровней в течение года, следует решать вопрос о переселении на постоянное место жительства.

С повышенной точностью можно померить радиацию и бытовым дозиметром-радиометром, проведя достаточно много замеров на точке (на высоте 1 метр от поверхности грунта) и посчитав среднее значение или несколькими исправными приборами сразу, с последующим осреднением результатов измерений. Запишите полученные отсчёты, время и количество измерений, название, модель и серийный номер используемой аппаратуры, а также место и причину проверки. Если дождь, то нужно обязательно указать это, так как высокая влажность отрицательно влияет на работу данных приборов. Глазомерно нарисовать карту-схему гамма-съёмки - в виде рисунка или чертежа с основными элементами обстановки (кроки) и указанием ориентации по компасу на участке обследования. При обнаружении локальных очагов гаммаизлучения с мощностью дозы, превышающей удвоенный естественный, для данного района, фон - необходимо провести их тщательное оконтуривание измерениями по десятиметровой координатной сетке и обратиться в местную СЭС (санэпидемстанцию).

Природные, земные источники повышенного радиоактивного фона - обусловлены, в основном особенностями геологического строения конкретного района и, обычно, связаны с находящимися поблизости гранитными (и другими интрузивными горными породами) массивами и обводнёнными тектоническими разломами (источник рад. эманаций газа радона из грунтовых вод). В подземных полостях, в пещерах и штольнях, расположенных там - могут быть повышенные значения радиационного фона, что нужно учитывать спелеологам и диггерам (надо иметь, на группу, хотя бы один работающий нормальный дозиметр-радиометр, с включённой звуковой сигналкой).

Результаты индивидуального контроля доз облучения персонала должны храниться в течение 50 лет. При проведении индивидуального контроля необходимо вести учет годовых эффективной и эквивалентных доз, эффективной дозы за 5 последовательных лет, а также суммарной накопленной дозы за весь период профессиональной работы.

В Чернобыле, на аварии, ликвидаторы работали, пока не набирали дозы в 25 бэр, то есть - двадцать пять рентген (это примерно 250 миллизиверт) после чего - их отправляли оттуда. Контроль состояния здоровья вёлся и по регулярным анализам крови.

От сотового телефона нет радиации, но есть электромагнитное СВЧ-излучение (наибольшая мощность на антенне - в режиме разговора и при плохом качестве принимаемого сигнала), неионизирующее, но, всё-таки, повреждающе действующее на биологические ткани, особенно - на центральную нервную систему (на головной мозг) и на состояние здоровья в целом, ЕСЛИ не пользоваться проводной гарнитурой, телефонными наушниками hands free. Исследования медиков показали, что от электромагн.-ого поля телефонной трубки - ухудшается память, снижаются интеллектуальные способности человека, возникают головные боли и ночная бессонница. При длительности разговоров по мобильнику больше 1 часа в день (профессиональный уровень облучения) - надо регулярно (каждый год) наблюдаться у врача (обязательно - терапевт, при необходимости - онколог). Обезопасить себя можно, если, используя наушники, держать трубку мобильного телефона на достаточном расстоянии, для уменьшения его излучения - не ближе полуметра от головы.

Лица, подвергшиеся одноразовому облучению в дозе, превышающей 100 мЗв, в дальнейшей работе не должны подвергаться облучению в дозе свыше 20 мЗв/год. Эти люди не заразны. Опасность представляют радиоактивные вещества, например, в виде пыли на рабочей спецовке и подошве обуви.

В случае ЧС (чрезвычайной ситуации), для мониторинга обстановки - иметь при себе индивидуальный дозиметр (постоянно включённый в режиме накопления) или радиометр, настроенный на звуковую сигнализацию порогового значения радиации, например - 0.7 мкЗв/час (µSv/h , uSv/h - обозначение на английском языке) = 70 микро рентген / ч. Использованные в зоне рад.заражения противогазы (особенно - их фильтры) - источник излучения.

При сгорании каменного угля - выделяются, содержащиеся в нём, в микроскопических количествах, калий-40, уран-238 и торий-232. По этой причине, печи, которые топили углём, золоотвалы и близлежащие территории, над которыми происходило выпадение пыли и пепла из угольного дыма - имеют некоторую радиоактивность, обычно, не превышающую допустимые нормы. С помощью радиометра и магнитометра - археологи находят, залегающие на большой глубине от поверхности земли, древние стоянки и жилища людей.

После Чернобыльской аварии, на "светящих" территориях, прилегающих к месту катастрофы, в населенных пунктах, которые накрыло радиоактивное облако - специальные механизированные отряды производили, ликвидацию и захоронение или дезактивацию строений и имущества, заражённой техники (грузовых автомобилей и легковых авто, землеройных и строительно-дорожных машин). Радиоационному загрязнению, в результате аварии, подверглись водоемы, пастбища, леса и пашни, часть которых "звенит" до сей поры.

Из литературы, известен трагический инцидент, произошедший в прошлом веке, в Краматорске (Украина), когда на щебеночном карьере был потерян источник Cs. Впоследствии, его обнаружили в стене построенного жилого дома.

Опухолевые (раковые) клетки выдерживают облучение до нескольких тысяч рентген, а здоровые ткани - не выживают, гибнут при поглощённой дозе в 100-400 Р

Йод содержащие препараты и морепродукты (морская капуста / Ламинария) принимать заранее, в разумных количествах и согласно инструкции - для профилактики рака щитовидки от радиоактивного 131 I. Обычный спиртовой раствор йода - пить нельзя. Можно только наружно мазать - в виде йодной сетки (или "в цветочек", под хохлому), рисовать её на кожу шеи или других частей тела (если нет аллергии на это).

Есть несколько основных способов защиты от проникающей радиации: ограничением времени облучения, уменьшением активности и энергии источника излучения, удалённостью - мощность дозы убывает с квадратом расстояния от изотопа (это правило действует только для малых, "точечных источников", относительно небольших линейных размеров). При заражении больших площадей и территорий на поверхности Земли или при попадании радионуклидов, в виде мелкодисперсных частиц, в верхние слои атмосферы, в стратосферу (при достаточно большой мощности ядерных боезарядов - от ста килотонн и выше) - уровень радиоактивного излучения будет выше, урон экологии и опасность для населения, лучевая (дозная) нагрузка - значительнее. В случае крупномасштабной атомной войны, с применением сотен или нескольких тысяч ядерных боеголовок (в том числе - большой и сверхбольшой мощности), помимо радиации, будут катастрофические последствия в виде глобальных (планетарных масштабов) изменений климата, аномально холодной, ядерной зимы и ночи (продолжительностью до нескольких лет) - без солнечного света (доступ солнечной энергии уменьшится в сотни раз, с повсеместным понижением температуры воздуха на 30-40 градусов), с голодом и массовым вымиранием населения целых континентов, исчезновением большинства флоры и фауны, уничтожением экосистем, потерей озонового слоя (который защищает Землю от губительных, для всего живого, космических лучей) атмосферой планеты. Оставшиеся, после глобального катаклизма, без присмотра и технического обслуживания, многочисленные атомные электростанции, хранилища ядерных отходов, фонтанирующие нефтяные скважины и горящие газовые факела, склады, заводы и хим. комбинаты - добавят проблем экологии обезлюдевшей планеты. На сленге "выживальщиков", такие будущие события называются - БП (от аббревиатуры наименования "Большого и Пушистого северного зверька"), а раньше это называли Апокалипсисом. Потом, после осаждения поднятой пыли и пепла на земную и снежную поверхность, при их нагреве от солнечного излучения - начнётся "ядерное лето", с таянием ледников Гималаев, Гренландии, Антарктиды и снежных шапок гор, с повышением уровня мирового океана, внутренних морей и водоёмов, снова случится "всемирный потоп". Возможно, выживут люди, укрывшиеся в горных пещерах и шахтах или в глубоких подземных бункерах и убежищах с запасом продовольствия на несколько лет, с резервом пресной воды, с системами хранения и регенерации воздуха. Возможность выжить при смене полюсов - будет и у подводников атомных подводных лодок, вышедших в море незадолго до катастрофы. Жители городов - попытаются, на какое-то время, укрыться в старых, незатопленных бомбоубежищах или в городских тоннелях метро, пока на ближайших прод. складах не закончатся продукты питания и питьевая вода. У человечества есть ещё шанс избежать очередной и самой разрушительной мировой войны, если появятся, и оптимально начнут внедряться в повседневную жизнь новые NBIC-технологии (нано-, био-, информационные и когнитивные), решающие цивилизационные проблемы с энергоносителями и продовольственным обеспечением населения планеты.

Исследования нефтепромыслов показывают заметное повышение уровней радиации в районе нефтяных скважин, вызванное постепенным отложением на оборудовании и прилегающем грунте солей радия-226, тория-232 и калия-40. Поэтому, отработавшие нефтепромысловые буровые трубы - нередко, становятся радиоактивными отходами.

Неионизирующие излучения, по причине меньшей энергии, в сравнении с ионизирующими - не способны разрывать химические связи молекул. Но, при длительной экспозиции (продолжительности) воздействия и некоторых его параметрах (интенсивность, сочетание частот, модуляция сигнала и его сила, периодичность воздействия) - они могут неблагоприятно действовать на живой организм и ухудшать состояние здоровья людей. По обычной классификации, к неионизирующим относятся: электромагнитные излучения (в диапазоне промышленных и радиочастот), электростатическое поле, лазерное излучение, постоянные и, особенно, переменные магнитные поля (величина которых - больше 0,2 мкТл). В современных городских условиях, жизнь человека постоянно проходит в окружении различных неионизирующих излучений от бытовой техники (микроволновые СВЧ-печи и другие электробытовые приборы), транспорта, проводов линий электропередач (ЛЭП) и т.д. Они представляют опасность для людей с ослабленным иммунитетом, больных с заболеваниями центральной нервной, гормональной, сердечно-сосудистой системы. Обезопасить население можно с помощью различных защитных средств и организационно-технических мероприятий - ограничением времени и интенсивности воздействия, дистанцией (расстояние до излучателя) и расположением, применением заземлённых защитных экранов (листовой металл, фольга или сетка, различные плёнки и текстильные ткани с металлизированным покрытием) для ослабления полей.

Живые организмы постоянно подвергаются облучению от природных источников, к которым относятся космическое излучение, радионуклиды космического и земного происхождения - 40 K, 238 U, 232 Th и их дочерние нуклиды, включая 222 Rn (радон).

Врач-радиолог, если он грамотный и адекватный специалист, будет стараться минимизировать общую дозовую нагрузку для пациента, чтобы лечение, рентгеновское и прочие обследования не вызывали существенных побочных, для здоровья человека, эффектов. Но, набор большой накопленной дозы возможен, если, к примеру, хирург или другой доктор, отправит делать рентген много раз. Для того, чтобы поставить правильный диагноз, эта процедура может повторяться многократно, да ещё в двух или трёх проекциях.

На практике, для быстрой проверки пищевых продуктов или стройматериалов, почвы и грунта бытовым радиометром - крышка-фильтр снимается и прибор работает ("считает") в режиме "индикатора превышений над естественным фоном" излучений гамма + жёсткая бетта (если с крышкой, то будет мерить только гамму). Для защиты от воды и сырости - прибор поместить в прозрачный целлофан. Альфа-частицы - никакой бытовой аппарат не ловит, для этого нужна профессиональная аппаратура.

Мощность эквивалентной дозы техногенного излучения = результат измерения радиометром (в микрозивертах) минус природный (естественный) радиационный фон. В местах нахождения лиц из населения - она не должна превышать 0,12 мкЗв/час. К примеру, фоновое (то есть, обычное) значение в данной местности - 0.10 мкЗв/ч, а померенное там, у внешней поверхности какого-нибудь предмета - 0.15мкЗв/ч. Тогда: 0.15 - 0.10 = 0.05 , что не выше допустимых двенадцати сотых микрозиверт. Значит, в этой точке нет превышения 0,12 мкЗв/час над уровнем фона - техногенка "в норме для населения", по радиации.

В простейшем самодельном радиометре, датчик - это удлинённые листки из тонкой газетной бумаги или лепестки фольги. Они крепятся на металлический стержень, помещённый в стеклянную банку. Сбоку, через стекло, такой индикатор реагирует на гамму, а если поднести объект сверху - ещё на бета- и альфа излучение (на расстоянии до 9 см., напрямую, т.к. альфу поглощает даже лист бумаги и десятисантиметровый слой воздуха). Наэлектризовать детектор статическим электричеством надо так, чтобы время полного разряда было не меньше 30 секунд, по секундомеру (только при достаточной длительности переходного процесса - обеспечивается точность измерений). Для этого можно использовать обычную пластмассовую расчёску. Начинать и заканчивать замеры любым прибором, не только самодельным - с определения фоновых значений (если всё сделали правильно - они будут примерно одинаковыми). Для уменьшения влажности воздуха в банке (чтобы электроскоп держал заряд) - её нагрев и помещение внутрь гранул силикагеля или алюмогеля (их, предварительно, подсушить, прокалить на какой-нибудь достаточно горячей поверхности, на сковородке).

// При поисках первых урановых месторождений, для оборонных целей нашей страны (потенциальные противники, американцы - в то время уже испытывали своё ядерное оружие, и в их планах было - применить его против СССР), советские геологи использовали и такие первые датчики, за неимением других (перед измерениями, банку сушили в горячей Русской печи), для проверки уровня радиоактивности найденных образцов руды.

Пример измерений самодельным лепестковым радиометром на строительных материалах:
фоновое значение - 42 секунды (по результатам нескольких измерений, фон = (41+43+42) / 3 = 42 с.
кварцевый песок - 43 с.
красный кирпич - 32 с.
щебень гранит - 15 с.
РЕЗУЛЬТАТ: щебёнка, похоже что, радиоактивна - её излучение почти в три раза (42: 15 = 2.8) превышает фон (величина не абсолютная, относительная, но кратное превышение фоновых значений - достаточно надёжный показатель). Если измерения специалистов, профессиональным прибором, подтвердят результат (тройное превышение фона), проблемой займётся местная СЭС (санэпидемстанция), МЧС. Они проведут детальное радиометрическое обследование зоны заражения и прилегающей к ней территории и, при необходимости, дезактивацию участка.


Свинцовое отравление (сатурнизм)

К тяжелым металлам относятся те, у которых плотность больше, чем у железа (свинец, мышьяк, кадмий, ртуть, кобальт, никель). Накапливаясь в организме человека, они вызывают канцерогенное действие.

Рассмотрим это на примере свинца (лат. Plumbum).

Свинец поступает в организм разными путями: через органы дыхания (в виде пыли, аэрозолей и паров), с пищей (в желудочно-кишечном тракте всасывается 5-10%) и через кожные покровы. Соединения свинца растворимы в желудочном соке и других жидкостях организма.

Формы «сатурнизма» - слабость, малокровие (бледность), кишечные колики (паралич кишечника), нервные расстройства и боли в суставах. Один из основных признаков болезни - анемия. Мозговые поражения клинически сопровождаются конвульсиями и бредом, иногда приводят к сонливости и коме. Из периферических нервов чаще всего поражаются двигательные нервы, развиваются парезы и параличи чаще разгибателей кистей рук и плечевого пояса. На дёснах образуется серая «свинцовая кайма».

Свинец накапливается в костях (период полувыведения из костной ткани составляет более 20 лет), ногтях и волосах, а так же - в тканях печени и почек.

Свинцовая энцефалопатия - острое расстройство, наблюдаемое чаще у детей, съевших свинецсодержащие краски. Начинается с судорог, после повышения внутричерепного давления и отека мозга.

Красители, содержащие свинец: свинцовые белила (карбонат свинца, ядовит), сурик и глёт (оксиды красного цвета), массикот (жёлтый). Эмалированная посуда, покрытая изнутри эмалью красного или желтого цветов, а так же имеющая сколы и трещины эмали - вредна для здоровья (возможны отравления свинцом, кадмием, никелем, медью, хромом, марганцем и другими металлами).

В природе, свинцовая руда появляется в результате превращения радиоактивных изотопов урана и тория в стабильные (нерадиоактивные) изотопы Pb с выделением альфа-частиц (ядер гелия).

Исторические сведения: в 1697 году, немецкий врач Эберхард Гоккель выпустил книгу под названием «Примечательный отчет о ранее неизвестной "винной болезни", которую в 1694, 95 и 96 годах причинило подслащение кислого вина свинцовым глётом...», по результатам его лечебной практики.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ