Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Свеча Яблочкова - один из вариантов электрической угольной дуговой лампы, изобретённый в 1876 году Павлом Николаевичем Яблочковым .

История создания и применения

Первые опыты с электрическим освещением Павел Николаевич Яблочков начал проводить ещё в своей московской мастерской в 1872 и 1873 годах. Учёный работал тогда с регуляторами разных систем, а затем с вышедшей в то время угольной лампой А. Н. Лодыгина. Яблочков брал тонкие угольки и помещал их между двумя проводниками. Для того чтобы уголь не сгорал, Яблочков обматывал его волокнами горного льна. Идея была в том, чтобы уголь, накаливаясь не сгорал, а накаливал только окружающий его горный лён. Хотя эти опыты были неудачными, они подсказали Яблочкову идею применения в электрическом освещении глины и других подобных материалов.

В 1875 году во время одного из многочисленных опытов по электролизу растворов поваренной соли параллельно расположенные угли, погружённые в электролитическую ванну, случайно, коснулись друг друга. Тотчас между ними вспыхнула электрическая дуга, на короткий миг осветившая ярким светом стены лаборатории. Это натолкнуло Павла Николаевича на мысль о создании более совершенного устройства дуговой лампы без регулятора межэлектродного расстояния - будущей «свечи Яблочкова». В октябре того же года Яблочков уехал за границу. Оказавшись в Париже он устроился на работу в мастерские физических приборов профессора Антуана Бреге. Однако его не покидала мысль о создании дуговой лампы без регулятора.

К началу весны 1876 года Яблочков завершил разработку конструкции электрической свечи и 23 марта того же года получил на неё французский патент за № 112024, содержащий краткое описание свечи в её первоначальных формах и изображение этих форм. Свеча Яблочкова оказалась проще, удобнее и дешевле в эксплуатации, чем угольная лампа Лодыгина, она не имела ни механизмов, ни пружин.

15 апреля 1876 года Яблочков принял участие в выставке физических приборов, которая открылась в Южном Кенсингстоне (Лондон). Там учёный выступал как в качестве представителя фирмы Бреге, так и самостоятельно - экспонировал свою свечу. Лондон стал местом первого публичного показа нового источника света. На невысоких металлических постаментах, установленных на большом расстоянии друг от друга, Яблочков поставил четыре своих свечи, обёрнутых в асбест. К светильникам был подведён ток от динамо-машины, находившейся в соседнем помещении. Поворотом рукоятки ток был включён в сеть, и тотчас обширное помещение залил очень яркий, чуть голубоватый электрический свет. Многочисленная публика пришла в восторг.

Парижский ипподром, освещённый свечами Яблочкова

Лондонская улица, освещённая свечами Яблочкова

Общая схема электрического освещения Яблочкова: фонарь на 4 свечи с коммутатором, питаемый от динамо-машины Грамма

Успех свечи Яблочкова превзошёл ожидания. Вся мировая печать, в особенности техническая, была полна сведениями о новом источнике света. Газеты выходили с заголовками: «Вы должны видеть свечу Яблочкова» ; «Изобретение русского отставного военного инженера Яблочкова - новая эра в технике» ; «Свет приходит к нам с Севера - из России» ; «Северный свет, русский свет, - чудо нашего времени» ; «Россия - родина электричества» и т. д.

В конце лета 1876 года Яблочков вернулся из Лондона в Париж, где его познакомили с инженером и предпринимателем Луи Денейрузом. Для практической реализации своих изобретений и организации производства электрических свечей во Франции, по совету Антуана Бреге, Яблочков заключил с Денейрузом договор, на основании которого тот создал компанию «Syndicat d’etude d’eclairage electrique procedes Jablochkoff». Эта компания помимо производства свечей, вела также работы по установке первичных двигателей и динамомашин для осветительных установок со свечами Яблочкова и полное их оборудование. В первые годы своего существования экспортный оборот компании составил более 5 млн франков. Сам Павел Николаевич, уступив право на использование своих изобретений владельцам компании, как руководитель её технического отдела, продолжал трудиться над дальнейшим усовершенствованием системы освещения, довольствуясь более чем скромной долей от огромных прибылей компании.

Первая установка освещения свечами Яблочкова была устроена в феврале 1877 года в «Salle Marengo» магазина Лувр и состояла из 6 свечей, питаемых двумя машинами «Alliance». Во время действия их наблюдалось мерцание, объясняемое неоднородностью углей и колебаниями числа оборотов двигателя, и дребезжание колпаков («пение» свечи). В фонарях приходилось часто менять свечи после их выгорания, а для того, что бы помещение не оставалось при этом в темноте, оказалось нужным устроить особое приспособление для смены ламп.

Для расширения производства электрических свечей необходимо было решить несколько проблем, главной из которых была проблема обеспечения осветительных установок генераторами переменного тока. Первым шагом в этом направлении было построение мастерскими бельгийского изобретателя Зиновия Теофиля Грамма особого коммутатора, который присоединялся к машине постоянного тока; однако это было лишь частичным разрешением задачи. В 1877 году Грамм выпустил первые машины переменного тока для питания свечей Яблочкова. При помощи этих машин удобно было питать четыре обособленных цепи, в каждую из которых можно было включать несколько свечей. Машины были рассчитаны на электрические свечи в 100 карселей , то есть силой света 961 кандела.

Вслед за магазином Лувр свечи Яблочкова были установлены на площади перед зданием Парижской оперы, в мае 1877 года они впервые осветили одну из магистралей столицы - Avenue de l’Opera. Жители французской столицы в начале сумерек толпами стекались полюбоваться гирляндами белых матовых шаров, установленных на высоких металлических столбах. И когда все фонари разом вспыхивали ярким и приятным светом, публика приходила в восторг. Не меньшее восхищение вызывало освещение парижского крытого ипподрома. Его беговая дорожка освещалась 20 дуговыми лампами с отражателями, а места для зрителей - 120 электрическими свечами Яблочкова, расположенными в два ряда.

17 июня 1877 года свечи Яблочкова установили на Вест-Индских доках в Лондоне, несколько позже свечи Яблочкова осветили часть набережной Темзы, мост Ватерлоо, отель «Метрополь», Гатфильдский замок, Вестгейтские морские пляжи. Почти одновременно с Англией свечи Яблочкова вспыхнули в помещении торговой конторы Юлия Михаэлиса в Берлине. Новое электрическое освещение с исключительной быстротой завоевало Бельгию и Испанию, Португалию и Швецию. В Италии им осветили Колизей, Национальную улицу и площадь Колона в Риме, в Вене - парк Фольскгартен, в Греции - Фалернскую бухту. На Американском континенте «русский свет» впервые вспыхнул в 1878 году в Калифорнийском театре (California Theatre; ныне не существует) в Сан-Франциско. 26 декабря того же года свечи Яблочкова осветили магазины Винемара в Филадельфии; затем улицы и площади Рио-де-Жанейро и городов Мексики. Появились они в Дели, Калькутте, Мадрасе и ряде других городов Британской Индии. Даже персидский шах и король Камбоджи осветили «русским светом» свои дворцы.

В России первая проба электрического освещения по системе Яблочкова была проведена 11 октября 1878 года. В этот день были освещены казармы Кронштадтского учебного экипажа и площадь у дома, занимаемого командиром Кронштадтского морского порта. Спустя две недели, 4 декабря 1878 года, свечи Яблочкова - 8 шаров, впервые осветили Большой театр в Санкт-Петербурге. Газета «Новое время» в номере от 6 декабря писала:

Ни одно из изобретений в области электротехники не получало столь быстрого и широкого распространения, как свечи Яблочкова. Это был подлинный триумф русского инженера.

Компании по коммерческой эксплуатации свечи Яблочкова были основаны во многих странах мира. Свечи Яблочкова появились в продаже и начали расходиться в громадном количестве, так, к примеру, предприятие Бреге ежедневно выпускало свыше 8 тысяч свечей. Каждая свеча стоила около 20 копеек.

Успех освещения по системе Яблочкова вызвал панику среди акционеров английских газовых компаний. Они пустили в ход все средства, вплоть до явных обманов, клеветы и подкупов, чтобы дискредитировать новый способ освещения. По их настоянию английский парламент учредил в 1879 году даже специальную комиссию с целью рассмотрения вопроса о допустимости широкого использования электрического освещения в Британской империи. После длительных дебатов и выслушивания свидетельских показаний члены комиссии так и не пришли к единому мнению по этому вопросу.

В 1877 году русский морской офицер А. Н. Хотинский принимал в Америке крейсеры, строящиеся по заказу России. Он посетил лабораторию Т. Эдисона и передал ему лампу накаливания А. Н. Лодыгина и «свечу Яблочкова» со схемой дробления света. Эдисон внёс некоторые усовершенствования и в ноябре 1879 года получил на них патент как на свои изобретения. Яблочков выступил в печати с жёсткой критикой, заявив, что Томас Эдисон украл у русских не только их мысли и идеи, но и их изобретения. Профессор В. Н. Чиколев писал тогда, что способ Эдисона был не нов и обновления его ничтожны.

Прошедшая в 1881 году в Париже Международная электротехническая выставка, показала, что свеча Яблочкова и его система освещения начали терять своё значение. Хотя изобретения Яблочкова получили высокую оценку и были признаны постановлением Международного жюри вне конкурса, сама выставка явилась триумфом лампы накаливания, которую Т. Эдисон довёл до практического совершенства ещё к 1879 году. Она могла гореть 800-1000 часов без замены, её можно было много раз зажигать, гасить и снова зажигать. К тому же она была и экономичнее свечи. Всё это оказало сильное влияние на дальнейшую работу Павла Николаевича. Начиная с 1882 года он целиком переключился на создание мощного и экономичного химического источника тока.

Свеча Яблочкова в России

Свеча Яблочкова (из фондов Саратовского областного музея краеведения)

В 1878 году Яблочков решил вернуться в Россию, чтобы заняться проблемой распространения электрического освещения. На родине он был восторженно встречен как изобретатель-новатор. Вскоре после приезда изобретателя в Санкт-Петербург была учреждена акционерная компания «Товарищество электрического освещения и изготовления электрических машин и аппаратов П. Н. Яблочков-изобретатель и К°», в числе акционеров которой были промышленники, финансисты, военные - поклонники электрического освещения свечами Яблочкова. Содействие изобретателю оказывали генерал-адмирал Константин Николаевич, композитор Н. Г. Рубинштейн и другие известные лица. Компания открыла свой электротехнический завод на Обводном канале.

Первая проба электрического освещения по системе Яблочкова была проведена в России 11 октября 1878 года. В этот день были освещены казармы Кронштадтского учебного экипажа и площадь у дома, занимаемого командиром Кронштадтского морского порта. Спустя две недели, 4 декабря 1878 года, свечи Яблочкова - 8 шаров, впервые осветили Большой театр в Санкт-Петербурге. Газета «Новое время» в номере от 6 декабря писала:

Весной 1879 года товарищество «Яблочков-изобретатель и К°» соорудило ряд установок электрического освещения. Большинство работ по установке электрических свечей, разработке технических планов и проектов проводилось под руководством Павла Николаевича. Свечи Яблочкова, изготовляемые парижским, а затем петербургским заводом общества, зажглись в Москве и Подмосковье, Ораниенбауме, Киеве, Нижнем Новгороде, Гельсингфорсе (Хельсинки), Одессе, Харькове, Николаеве, Брянске, Архангельске, Полтаве, Красноводске, Саратове и других городах России.

С наибольшим интересом изобретение П. Н. Яблочкова было встречено в учреждениях военно-морского флота. К середине 1880 года в России было установлено около 500 фонарей со свечами Яблочкова. Из них больше половины было установлено на военных судах и на заводах военного и военно-морского ведомств. Например, на Кронштадтском пароходном заводе было установлено 112 фонарей, на царской яхте «Ливадия» - 48 фонарей, на других судах флота - 60 фонарей, при этом установки для освещения улиц, площадей, вокзалов и садов имели каждая не более 10-15 фонарей.

Однако электрическое освещение в России такого широкого распространения, как за границей, не получило. Причин для этого было много: русско-турецкая война, отвлекавшая много средств и внимания, техническая отсталость России, инертность, а подчас и предвзятость городских властей. Не удалось создать и сильную компанию с привлечением крупного капитала, недостаток средств ощущался всё время. Немаловажную роль сыграла и неопытность в финансово-коммерческих делах самого главы предприятия. Павел Николаевич часто отлучался по делам в Париж, а в правлении, как писал В. Н. Чиколев в «Воспоминаниях старого электрика», «…недобросовестные администраторы нового товарищества стали швырять деньги десятками и сотнями тысяч, благо они давались легко!» .

Конструктивные особенности

Подсвечники для свечи Яблочкова с пружинным зажимом

Лампа для свечи Яблочкова (Париж)

Устройство свечи Яблочкова

Первая модель свечи Яблочкова, которая демонстрировалась на выставке в Лондоне, состояла из двух параллельно расположенных углей; для того, чтобы дуга горела только на конце углей, один их углей окружался лёгкоплавкой фарфоровой трубкой или трубкой из белого стекла, как это делалось для имитации свечей в газовом освещении. При обгорании углей эта трубка постепенно расплавлялась. В связи с тем, что угли при питании их постоянным током сгорали неодинаково, положительный уголь делался толще отрицательного. Более толстый положительный электрод электрических свечей давал довольно заметную тень. Дальнейшие исследования показали, что равномерное сгорание углей одинакового сечения возможно только при использовании переменного тока для питания свечи.

Свеча устанавливалась в специальный подсвечник, состоявший из двух медных деталей, изолированных одна от другой и смонтированных на подставке из шифера или какого-либо другого материала. Медные детали представляли собой пружинный зажим, в который вставлялись оба угля для создания хорошего контакта. К этому зажиму подходили два провода от источника тока.

Само название свечи было дано этому источнику света вследствие того, что внешне свечу напоминала фарфоровая оболочка угля и пламя находилось не между электродами, а на конце белого стержня, как это было, например, у стеариновой свечи.

К февралю 1877 года Яблочков несколько усовершенствовал свечу. Он отказался от трубки из фарфора. Свеча теперь состояла из двух угольных блоков 120 мм длиной и 4 мм в диаметре, разделённых изоляционным материалом - каолином. Расстояние между углями составляло 3 мм. На верхнем крае углей устанавливался замыкатель («коломбина») в виде обугленной пластинки, прикреплённой посредством бумажной полоски . При подключении свечи к источнику переменного тока , предохранительная перемычка на конце сгорала, поджигая дугу. Свеча горела ¾ часа; по истечении этого времени приходилось вставлять в фонарь новую свечу. Сила света свечей составляла 20-25 карселей, то есть 192-240 кандела. Эти свечи использовались для освещения магазина Лувр.

На основе опыта по освещению магазина Лувр Яблочкову удалось внести в конструкцию свечи существенные изменения: каолин был заменён гипсом, благодаря чему возрос световой поток; длина угольных блоков доведена до 275 мм, из которых 225 мм было полезной; благодаря улучшению материала, из которого делались свечи, срок их службы был удвоен и доведён до полутора часов. Нижние края углей позднее стали металлизировать (то есть покрывать красной медью), для того, чтобы получить более хороший контакт при вставлении свечи в пружинный держатель. Эта конструкция свечи была рассчитана на массовое распространение.

Свечи закрывались глазурированными шарами из стекла. Диаметр шара обычно был равен 400 мм, вверху его делалось отверстие. Фонари были высотой до 700 мм, в их цоколе имелись дверцы для вентиляции.

Для увеличения времени освещения была разработана конструкция фонаря на 4 свечи, в котором помещалось крестообразно четыре держателя на общей подставке. Через определённый промежуток времени ламповщики обходили фонари и переводили ток особыми коммутаторами со сгоревшей свечи на новую. Впоследствии были придуманы так называемые автоматические подсвечники. Один из них представлял собой конструкцию из нескольких свечей, в каждую из которых упирался металлический стержень. Этот стержень поддерживал рычажок, на котором находился контакт. Когда свеча догорала до определённого уровня, упор уничтожался, контакт падал и ток переходил на другую свечу. Другое устройство было сделано иначе: в середину подсвечника помещался стержень, от которого натягивалась тонкая шёлковая нить; когда свеча догорала, нить загоралась, поддерживаемый ей рычажок падал и переносил ток на другую свечу. Кроме того, для перевода тока под подсвечником устраивался ртутный коммутатор; он состоял из коробки с несколькими отверстиям, в которую была налита ртуть. На оси помещался металлический круг и несколько стержней; в отделение с ртутью входил только один стержень. При таком устройстве, когда свеча горела, рычажок был притянут, а стержень находился в ртути; как только свеча догорала или случайно потухала, рычажок падал, стержень выходил из отделения с ртутью, а новый входил в другое отделение и ток передавался на следующую свечу.

Прочие усовершенствования

Павел Яблочков постоянно вносил усовершенствования в конструкцию лампы. Помимо основного французского патента № 112024 он получил к нему ещё шесть привилегий.

Первая дополнительная привилегия, датированная 16 сентября 1876 года, закрепила за Яблочковым приоритет в замене каолина другими силикатообразными веществами с присадками солей металлов для окраски пламени. Характер изоляционного материала, который помещался в свече между электродами имел большое значение. Остановившись сначала на каолине, Павел Николаевич продолжал изыскивать другие подходящие материалы. Кроме того Яблочков начал использовать эту изоляционную прослойку, для того чтобы окрашивать пламя дуги в разные цвета. Одновременно Яблочков запатентовал изготовление свечей нескольких калибров по силе света. В результате длительной работы ему удалось добиться однородности качества углей и выпускать их в довольно большом ассортименте силой света от 8 до 600 карселей, то есть от 77 до 5766 кандел.

Во второй своей дополнительной привилегии от 2 октября 1876 года Яблочков предусмотрел применение в качестве изолирующей прослойки таких смесей, которые под влиянием нагрева могут превращаться в некоторое небольшое количество полужидкой текучей массы и образовывать дугу в том месте между электродами, где эта капля будет касаться электродов; дуга при этом может перемещаться при движении полужидкой капли. Такие вещества способны увеличивать длину дуги при том же напряжении тока, что было использовано Яблочковым для изготовления свечей на разные силы света.

Третье дополнение к основному французскому патенту № 112024, взятое 23 октября 1876 года, предусматривало, что изоляционная масса делается не из твёрдых кусков, а из порошка, причём угли окружаются оболочкой, наружная часть которой делается из асбестового картона. Угли вокруг оболочки окружены порошком, оболочки углей друг от друга также отделяются порошком.

По четвёртому дополнению от 21 ноября 1876 года угли заменяются трубками, содержащими ту же массу, которая применяется для изоляции. В шестом, последнем, дополнении к патенту № 112024 от 11 марта 1879 года Яблочков снова вернулся к массе, которая должна обеспечивать новое зажигание после потухания свечи. Для осуществления этого масса должна быть достаточно проводящей для возобновления зажигания. Это было достигнуто прибавлением к массе до 10 % цинкового порошка; саму же массу Павел Николаевич сделал из смеси гипса с сернокислым барием.

Патенты

Помимо французского патента № 112024, патенты на электрическую свечу П. Н. Яблочков получил и в других странах:

  • в Англии - на «усовершенствование электрического света», выданный 9 марта 1877 года за № 3552 в качестве предварительной спецификации, и на «усовершенствование в электрических лампах и в устройствах для разделения и распределения электрического света, к ним относящихся», выданный 20 июля 1877 года за № 494.
  • в Германии - на электрическую лампу, выданный 14 августа 1877 года за № 663.
  • в России - на «электрическую лампу и способ распределения в оной электрического тока», выданный 6 (12) апреля 1878 года.
  • в США - на электрическую лампу, выданный 15 ноября 1881 года.

Недостатки свечи Яблочкова

Недостатки, присущие свечам Яблочкова, можно классифицировать следующим образом:

  1. Короткий срок службы свечи; здесь Яблочков достиг возможного технического предела - полтора часа. Увеличивать длину углей было далее невозможно, так как это приводило бы к большему увеличению диаметра колпаков.
  2. Потухание одной лампы связано с потуханием всех последовательно включенных свечей.
  3. Потухшую свечу вновь зажечь было невозможно. Практического разрешения этого вопроса не было найдено.
  4. Для переключения перегоревших ламп требовалось участие обслуживающего персонала. Этот недостаток также практически не был устранён.

Примечания

Литература

  • Капцов Н. А. Павел Николаевич Яблочков, 1847-1894: Его жизнь и деятельность. - М.: Гостехиздат, 1957. - 96 с. - (Люди русской науки).
  • Капцов Н. А. Яблочков - слава и гордость русской электротехники (1847-1894). - М: Военное изд-во Министерства вооружённых сил СССР, 1948.
  • П. Н. Яблочков. К 50-летию со дня смерти (1894-1944) / Под ред. проф. Л. Д. Белькинда. - М., Л.: Государственное энергетическое изд-во, 1944. - С. 23-31
  • Павел Николаевич Яблочков. Труды. Документы. Материалы / отв. ред. чл.-корр. АН СССР М. А. Шателен, сост. проф. Л. Д. Белькинд. - М.: Изд-во Академии наук СССР, 1954. - С. 67


и стория электрической лампочки накаливания представляет собой целую цепь открытий, сделанных разными людьми в разное время. И Эдисон тут внёс весомую лепту, и Лодыгин, и Яблочков, который справедливо считается одним из её первооткрывателей.
А, кроме того, обязательно надо вспомнить выдающегося русского физика Василия Петрова, ещё в 1802 году наблюдавшего явление электрической дуги - яркого разряда, что возникает между сведёнными на определённое расстояние угольными стержнями-электродами. Следовало бы помнить и имена В. Чиколева и А. Шпаковского, также внесших свой вклад в это выдающееся изобретение...
Однако мы остановимся подробнее на Павле Николаевиче Яблочкове. Ведь именно с ним связана одна из самых любопытных и поучительных "изобретательских" историй.
...Официант, мигом возникший у столика в маленьком парижском кафе, принял немудрёный заказ и исчез на кухне. Посетитель же в ожидании рассеянно достал из кармана блокнот, положил его на стол, взялся за карандаш. Одна из страниц была испещрена замысловатыми рисунками. Непосвящённый ничего бы в них не понял - множество каких-то палочек, попарно соединявшихся тонкими дугами. Да ещё наброски чертежей неких механизмов с маленькими, как в часах, шестерёнками. А соседствующие с рисунками пояснения тем более остались бы загадочными для парижанина, потому что сделаны были на чужом языке.
Посетитель кафе склонился над записями, забыв, где он, и глубоко задумался.
Происходило это в 1876 году, когда герою нашего рассказа Павлу Яблочкову едва минуло двадцать девять лет. Позади учёба в Петербургском военном училище, где он и увлёкся физикой, и в особенности столь мало ещё изученной её областью - электричеством. Он успел уже послужить в должности начальника телеграфа только-только построенной Московско-Курской железной дороги. Но это занятие отнимало много времени, и Яблочков его оставил, дабы посвятить себя тому, что считал главным в жизни - разработке надёжной конструкции электрической дуговой лампы.
Судьба занесла его в Париж, поскольку к его опытам на родине, в России, никто не проявлял особого интереса. Здесь же одна из французских фирм предоставила изобретателю мастерскую. И вот уже который месяц Яблочков бился над решением, которое казалось где-то совсем рядом, да всё ускользало.
Опыты Василия Петрова показывали: электрическая дуга, дающая яркий свет, возникает лишь тогда, когда концы горизонтально расположенных угольных электродов находятся друг от друга на строго определённом расстоянии. Чуть оно уменьшается или увеличивается, разряд пропадает. Между тем во время разряда угли выгорают, так что зазор между ними всё время растёт. И чтобы применить угли в электрической дуговой лампе, требовалось придумать специальный механизм-регулятор, который бы постоянно, с определённой скоростью подвигал выгорающие стержни навстречу друг другу. Тогда дуга не погаснет.
Справедливости ради надо сказать, что такие попытки предпринимались и до Яблочкова. Свои дуговые лампы с регуляторами разработали русские изобретатели Шпаковский и Чиколев. Электрические лампы Шпаковского в 1856 уже горели в Москве на Красной площади во время коронации Александра II. Чиколев же использовал мощный свет электрической дуги для работы мощных морских прожекторов. Придуманные этими изобретателями автоматические регуляторы имели отличия, но сходились в одном - были ненадёжны. Лампы горели совсем недолго, а стоили дорого.
Ясно, что требовался иной механизм - простой и безотказный. Над ним-то и бился Павел Яблочков который месяц, о нём только и думал - и у себя в мастерской, и бродя по парижским улочкам, и вот даже здесь, в кафе.
Часовой механизм, что использовался в лампочке Шпаковского, не мог предусмотреть всех "капризов" неравномерно выгорающего угля. Нужно что-то другое. Но что?

Выдающийся русский изобретатель-электротехник Павел Николаевич Яблочков родился в 1847 году в самом центре России - в Сердобском уезде Саратовской губернии. В 19 лет юный Павел, блестяще окончивший Николаевское инженерное училище в Петербурге, стал офицером в сапёрных войсках русской армии. Именно на армейской службе в Кронштадте Павел Яблочков впервые познакомился и на всю жизнь увлёкся тайнами электротехники - во второй половине XIX столетия именно освоение электричества было самым передовым рубежом науки.

Отслужив положенный срок и уволившись в запас, инженер Яблочков не оставил электрическое дело. Как грамотный технический специалист, он стал начальником телеграфа на Московско-Курской железной дороге. С 1874 года Яблочков состоял в обществе естествознания при Московском политехническом музее, где продемонстрировал своё первое изобретение - оригинальный электромагнит с плоской обмоткой.

В следующем 1875 году Павел Николаевич отправился в США на всемирную выставку в Филадельфии, и позже в Лондон на выставку точных и физических приборов. Увлечённый электротехникой, он стремился лично увидеть все наиболее передовые достижения науки того времени.

Вскоре Яблочков приезжает в Париж, где, как уже опытный техник, легко устраивается на работу в мастерскую физических приборов швейцарского инженера Бреге - на тот момент это был один из самых передовых научно-технических центров в Европе. Здесь, к началу весны 1876 года Яблочков завершил разработку своей конструкции электрической лампы и 23 марта получил на неё первый в мире патент за № 112024, содержащий краткое описание и чертежи электрической «свечи». Этот день стал исторической датой, поворотным пунктом в истории развития электротехники, и звёздным часом русского изобретателя.

Электрическая «Свеча Яблочкова» тут же получила признание научного мира. В сравнении с прежними вариантами электрических «угольных ламп» (в частности, русского изобретателя Александра Лодыгина), она оказалась меньше, проще, без лишних усложнений конструкции в виде пружин, и в итоге - дешевле и удобнее в эксплуатации.

Если все прежние, имевшиеся тогда в мире конструкции лам накаливания были именно экспериментальными образцами, служившими для опытов или развлечения, то «свеча Яблочкова» стала первой практической электролампочкой, которую можно было широко использовать в быту и на практике. Русская «свеча» состояла из двух угольных стержней, разделенных изоляционным материалом-прокладкой из каолина, специального огнеупорного сорта глины. Стержни и изоляционный материал «сгорали» с одинаковой скоростью, свет получался ярким, способным осветить как помещения, так и ночные улицы.

Гениальное для того времени русское изобретение сразу же нашло практическое применение - сначала в Париже, где инженер-электрик дорабатывал своё изобретение до промышленного назначения. В феврале 1877 года «Свеча Яблочкова» впервые осветила самые фешенебельные магазины столицы Франции, затем свечи с гравировкой «русский свет» появились в виде гирлянд из матовых белых шаров на площади перед театром Оперы, что вызвало бурный восторг европейской публики. Как писали газеты того времени: «Яблочков поистине подарил людям XIX века чудо… Свет приходит к нам с Севера – из России».

17 июня 1877 года «свечи Яблочкова» впервые широко применили в промышленности – ими осветили Вест-Индские доки в Лондоне. Вскоре лампы русского изобретателя освещали почти весь центр столицы Британии - набережную Темзы, мост Ватерлоо и другие архитектурные сооружения. Почти одновременно «русский свет» завоевывал и другие европейские города, а в декабре 1878 года свечи Яблочкова осветили магазины Филадельфии, площади Рио-де-Жанейро и Мексики. Появились они в Индии, Бирме, и даже в королевских дворцах Камбоджи.

В Россию электрический свет Яблочкова пришел 11 октября 1878 года, осветив Кронштадтские казармы, затем восемь шаров на металлических постаментах осветили здание Большого театра в Петербурге. «Ничто не распространялось так быстро, как свечи Яблочкова», - писали газеты тех лет.

Хотя вскоре в мире появились куда более совершенные конструкции электрических ламп накаливания, но именно русская «Свеча Яблочкова» дала старт электрификации нашего мира. Как признавали современники - Яблочков «вывел электрическое освещение из лаборатории физика на улицу». Изобретатель был удостоен награды Русского императорского технического общества за решение на практике вопроса об электрическом освещении.

Вскоре после триумфа своей «свечи» Павел Николаевич Яблочков возвратился в Россию и занялся созданием мощного и экономичного химического источника тока. Изобретатель продолжал трудиться до последнего дня, он умер в 1894 году в Саратове, работая над схемой освещения родного города. В наше время на воссозданном мемориале ученого «горит» свеча и выбиты его пророческие слова, сказанные 137 лет назад: «Электрический ток будет подаваться в дома как газ или вода».

И Яблочков, и Лодыгин были «временными» эмигрантами. Они не собирались покидать родину навсегда и, достигнув успеха в Европе и Америке, вернулись обратно. Просто Россия во все времена «стопорила», как сегодня модно говорить, инновационные разработки, и порой проще было поехать во Францию или США и там «продвинуть» свое изобретение, а потом триумфально вернуться домой известным и востребованным специалистом. Это можно назвать технической эмиграцией — не из-за нищеты или нелюбви к родным разбитым дорогам, а именно с целью оттолкнуться от заграницы, чтобы заинтересовать собой и родину, и мир.

Судьбы этих двух талантливых людей очень похожи. Оба родились осенью 1847 года, служили в армии на инженерных должностях и почти одновременно уволились в близких чинах (Яблочков — поручика, Лодыгин — подпоручика). Оба в середине 1870-х сделали важнейшие изобретения в области освещения, развивали их в основном за границей, во Франции и США. Правда, позже их судьбы разошлись.

Итак, свечи и лампы.

НИТИ НАКАЛИВАНИЯ

Первым делом стоит заметить, что Александр Николаевич Лодыгин не изобрел лампу накаливания. Как не сделал этого и Томас Эдисон, которому Лодыгин в итоге продал ряд своих патентов. Формально пионером использования для освещения раскаленной спирали стоит считать шотландского изобретателя Джеймса Боумана Линдси. В 1835 году в городе Данди он провел публичную демонстрацию освещения пространства вокруг себя с помощью раскаленной проволоки. Он показывал, что такой свет позволяет читать книги без применения привычных свечей. Однако Линдси был человеком множества увлечений и светом больше не занимался — это был лишь один из череды его «фокусов».

А первую лампу со стеклянной колбой в 1838 году запатентовал бельгийский фотограф Марселлен Жобар. Именно он ввел ряд современных принципов лампы накаливания — откачал из колбы воздух, создав там вакуум, применил угольную нить и так далее. После Жобара было еще много электротехников, внесших свой вклад в развитие лампы накаливания, — Уоррен де ла Рю, Фредерик Маллинс (де Молейнс), Жан Эжен Робер-Уден, Джон Веллингтон Старр и другие. Робер-Уден, к слову, вообще был иллюзионистом, а не ученым — лампу он спроектировал и запатентовал в качестве одного из элементов своих технических трюков. Так что к появлению на «ламповой арене» Лодыгина все уже было готово.

Родился Александр Николаевич в Тамбовской губернии в семье знатной, но небогатой, поступил, как многие дворянские отпрыски того времени, в кадетский корпус (сперва в подготовительные классы в Тамбове, затем — в основное подразделение в Воронеже), служил в 71-м Белевском полку, учился в Московском юнкерском пехотном училище (ныне — Алексеевское), а в 1870-м ушел в отставку, потому что душа его к армии не лежала.

В училище он готовился по инженерной специальности, и это сыграло не последнюю роль в его увлечении электротехникой. После 1870-го Лодыгин плотно занялся работой над совершенствованием лампы накаливания, а заодно вольнослушателем посещал Петербургский университет. В 1872 году он подал заявку на изобретение под названием «Способ и аппараты электрического освещения» и двумя годами позже получил привилегию. Впоследствии он запатентовал свое изобретение в других странах.

Что же изобрел Лодыгин?

Лампочку накаливания с угольным стержнем. Вы скажете — так ведь еще Жобар использовал подобную систему! Да, безусловно. Но Лодыгин, во-первых, разработал намного более совершенную конфигурацию, а во-вторых, догадался, что вакуум — не идеальная среда и увеличить КПД и срок службы можно, наполнив колбу инертными газами, как делается в подобных лампах сегодня. Именно в этом был прорыв мирового значения.

Он основал компанию «Русское товарищество электрического освещения Лодыгин и К°", был успешен, работал над множеством изобретений, в том числе, кстати, над водолазным оборудованием, но в 1884-м был вынужден покинуть Россию по политическим причинам. Да, из-за них уезжали во все времена. Дело было в том, что смерть Александра II от бомбы Гриневицкого привела к массовым облавам и репрессиям в среде сочувствующих революционерам. В основном это была творческая и техническая интеллигенция — то есть общество, в котором вращался Лодыгин. Уехал он не от обвинений в каких-либо противоправных действиях, а скорее от греха подальше.

До того он уже работал в Париже, а теперь перебрался в столицу Франции жить. Правда, созданная им за рубежом компания довольно быстро разорилась (бизнесменом Лодыгин был очень сомнительным), и в 1888 году он переехал в США, где устроился на работу в Westinghouse Electric («Вестингауз электрик»). Джордж Вестингауз привлекал к своим разработкам ведущих инженеров со всего мира, порой перекупая их у конкурентов.

В американских патентах Лодыгин закрепил за собой первенство в разработке ламп с нитями накаливания из молибдена, платины, иридия, вольфрама, осмия и палладия (не считая многочисленных изобретений в других сферах, в частности патента на новую систему электрических печей сопротивления). Вольфрамовые нити используются в лампочках и сегодня — по сути, Лодыгин в конце 1890-х придал лампе накаливания окончательный вид. Триумф ламп Лодыгина пришелся на 1893 год, когда компания Вестингауза выиграла тендер на электрификацию Всемирной выставки в Чикаго. По иронии судьбы позже, перед отъездом на родину, патенты, полученные в США, Лодыгин продал вовсе не Вестингаузу, а General Electric Томаса Эдисона.

В 1895 году он снова переехал в Париж и там женился на Алме Шмидт, дочери немецкого эмигранта, с которой познакомился в Питтсбурге. А еще спустя 12 лет Лодыгин с женой и двумя дочерьми вернулся в Россию — всемирно известным изобретателем и электротехником. У него не было проблем ни с работой (он преподавал в Электротехническом институте, ныне СПбГЭТУ «ЛЭТИ»), ни с продвижением своих идей. Он занимался общественно-политической деятельностью, работал над электрификацией железных дорог, а в 1917-м с приходом новой власти снова уехал в США, где его приняли весьма радушно.

Пожалуй, Лодыгин — это настоящий человек мира. Живя и работая в России, Франции и США, он везде добивался своего, везде получал патенты и внедрял свои разработки в жизнь. Когда в 1923 году он умер в Бруклине, об этом написали даже газеты РСФСР.

Именно Лодыгина можно назвать изобретателем современной лампочки в большей мере, нежели любого из его исторических конкурентов. Но вот основоположником уличного освещения был вовсе не он, а другой великий русский электротехник — Павел Яблочков, не веривший в перспективы ламп накаливания. Он шел своим путем.

СВЕЧА БЕЗ ОГНЯ

Как отмечалось выше, жизненные пути у двух изобретателей были сперва схожи. По сути, можно просто скопировать часть биографии Лодыгина в этот подраздел, заменив имена и названия учебных заведений. Павел Николаевич Яблочков тоже родился в семье мелкопоместного дворянина, учился в Саратовской мужской гимназии, затем — в Николаевском инженерном училище, откуда вышел в чине инженера-подпоручика и отправился служить в 5-й саперный батальон Киевской крепости. Служил он, правда, недолго и менее чем через год вышел в отставку по здоровью. Другое дело, что на гражданском поприще толковой работы не нашлось, и еще через два года, в 1869-м, Яблочков вернулся в армейские ряды и для повышения квалификации был откомандирован в Техническое гальваническое заведение в Кронштадте (ныне — Офицерская электротехническая школа). Именно там он всерьез заинтересовался электротехникой — заведение готовило военных специалистов для всех связанных с электричеством работ в армии: телеграфа, систем подрыва мин и так далее.

В 1872 году 25-летний Яблочков окончательно ушел в отставку и начал работу над собственным проектом. Он справедливо считал лампы накаливания бесперспективными: действительно, на тот момент они были тусклыми, энергозатратными и не слишком долговечными. Куда больше Яблочкова интересовала технология дуговых ламп, которую в самом начале XIX века независимо друг от друга стали разрабатывать двое ученых — русский Василий Петров и англичанин Гемфри Дэви. Оба они в одном и том же 1802 году (хотя относительно даты «презентации» Дэви есть разночтения) представили перед высшими научными организациями своих стран — Королевским институтом и Петербургской академией наук — эффект свечения дуги, проходящей между двух электродов. На тот момент практического применения этому явлению не было, но уже в 1830-х начали появляться первые дуговые лампы с угольным электродом. Наиболее известным инженером, разрабатывавшим такие системы, был англичанин Уильям Эдвардс Стейт, получивший ряд патентов на угольные лампы в 1834 — 1836 годах и, что главное, разработавший важнейший узел подобного устройства — регулятор расстояния между электродами. В этом крылась основная проблема угольной лампы: по мере того как электроды выгорали, расстояние между ними увеличивалось, и их нужно было сдвигать, чтобы дуга не погасла. Патенты Стейта использовались как базовые множеством электротехников по всему миру, а его лампы освещали ряд павильонов на Всемирной выставке 1851 года.

Яблочков же задался целью исправить основной недостаток дуговой лампы — необходимость обслуживания. Около каждой лампы должен был постоянно присутствовать человек, подкручивающий регулятор. Это сводило на нет преимущества и яркого света, и относительной дешевизны изготовления.

В 1875 году Яблочков, так и не найдя применения своим умениям в России, уехал в Париж, где устроился инженером в лабораторию знаменитого физика Луи-Франсуа Бреге (его дед основал часовую марку Breguet) и сдружился с его сыном Антуаном. Там в 1876 году Яблочков получил первый патент на дуговую лампу без регулятора. Суть изобретения состояла в том, что длинные электроды располагались не концами друг к другу, а рядом, параллельно. Они были разделены слоем каолина — материала инертного и не позволяющего дуге возникнуть по всей длине электродов. Дуга появлялась только на их концах. По мере выгорания видимой части электродов каолин плавился и свет спускался вниз по электродам. Горела такая лампа не более двух-трех часов — но зато невероятно ярко.

«Свечи Яблочкова», как прозвали новинку журналисты, снискали сумасшедший успех. После демонстрации ламп на лондонской выставке сразу несколько компаний выкупили у Яблочкова патент и организовали массовое производство. В 1877 году первые «свечи» загорелись на улицах Лос-Анджелеса (американцы купили партию сразу после публичных демонстраций в Лондоне, еще до серийного производства). 30 мая 1878 года первые «свечи» зажглись в Париже — около Оперы и на площади Звезды. Впоследствии лампы Яблочкова освещали улицы Лондона и ряда американских городов.

Как же так, спросите вы, они же горели всего два часа! Да, но это было сравнимо со временем «работы» обычной свечи, и при этом дуговые лампы были невероятно яркими и более надежными. И да, фонарщиков требовалось много — однако не больше, чем для обслуживания повсеместно использовавшихся газовых фонарей.

Но подступали лампы накаливания: в 1879 году британец Джозеф Суон (впоследствии его компания сольется с компанией Эдисона и станет крупнейшим осветительным конгломератом в мире) поставил около своего дома первый в истории фонарь уличного освещения с лампой накаливания. За считаные годы эдисоновские лампы сравнялись по яркости со «свечами Яблочкова», имея при том значительно более низкую стоимость и время работы 1000 часов и более. Короткая эпоха дуговых ламп завершилась.

В целом это было логично: безумный, невероятный взлет «русского света», как называли «свечи Яблочкова» в США и Европе, не мог продолжаться долго. Падение стало еще более стремительным — уже к середине 1880-х годов не осталось ни одного завода, который производил бы «свечи». Впрочем, Яблочков работал над различными электросистемами и пытался поддерживать свою былую славу, ездил на конгрессы электротехников, выступал с лекциями, в том числе в России.

Окончательно он вернулся в 1892 году, причем потратив сбережения на выкуп собственных же патентов у европейских правообладателей. В Европе его идеи уже были никому не нужны, а на родине он надеялся найти поддержку и интерес. Но не сложилось: к тому времени из-за многолетних экспериментов с вредными веществами, в частности с хлором, здоровье Павла Николаевича начало стремительно ухудшаться. Подводило сердце, подводили легкие, он перенес два инсульта и скончался 19 (31) марта 1894 го- да в Саратове, где жил последний год, разрабатывая схему электрического освещения города. Ему было 47 лет.

Возможно, если бы Яблочков дожил до революции, он повторил бы судьбу Лодыгина и уехал бы во второй раз — теперь уже навсегда.

Сегодня дуговые лампы получили новую жизнь — по этому принципу работает ксеноновое освещение во вспышках, автомобильных фарах, прожекторах. Но значительно более важным достижением Яблочкова является то, что он первым доказал: электрическое освещение общественных пространств и даже целых городов — возможно.

Павел Яблочков и его изобретение

Ровно 140 лет назад, 23 марта 1876 года, великий русский изобретатель Павел Николаевич Яблочков запатентовал свою знаменитую электрическую лампочку. Несмотря на то, что век ее оказался недолог, лампочка Яблочкова стала прорывом для российской науки и первым изобретением русского ученого, получившим широкую известность за границей.

Давайте вспомним, какой вклад внес Яблочков в развитие электрической светотехники и что сделало его на короткий срок одним из самых популярных ученых Европы.

Первые дуговые лампы

В первой половине XIX века в сфере искусственного освещения на смену господствовавшим на протяжении веков свечам пришли газовые лампы. Их тусклый свет стал освещать фабрики и магазины, театры и гостиницы, и, конечно же, улицы ночных городов. Однако, при относительном удобстве в эксплуатации, газовые лампы имели слишком маленькую светоотдачу, да и специально изготавливаемый для них светильный газ стоил отнюдь недешево.

С открытием электричества и изобретением первых источников тока стало ясно, что будущее светотехники лежит именно в этой области. Развитие электрического освещения изначально пошло по двум направлениям: конструирование дуговых ламп и ламп накаливания. Принцип работы первых основывался на эффекте ​электрической дуги , хорошо всем знакомом по электросварке. С детства родители запрещали нам смотреть на ее ослепляющий огонь, и не зря — электрическая дуга способна порождать чрезвычайно яркий источник света.

Дуговые лампы начали широко использоваться примерно с середины XIX века, когда французский физик Жан Бернар Фуко предложил использовать в них электроды не из древесного, а из ретортного угля, что существенно повышало продолжительность их горения.

Но такие дуговые лампы требовали внимания — по мере сгорания электродов, необходимо было сохранять постоянное расстояние между ними, чтобы электрическая дуга не гасла. Для этого использовались очень хитрые механизмы, в частности — регулятор Фуко, придуманный тем же самым французским изобретателем. Регулятор был весьма сложно устроен: механизм включал три пружины и требовал постоянного к себе внимания. Все это делало дуговые лампы чрезвычайно неудобными в использовании. Решить эту проблему взялся русский изобретатель Павел Яблочков.

Яблочков берется за дело

Проявлявший с детства тягу к изобретательству уроженец Саратова Яблочков в 1874 году устроился работать начальником службы телеграфа на железную дорогуМосква-Курск. К этому времени Павел окончательно решил сконцентрировать свое творческое внимание на усовершенствовании существовавших тогда дуговых ламп.

Начальство железной дороги, знавшее о его увлечении, предложило начинающему изобретателю интересное дело. Из Москвы в Крым должен был проследовать правительственный поезд и для обеспечения его безопасности было придумано организовать для машиниста ночное освещение пути.

Один из примеров регулирующих механизмов в дуговых лампах того времени

Яблочков с радостью согласился, взял с собой дуговую лампу с регулятором Фуко и, прикрепив ее к передней части локомотива, всю дорогу до Крыма каждую ночью дежурил возле прожектора. Примерно раз в полтора часа ему приходилось менять электроды, а также постоянно следить за регулятором. Несмотря на то, что опыт по освещению в целом удался, было понятно, что широкого применения такой способ получить не может. Яблочков решил попытаться усовершенствовать регулятор Фуко, чтобы упростить эксплуатацию лампы.

Гениальное решение

В 1875 году Яблочков, проводя в лаборатории опыт по электролизу поваренной соли, случайно вызвал между двумя параллельно расположенными угольными электродами появление электрической дуги. В этот момент Яблочкову пришла в голову идея, как улучшить конструкцию дуговой лампы таким образом, чтобы регулятор вовсе перестал бы быть нужным.

Лампочка Яблочкова(или, как ее было принято называть в то время « свеча Яблочкова») была устроена, как и все гениальное, довольно просто. Угольные электроды в ней располагались вертикально и параллельно друг к другу. Концы электродов были соединены тонкой металлической нитью, которая поджигала дугу, а между электродами находилась полоска изолирующего материала. По мере сгорания углей, сгорал и изоляционный материал.

Вот так выглядела свеча Яблочкова. Красная полоса - это и есть изоляционный материал

В первый моделях лампы после отключения электричества поджечь ту же самую свечу не представлялось возможным, так как не было контакта между двумя уже подожженными электродами. Позже Яблочков начал подмешивать в изоляционные полоски порошки различных металлов, которые, при затухании дуги, образовывали на торце специальную полоску. Это позволяло использовать недогоревшие угли повторно.

Догоревшие же электроды моментально заменялись новыми. Это приходилось делать примерно раз в два часа — именно на столько их хватало. Поэтому лампочку Яблочкова логичней было называть именно свечой — менять ее приходилось даже чаще, чем изделие из воска. Зато она была в сотни раз ярче.

Всемирное признание

Завершил создание своего изобретения Яблочков в 1876 году уже в Париже. Из Москвы ему пришлось уехать по финансовым обстоятельствам — будучи талантливым изобретателем, Яблочков был бездарным предпринимателем, что, как правило, выливалось в банкротство и долги всех его предприятий.

В Париже, одном из мировых центров науки и прогресса, Яблочков со своим изобретением быстро достигает успеха. Устроившись в мастерскую академика Луи Бреге, 23 марта 1876 года Яблочков получает патент, после чего его дела под чужим руководством начинают идти в гору.

В том же году изобретение Яблочкова производит фурор на выставке физических приборов в Лондоне. Им тут же начинают интересоваться все крупные европейские потребители и в течениикаких-тодвух лет свеча Яблочкова появляется на улицах Лондона, Парижа, Берлина, Вены, Рима и великого множества других городов Европы. Электрические свечи заменяют устаревшее освещение в театрах, магазинах, богатых домах. Ими умудрились подсветить даже огромный парижский ипподром и развалины Колизея.

Так свеча Яблочкова освещала ночной Париж

Свечи расходились в громадных по тем временам объемах — завод Бреге выпускал по 8 тысяч штук ежедневно. Спросу также поспособствовали и последующие улучшения самого Яблочкова. Так, с помощью примесей, добавляемых в изолятор из ​каолина , Яблочков добился более мягкого и приятного спектра излучаемого света.

А так - Лондон

В России свечи Яблочкова впервые появились в 1878 году в Петербурге. В этом же году изобретатель временно возвращается на родину. Здесь его бурно встречают почестями и поздравлениями. Целью возвращения стало создание коммерческого предприятия, которое помогло бы ускорить электрификацию и способствовать распространению в России электрических ламп.

Однако, уже упомянутые скудные предпринимательские таланты изобретателя вкупе с традиционной для российского чиновничества инертностью и предвзятостью помешали грандиозным планам. Несмотря на большие денежные вливания, такого, как в Европе распространения свечи Яблочкова в России не получили.

Закат свечи Яблочкова

На самом деле, закат дуговых ламп начался еще до изобретения Яблочковым своей свечи. Многие этого не знают, но первый в мире патент на лампу накаливания также получил русский ученый — ​Александр Николаевич Лодыгин . И сделано это было еще в 1874 году.

Яблочков, конечно же, про изобретения Лодыгина прекрасно знал. Более того, косвенно он и сам принял участие в разработке первых ламп накаливания. В 1875-76годах, при работе над изоляционной перегородкой для своей свечи, Яблочков открыл возможность использования коалина в качестве нити в подобных лампах. Но изобретатель посчитал, что у ламп накаливания нет будущего и до конца своих дней над их конструкцией целенаправленно так и не работал. История показала, что в этом Яблочков грубо ошибся.

Во второй половине1870-хгодов американский изобретатель Томас Эдиссон патентует свою лампу накаливания с угольной нитью, срок службы которой составлял 40 часов. Несмотря на многие недостатки, она начинает быстро вытеснять дуговые лампы. А уже в 1890-хгодах лампочка принимает знакомый нам вид — все тот же Александр Лодыгин сначала предлагает использовать для изготовления нити тугоплавкие металлы, в том числе — вольфрам, и закручивать их в спираль, а затем первым же откачивает из колбы воздух, чтобы увеличить срок службы нити. Первая в мире коммерческая лампа накаливания с закрученной вольфрамовой спиралью производилась именно по патенту Лодыгина.

Одна из ламп Лодыгина

Эту революцию электрического освещения Яблочков уже практически не застал, скоропостижно скончавшись в 1894 году, в возрасте 47 лет. Ранняя смерть стала следствием отравления ядовитым хлором, с которым изобретатель много работал в экспериментах. За свою недолгую жизнь Яблочков успел создать еще несколько полезных изобретений — первые в мире генератор и трансформатор переменного тока, а также деревянные сепараторы для химических аккумуляторов, используемые и поныне.

И хотя свеча Яблочкова в своем первоначальном виде канула в небытие, как и все дуговые лампы того времени, в новом качестве она продолжает существовать и сегодня — в виде газоразрядных ламп, последнее время повсеместно внедряемых вместо ламп накаливания. Хорошо знакомые всем неоновые, ксеноновые или ртутные лампы(которые также называют « ​лампами дневного света ») работают, основываясь на том же принципе, что и легендарная свеча Яблочкова.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ