Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Матрицей размера m ? n называется прямоугольная таблица чисел, содержащих m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными буквами латинского алфавита (A,B,C…) , а для обозначения элементов матрицы используются строчные буквы с двойной индексацией:

Где i - номер строки, j - номер столбца.

Например, матрица

Или в сокращённой записи, A=(); i =1,2…, m ; j=1,2, …, n.

Используются другие обозначения матрицы например: , ? ?.

Две матрицы А и В одного размера называются равными , если они совпадают поэлементно,т.е. = , где i= 1, 2, 3, …, m , а j = 1, 2, 3, …, n.

Рассмотрим основные типы матриц:

1. Пусть m = n, тогда матрица А - квадратная матрица, которая имеет порядок n:

Элементы образуют главную диагональ, элементы образуют побочную диагональ.

Квадратная матрица называется диагональной , если все ее элементы, кроме, возможно, элементов главной диагонали, равны нулю:

Диагональная, а значит квадратная, матрица называется единичной , если все элементы главной диагонали равны 1:

Заметим, что единичная матрица является матричным аналогом единицы во множестве действительных чисел, а также подчеркнем, что единичная матрица определяется только для квадратных матриц.

Приведем примеры единичных матриц:

Квадратные матрицы


называются верхней и нижней треугольными соответственно.

  • 2. Пусть m = 1, тогда матрица А - матрица-строка, которая имеет вид:
  • 3. Пусть n =1, тогда матрица А - матрица-столбец, которая имеет вид:

4. Нулевой матрицей называется матрица порядка mn, все элементы которой равны 0:

Заметим, что нулевая матрица может быть квадратной, матрицей-строкой или матрицей-столбцом. Нулевая матрица есть матричный аналог нуля во множестве действительных чисел.

5. Матрица называется транспонированной к матрице и обозначается, если ее столбцы являются соответствующими по номеру строками матрицы.

Пример . Пусть

Заметим, если матрица А имеет порядок mn , то транспонированная матрица имеет порядок nm .

6. Матрица А называется симметричной, если А=, и кососимметричной, если А = .

Пример . Исследовать на симметричность матрицы А и В .

следовательно, матрица А - симметричная, так как А = .

следовательно, матрица В - кососимметричная, так как В = - .

Заметим, что симметричная и кососимметричная матрицы всегда квадратные. На главной диагонали симметричной матрицы могут стоять любые элементы, а симметрично относительно главной диагонали должны стоять одинаковые элементы, то есть На главной диагонали кососимметричной матрицы всегда стоят нули, а симметрично относительно главной диагонали

матрица квадратный лаплас аннулирование

Операции над матрицами и их свойства.

Понятие определителя второго и третьего порядков. Свойства определителей и их вычисление.

3. Общее описание задания.

4. Выполнение заданий.

5. Оформление отчета о лабораторной работе.

Глоссарий

Выучите определения следующих терминов :

Размерностью матрицы называется совокупность двух чисел, состоящая из числа её строк m и числа столбцов n.

Если m=n, то матрицу называют квадратной матрицей порядка n.

Операции над матрицами : транспонирование матрицы, умножение (деление) матрицы на число, сложение и вычитание, умножение матрицы на матрицу.

Переход от матрицы А к матрице А т, строками которой являются столбцы, а столбцами —строки матрицы А, называется транспонированием матрицы А.

Пример: А= , А т = .

Чтобы умножить матрицу на число , нужно каждый элемент матрицы умножить на это число.

Пример: 2А= 2· = .

Суммой (разностью) матриц А и В одинаковой размерности называется матрица С=А В, элементы которой равны с ij = a ij b ij для всех i и j .

Пример: А = ; В = . А+В= = .

Произведением матрицы А m n на матрицу В n k называется матрица С m k , каждый элемент которой c ij равен сумме произведений элементов i-ой строки матрицы А на соответствующий элемент j-го столбца матрицы В:

c ij = a i1 · b 1j + a i2 ·b 2j +…+ a in ·b nj .

Чтобы можно было умножить матрицу на матрицу, они должны быть согласованными для умножения, а именно число столбцов в первой матрице должно быть равно числу строк во второй матрице.

Пример: А= и В = .

А·В—невозможно, т.к. они не согласованы.

В·А= . = = .

Свойства операции умножения матриц .

1. Если матрица А имеет размерность m n, а матрица В—размерность n k , то произведение А·В существует.

Произведение В·А может существовать, только когда m=k.

2.Умножение матриц не коммутативно, т.е. А·В не всегда равно В·А даже если определены оба произведения. Однако если соотношение А·В= В·А выполняется, то матрицы А и В называются перестановочными .

Пример . Вычислить .

Минором элемента называется определитель матрицы порядка, полученный вычёркиванием -ой строки -го столбца.

Алгебраическим дополнением элемента называется .

Теорема разложения Лапласа :

Детерминант квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Пример . Вычислить .

Решение. .

Свойства определителей n-го порядка :

1) Величина определителя не изменится, если строки и столбца поменять местами.

2) Если определитель содержит строку (столбец) из одних нулей, то он равен нулю.

3) При перестановке двух строк (столбцов) определитель меняет знак.

4) Определитель, имеющий две одинаковые строки (столбца), равен нулю.

5) Общий множитель элементов любой строки (столбца) можно вынести за знак определителя.

6) Если каждый элемент некоторой строки (столбца) представляет собой сумму двух слагаемых, то определитель равен сумме двух определителей, в каждом из которых все строки (столбцы), кроме упомянутой, такие же, как и в данном определителе, а в упомянутой строке (столбце) первого определителя стоят первые слагаемые, второго - вторые.

7) Если в определителе две строки (столбца) пропорциональны, то он равен нулю.

8) Определитель не изменится, если к элементам некоторой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

9) Определители треугольных и диагональных матриц равны произведению элементов главной диагонали.

Метод накопления нулей вычисления определителей основан на свойствах определителей.

Пример . Вычислить .

Решение. Вычтем из первой строки удвоенную третью, далее используем теорему разложения по первому столбцу.

~ .

Контрольные вопросы (ОК-1, ОК-2, ОК-11,ПК-1):

1. Что называется определителем второго порядка?

2. Какие основные свойства определителей?

3. Что называется минором элемента?

4. Что называется алгебраическим дополнением элемента определителя?

5. Как разложить определитель третьего порядка по элементам какой-либо строки (столбца)?

6. Чему равна сумма произведений элементов какой-либо строки (или столбца), определителя по алгебраическим дополнениям соответствующих элементов другой строки (или столбца)?

7. В чём заключается правило треугольников?

8. Как вычисляются определители высших порядков способом понижения порядка

10. Какая матрица называется квадратной? Нулевой? Что такое матрица-строка, матрица-столбец?

11. Какие матрицы называются равными?

12. Дать определения операций сложения, умножения матриц, умно-жения матрицы на число

13. Каким условиям должны удовлетворять размеры матриц при сло-жении, умножении?

14. В чём заключаются свойства алгебраических операций: коммута-тивность, ассоциативность, дистрибутивность ? Какие из них выпол-няются для матриц при сложении, умножении, а какие нет?

15. Что такое обратная матрица? Для каких матриц она определена?

16. Сформулировать теорему о существовании и единственности обратной матрицы.

17. Сформулировать лемму о транспонировании произведения мат-риц.

Практические задания общие (ОК-1, ОК-2, ОК-11,ПК-1):

№1. Найти сумму и разность матриц А и В:

а)

б)

в)

№2. Выполните указанные действия:

в) Z= -11А+7В-4С+D

если

№3. Выполните указанные действия:

в)

№4. При помощи применения четырех способов вычисления определителя квадратной матрица, найти определители следующих матриц:

№5. Найти определителей n-ого порядка, по элементам столбца (строки):

а) б)

№6. Найти определитель матрицы, используя свойства определителей:

а) б)

Матрица - это особый объект в математике. Изображается в форме прямоугольной или квадратной таблицы, сложенной из определенного числа строк и столбцов. В математике имеется большое разнообразие видов матриц, различающихся по размерам или содержанию. Числа ее строк и столбцов именуются порядками. Эти объекты употребляются в математике для упорядочивания записи систем линейных уравнений и удобного поиска их результатов. Уравнения с использованием матрицы решаются посредством метода Карла Гаусса, Габриэля Крамера, миноров и алгебраических дополнений, а также многими другими способами. Базовым умением при работе с матрицами является приведение к стандартному виду. Однако для начала давайте разберемся, какие виды матриц выделяют математики.

Нулевой тип

Все компоненты этого вида матрицы - нули. Между тем, число ее строк и столбцов абсолютно различно.

Квадратный тип

Количество столбцов и строк этого вида матрицы совпадает. Иначе говоря, она представляет собой таблицу формы "квадрат". Число ее столбцов (или строк) именуются порядком. Частными случаями считается существование матрицы второго порядка (матрица 2x2), четвертого порядка (4x4), десятого (10x10), семнадцатого (17x17) и так далее.

Вектор-стобец

Это один из простейших видов матриц, содержащий только один столбец, который включает в себя три численных значения. Она представляет ряд свободных членов (чисел, независимых от переменных) в системах линейных уравнений.

Вид, аналогичный предыдущему. Состоит из трех численных элементов, в свою очередь организованных в одну строку.

Диагональный тип

Числовые значения в диагональном виде матрицы принимают только компоненты главной диагонали (выделена зеленым цветом). Основная диагональ начинается с элемента, находящегося в правом верхнем углу, а заканчивается числом в третьем столбце третьей строки. Остальные компоненты равны нулю. Диагональный тип представляет собой только квадратную матрицу какого-либо порядка. Среди матриц диагонального вида можно выделить скалярную. Все ее компоненты принимают одинаковые значения.

Подвид диагональной матрицы. Все ее числовые значения являются единицами. Используя единичный тип матричных таблиц, выполняют ее базовые преобразования или находят матрицу, обратную исходной.

Канонический тип

Канонический вид матрицы считается одним из основных; приведение к нему часто необходимо для работы. Число строк и столбцов в канонической матрице различно, она необязательно принадлежит к квадратному типу. Она несколько похожа на единичную матрицу, однако в ее случае не все компоненты основной диагонали принимают значение, равное единице. Главнодиагональных единиц может быть две, четыре (все зависит от длины и ширины матрицы). Или единицы могут не иметься вовсе (тогда она считается нулевой). Остальные компоненты канонического типа, как и элементы диагонального и единичного, равны нулю.

Треугольный тип

Один из важнейших видов матрицы, применяемый при поиске ее детерминанта и при выполнении простейших операций. Треугольный тип происходит от диагонального, поэтому матрица также является квадратной. Треугольный вид матрицы подразделяют на верхнетреугольный и нижнетреугольный.

В верхнетреугольной матрице (рис. 1) только элементы, которые находятся над главной диагональю, принимают значение, равное нулю. Компоненты же самой диагонали и части матрицы, располагающейся под ней, содержат числовые значения.

В нижнетреугольной (рис. 2), наоборот, элементы, располагающиеся в нижней части матрицы, равны нулю.

Вид необходим для нахождения ранга матрицы, а также для элементарных действий над ними (наряду с треугольным типом). Ступенчатая матрица названа так, потому что в ней содержатся характерные "ступени" из нулей (как показано на рисунке). В ступенчатом типе образуется диагональ из нулей (необязательно главная), и все элементы под данной диагональю тоже имеют значения, равные нулю. Обязательным условием является следующее: если в ступенчатой матрице присутствует нулевая строка, то остальные строки, находящиеся ниже нее, также не содержат числовых значений.

Таким образом, мы рассмотрели важнейшие типы матриц, необходимые для работы с ними. Теперь разберемся с задачей преобразования матрицы в требуемую форму.

Приведение к треугольному виду

Как же привести матрицу к треугольному виду? Чаще всего в заданиях нужно преобразовать матрицу в треугольный вид, чтобы найти ее детерминант, по-другому называемый определителем. Выполняя данную процедуру, крайне важно "сохранить" главную диагональ матрицы, потому что детерминант треугольной матрицы равен именно произведению компонентов ее главной диагонали. Напомню также альтернативные методы нахождения определителя. Детерминант квадратного типа находится при помощи специальных формул. Например, можно воспользоваться методом треугольника. Для других матриц используют метод разложения по строке, столбцу или их элементам. Также можно применять метод миноров и алгебраических дополнений матрицы.

Подробно разберем процесс приведения матрицы к треугольному виду на примерах некоторых заданий.

Задание 1

Необходимо найти детерминант представленной матрицы, используя метод приведения его к треугольному виду.

Данная нам матрица представляет собой квадратную матрицу третьего порядка. Следовательно, для ее преобразования в треугольную форму нам понадобится обратить в нуль два компонента первого столбца и один компонент второго.

Чтобы привести ее к треугольному виду, начнем преобразование с левого нижнего угла матрицы - с числа 6. Чтобы обратить его в нуль, умножим первую строку на три и вычтем ее из последней строки.

Важно! Верхняя строка не изменяется, а остается такой же, как и в исходной матрице. Записывать строку, в четыре раза большую исходной, не нужно. Но значения строк, компоненты которых нужно обратить в нуль, постоянно меняются.

Осталось только последнее значение - элемент третьей строки второго столбца. Это число (-1). Чтобы обратить его в нуль, из первой строки вычтем вторую.

Выполним проверку:

detA = 2 x (-1) x 11 = -22.

Значит, ответ к заданию: -22.

Задание 2

Нужно найти детерминант матрицы методом приведения его к треугольному виду.

Представленная матрица принадлежит к квадратному типу и является матрицей четвертого порядка. Значит, необходимо обратить в нуль три компонента первого столбца, два компонента второго столбца и один компонент третьего.

Начнем приведение ее с элемента, находящегося в нижнем углу слева, - с числа 4. Нам нужно обратить данное число в нуль. Удобнее всего сделать это, умножив на четыре верхнюю строку, а затем вычесть ее из четвертой. Запишем итог первого этапа преобразования.

Итак, компонент четвертой строки обращен в нуль. Перейдем к первому элементу третьей строки, к числу 3. Выполняем аналогичную операцию. Умножаем на три первую строку, вычитаем ее из третьей строки и записываем результат.

Нам удалось обратить в нуль все компоненты первого столбца данной квадратной матрицы, за исключением числа 1 - элемента главной диагонали, не требующего преобразования. Теперь важно сохранить полученные нули, поэтому будем выполнять преобразования со строками, а не со столбцами. Перейдем ко второму столбцу представленной матрицы.

Снова начнем с нижней части - с элемента второго столбца последней строки. Это число (-7). Однако в данном случае удобнее начать с числа (-1) - элемента второго столбца третьей строки. Чтобы обратить его в нуль, вычтем из третьей строки вторую. Затем умножим вторую строку на семь и вычтем ее из четвертой. Мы получили нуль вместо элемента, расположенного в четвертой строке второго столбца. Теперь перейдем к третьему столбцу.

В данном столбце нам нужно обратить в нуль только одно число - 4. Сделать это несложно: просто прибавляем к последней строке третью и видим необходимый нам нуль.

После всех произведенных преобразований мы привели предложенную матрицу к треугольному виду. Теперь, чтобы найти ее детерминант, нужно только произвести умножение получившихся элементов главной диагонали. Получаем: detA = 1 x (-1) x (-4) x 40 = 160. Следовательно, решением является число 160.

Итак, теперь вопрос приведения матрицы к треугольному виду вас не затруднит.

Приведение к ступенчатому виду

При элементарных операциях над матрицами ступенчатый вид является менее "востребованным", чем треугольный. Чаще всего он используется для нахождения ранга матрицы (т. е. количества ее ненулевых строк) или для определения линейно зависимых и независимых строк. Однако ступенчатый вид матрицы является более универсальным, так как подходит не только для квадратного типа, но и для всех остальных.

Чтобы привести матрицу к ступенчатому виду, сначала нужно найти ее детерминант. Для этого подойдут вышеназванные методы. Цель нахождения детерминанта такова: выяснить, можно ли преобразовать ее в ступенчатый вид матрицы. Если детерминант больше или меньше нуля, то можно спокойно приступать к заданию. Если же он равен нулю, выполнить приведение матрицы к ступенчатому виду не получится. В таком случае нужно проверить, нет ли ошибок в записи или в преобразованиях матрицы. Если подобных неточностей нет, задание решить невозможно.

Рассмотрим, как привести матрицу к ступенчатому виду на примерах нескольких заданий.

Задание 1. Найти ранг данной матричной таблицы.

Перед нами квадратная матрица третьего порядка (3x3). Мы знаем, что для нахождения ранга необходимо привести ее к ступенчатому виду. Поэтому сначала нам необходимо найти детерминант матрицы. Воспользуемся методом треугольника: detA = (1 x 5 x 0) + (2 x 1 x 2) + (6 x 3 x 4) - (1 x 1 x 4) - (2 x 3 x 0) - (6 x 5 x 2) = 12.

Детерминант = 12. Он больше нуля, значит, матрицу можно привести к ступенчатому виду. Приступим к ее преобразованиям.

Начнем его с элемента левого столбца третьей строки - числа 2. Умножаем верхнюю строку на два и вычитаем ее из третьей. Благодаря этой операции как нужный нам элемент, так и число 4 - элемент второго столбца третьей строки - обратились в нуль.

Мы видим, что в результате приведения образовалась треугольная матрица. В нашем случае продолжить преобразование нельзя, так как остальные компоненты не удастся обратить в нуль.

Значит, делаем вывод, что количество строк, содержащих числовые значения, в данной матрице (или ее ранг) - 3. Ответ к заданию: 3.

Задание 2. Определить количество линейно независимых строк данной матрицы.

Нам требуется найти такие строки, которые нельзя какими-либо преобразованиями обратить в нуль. Фактически нам нужно найти количество ненулевых строк, или ранг представленной матрицы. Для этого выполним ее упрощение.

Мы видим матрицу, не принадлежащую к квадратному типу. Она имеет размеры 3x4. Начнем приведение также с элемента левого нижнего угла - числа (-1).

Дальнейшие ее преобразования невозможны. Значит, делаем вывод, что количество линейно независимых строк в ней и ответ к заданию - 3.

Теперь приведение матрицы к ступенчатому виду не является для вас невыполнимым заданием.

На примерах данных заданий мы разобрали приведение матрицы к треугольному виду и ступенчатому виду. Чтобы обратить в нуль нужные значения матричных таблиц, в отдельных случаях требуется проявить фантазию и правильно преобразовать их столбцы или строки. Успехов вам в математике и в работе с матрицами!

Назначение сервиса . Матричный калькулятор предназначен для решения матричных выражений, например, таких как, 3A-CB 2 или A -1 +B T .

Инструкция . Для онлайн решения необходимо задать матричное выражение. На втором этапе необходимо будет уточнить размерность матриц.

Действия над матрицами

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).

Допустимые операции: умножение (*), сложение (+), вычитание (-), обратная матрица A^(-1) , возведение в степень (A^2 , B^3), транспонирование матрицы (A^T).
Для выполнения списка операций используйте разделитель точка с запятой (;). Например, для выполнения трех операций:
а) 3А+4В
б) АВ-ВА
в) (А-В) -1
необходимо будет записать так: 3*A+4*B;A*B-B*A;(A-B)^(-1)

Матрица - прямоугольная числовая таблица, имеющая m строк и n столбцов, поэтому схематически матрицу можно изображать в виде прямоугольника.
Нулевой матрицей (нуль-матрицей) называют матрицу, все элементы которой равны нулю и обозначают 0.
Единичной матрицей называется квадратная матрица вида


Две матрицы A и B равны , если они одинакового размера и их соответствующие элементы равны.
Вырожденной матрицей называется матрица, определитель которой равен нулю (Δ = 0).

Определим основные операции над матрицами .

Сложение матриц

Определение . Суммой двух матриц и одинакового размера называется матрица тех же размеров, элементы которой находятся по формуле . Обозначается C = A+B.

Пример 6 . .
Операция сложения матриц распространяется на случай любого числа слагаемых. Очевидно, что A+0=A .
Еще раз подчеркнем, что складывать можно только матрицы одинакового размера; для матриц разных размеров операция сложения не определена.

Вычитание матриц

Определение . Разностью B-A матриц B и A одинакового размера называется такая матрица C, что A+ C = B.

Умножение матриц

Определение . Произведением матрицы на число α называется матрица , получающаяся из A умножением всех ее элементов на α, .
Определение . Пусть даны две матрицы и , причем число столбцов A равно числу строк B. Произведением A на B называется матрица , элементы которой находятся по формуле .
Обозначается C = A·B.
Схематически операцию умножения матриц можно изобразить так:

а правило вычисления элемента в произведении:

Подчеркнем еще раз, что произведение A·B имеет смысл тогда и только тогда, когда число столбцов первого сомножителя равно числу строк второго, при этом в произведении получается матрица, число строк которой равно числу строк первого сомножителя, а число столбцов равно числу столбцов второго. Проверить результат умножения можно через специальный онлайн-калькулятор .

Пример 7 . Даны матрицы и . Найти матрицы C = A·B и D = B·A.
Решение. Прежде всего заметим, что произведение A·B существует, так как число столбцов A равно числу строк B.


Заметим, что в общем случае A·B≠B·A , т.е. произведение матриц антикоммутативно.
Найдем B·A (умножение возможно).

Пример 8 . Дана матрица . Найти 3A 2 – 2A.
Решение.

.
; .
.
Отметим следующий любопытный факт.
Как известно, произведение двух отличных от нуля чисел не равно нулю. Для матриц подобное обстоятельство может и не иметь места, то есть произведение ненулевых матриц может оказаться равным нуль-матрице.

Точки в пространстве, произведение Rv даёт другой вектор, который определяет положение точки после вращения. Если v - вектор-строка , такое же преобразование можно получить, используя vR T , где R T - транспонированная к R матрица.

Энциклопедичный YouTube

    1 / 5

    C# - Консоль - Олимпиада - Квадратная спираль

    Матрица: определение и основные понятия

    Где брать силы и вдохновения Подзарядка 4 квадратной матрицы

    Сумма и разность матриц, умножение матрицы на число

    Транспонована матриця / Транспонированная матрица

    Субтитры

Главная диагональ

Элементы a ii (i = 1, ..., n ) образуют главную диагональ квадратной матрицы. Эти элементы лежат на воображаемой прямой, проходящей из левого верхнего угла в правый нижний угол матрицы. Например, главная диагональ 4х4 матрицы на рисунке содержит элементы a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10.

Диагональ квадратной матрицы, проходящая через нижний левый и верхний правый углы, называется побочной .

Специальные виды

Название Пример с n = 3
Диагональная матрица [ a 11 0 0 0 a 22 0 0 0 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{bmatrix}}}
Нижняя треугольная матрица [ a 11 0 0 a 21 a 22 0 a 31 a 32 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&0&0\\a_{21}&a_{22}&0\\a_{31}&a_{32}&a_{33}\end{bmatrix}}}
Верхняя треугольная матрица [ a 11 a 12 a 13 0 a 22 a 23 0 0 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&a_{12}&a_{13}\\0&a_{22}&a_{23}\\0&0&a_{33}\end{bmatrix}}}

Диагональные и треугольные матрицы

Если все элементы вне главной диагонали нулевые, A называется диагональной . Если все элементы над (под) главной диагональю нулевые, A называется нижней (верхней) треугольной матрицей .

Единичная матрица

Q (x ) = x T Ax

принимает только положительные значения (соответственно, отрицательные значения или и те, и другие). Если квадратичная форма принимает только неотрицательные (соответственно, только неположительные) значения, симметричная матрица называется положительно полуопределённой (соответственно, отрицательно полуопределённой). Матрица будет неопределённой, если она ни положительно, ни отрицательно полуопределена.

Симметричная матрица положительно определена тогда и только тогда, когда все её собственные значения положительны. Таблица справа показывает два возможных случая для матриц 2×2.

Если использовать два различных вектора, получим билинейную форму , связанную с A :

B A (x , y ) = x T Ay .

Ортогональная матрица

Ортогональная матрица - это квадратная матрица с вещественными элементами, столбцы и строки которой являются ортогональными единичными векторами (т. е. ортонормальными). Можно также определить ортогональную матрицу как матрицу, обратная которой равна транспонированной:

A T = A − 1 , {\displaystyle A^{\mathrm {T} }=A^{-1},}

откуда вытекает

A T A = A A T = E {\displaystyle A^{T}A=AA^{T}=E} ,

Ортогональная матрица A всегда обратима (A −1 = A T), унитарна (A −1 = A *), и нормальна (A *A = AA *). Определитель любой ортонормальной матрицы равен либо +1, либо −1. В качестве линейного отображения любая ортонормальная матрица с определителем +1 является простым поворотом , в то время как любая любая ортонормальная матрица с определителем −1 является либо простым отражением , либо композицией отражения и поворота.

Операции

След

Определитель det(A ) или |A | квадратной матрицы A - это число, определяющее некоторые свойства матрицы. Матрица обратима тогда и только тогда , когда её определитель ненулевой.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ