Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Приборы и принадлежности: лабораторная установка с соленоидом, источник питания, милливольтметр, амперметр.

Краткая теория

Соленоидом называется цилиндрическая катушка, содержащая большое, число витков провода, по которому идет ток. Если шаг вин­товой линии проводника, образующего катушку, мал, то каждый ви­ток с током можно рассматривать как отдельный круговой ток, а соленоид - как систему последовательно соединенных круговых токов одинакового радиуса, имеющих общую ось.

Магнитное поле внутри соленоида можно представить как сумму магнитных полей, создаваемых каждым витком. Вектор индукции маг­нитного поля внутри соленоида перпендикулярен плоскости витков, т.е. направлен по оси соленоида и образует с направлением кольце­вых токов витков правовинтовую систему. Примерная картина силовых линий магнитного поля соленоида показана на рис. 1. Силовые линии магнитного поля замкнуты.

На рис, 2 показано сечение соленоида длиной L и с числом витков N и радиусом поперечного сечения R. Кружки с точками обозначают сечения витков катушки, по которым идет ток I , на­правленный от чертежа на нас, а кружки с крестиками - сечения вит­ков, в которых ток направлен за чертеж. Число витков на единицу длины соленоида обозначим .

Индукция магнитного поля в точке А, расположенной на оси соленоида, определяется путем интегрирования магнитных полей, со­здаваемых каждым витком, и равна

, (1)

где и - углы, образуемые с осью соленоида радиус-векто­рами и , проведенными из точки А к крайним виткам солено­ида, -магнитная проницаемость среды, магнитная постоянная.

Таким образом, магнитная индукция В прямо пропорциональна си­ле тока, магнитной проницаемости среды, заполняющей соленоид, и числу витков на единицу длины. Магнитная индукция также зависит от положения точки А относительно концов соленоида. Рассмотрим нес­колько частных случаев:

1. Пусть точка А находится в центре соленоида, тогда , и . Если соленоид достаточно длинный, то и (2)

2. Пусть точка A находится в центре крайнего витка, тогда , и . Если солено­ид достаточно длинный, то , и (3)

Из формул (2) и (3) видно, что магнитная индукция соленоида на его краю вдвое меньше по сравнению с ее величиной в центре.

3. Если длина соленоида во много раз больше радиуса его витков
("бесконечно" длинный соленоид), то для всех точек, лежащих внутри
соленоида на его оси, можно положить . Тогда
поле можно считать в центральной части соленоида однородным и рассчитывать его по формуле

Однородность магнитного поля нарушается вблизи краев соленоида. В этом случае индукцию можно определять по формуле


где k - коэффициент, учитывающий неоднородность поля.

Экспериментальное изучение магнитного поля соленоида в данной работе осуществляется с помощью специального зонда - маленькой катушки, укрепленной внутри штока с масштабной линейкой. Ось катуш­ки совпадает с осью соленоида, катушка подключается к милливольт­метру переменного тока, входное сопротивление которого много боль­ше сопротивления катушки-зонда. Если через соленоид идет перемен­ный ток стандартной частоты ( =50 Гц), то внутри соленоида и на его краях индукция переменного магнитного поля изменяется по закону (см. (5)):

Амплитуда магнитной индукции в этой формуле зависит от положения точки внутри соленоида. Если поместить в соленоид катуш­ку-зонд, то в соответствии с законом электромагнитной индукции, в ней возникает ЭДС индукции:

, (6)

где N 1 - число витков в катушке, S - площадь поперечного сече­ния катушки, Ф - магнитный поток ( , т.к. ось катушки совпадает с осью соленоида и, следовательно, вектор магнитной ин­дукции перпендикулярен плоскости поперечного сечения катушки.).

Так как величина индукции B изменяется по закону , , то из (6) получается формула для расчета ЭДС:

Из выражения (7) видно, что амплитуда ЭДС зависит от . Таким образом, измеряя амплитуду ЭДС, можно определить :

Коэффициент k учитывающий неоднородность магнитного поля соленоида на краях, можно о определить., по формуле. (5), зная и :

(9)

где - амплитуда переменного тока, идущего через соленоид.

Из формул (7) и (9) следует, что амплитуда ЭДС индукции прямо пропорциональна амплитуде переменного тока :

Включенные в цепь переменного тока амперметр и милливольт­метр измеряют действующие значения тока и ЭДС , которые связаны с амплитудами и соотношениями:

Для действующих значений тока и ЭДС формула (10) имеет вид

(11)

Из формулы (11) следует, что отношение пропорциональ­но коэффициенту K неоднородности индукции магнитного поля в точке соленоида, где проводятся измерения

(12)

где А - коэффициент пропорциональности.

В данной работе требуется выполнить два задания: 1) опреде­лить распределение индукции вдоль оси соленоида при некотором постоянном значении тока; 2) определить значение коэффициента к.

Техника безопасности:

1. Не подключают/ самостоятельно источник питания и милливольтметр к сети 220 В.

2. Не производить переключения цепей, находящихся под напряжением.

Не прикасаться к неизолированным частям цепей.

3. Не оставлять без присмотра включенную схему.

Порядок выполнения работы

Задание № 1. Исследование распределения индукции магнитного поля вдоль оси соленоида.

1. Собрать измерительную цепь по схеме, приведенной на рис. 3. Для этого в цепь соленоида включить источник питания и амперметр, а к выводам катушки - зонда - милливольтметр (для измерения ) В данной установке катушка-зонд имеет следующие параметры: =200 витков, S=2*10 -4 м 2 , частота переменного тока = 50 Гц, Число витков на единицу длины соленоида n = 2400 1/м

1- лабораторный стенд Z - шток «

2- катушка-зонд

3- соленоид
5- амперметр

6- источник питания с регулятором выход­ного напряжения (тока), 7- милливольтметр.

2. Установить шток с масштабной линейкой так, чтобы катушка-зонд оказалась примерно в середине соленоида.

3.Включить источник питания соленоида и установить ток соленоида (по амперметру), равный =25мА. Включить милливольтметр и после прогрева (5 мин) снять показания .

4.Перемещая шток с масштабной линейной, измерить при помощи
милливольтметра действующее значение ЭДС индукции через каждый
сантиметр положения линейки. По формуле (8) вычислить .
Результаты измерений и расчетов занести в таблицу 1 (учтите, что ).

Соленоид представляет собой провод, навитый на круглый цилиндрический каркас. Линии В поля соленоида выглядят примерно так, как показано на рис. 50.1. Внутри соленоида направление этих линий образует с направлением тока в витках правовинтовую систему.

У реального соленоида имеется составляющая тока вдоль оси. Кроме того, линейная плотность тока (равная отношению силы тока к элементу длины соленоида ) изменяется периодически при перемещении вдоль соленоида. Среднее значение этой плотности равно

где - число витков соленоида, приходящееся на единицу его длины, I - сила тока в соленоиде.

В учении об электромагнетизме большую роль играет воображаемый бесконечно длинный соленоид, у которого отсутствует осевая составляющая тока и, кроме того, линейная плотность тока постоянна по всей длине. Причина этого заключается в том, что поле такого соленоида однородно и ограничено объемом соленоида (аналогично электрическое поле бесконечного плоского конденсатора однородно и ограничено объемом конденсатора).

В соответствии со сказанным представим соленоид в виде бесконечного тонкостенного цилиндра, обтекаемого током постоянной линейной плотности

Разобьем цилиндр на одинаковые круговые токи - «витки».

Из рис. 50.2 видно, что каждая пара витков, расположенных симметрично относительно некоторой плоскости, перпендикулярной к оси соленоида, создает в любой точке этой плоскости магнитную индукцию, параллельную оси. Следовательно, и результирующее поле в любой точке внутри и вне бесконечного соленоида может иметь лишь направление, параллельное оси.

Из рис. 50.1 вытекает, что направления поля внутри и вне конечного соленоида противоположны. При увеличении длины соленоида направления полей не изменяются и в пределе при остаются противоположными. Для бесконечного соленоида, как и для конечного, направление поля внутри соленоида образует с направлением обтекания цилиндра током правовинтовую систему.

Из параллельности вектора В оси вытекает, что поле как внутри, так и вне бесконечного соленоида должно быть однородным. Чтобы доказать это, возьмем внутри соленоида воображаемый прямоугольный контур 1-2-3-4 (рис. 50.3; участок идет по оси соленоида). Обойдя контур по часовой стрелке, получим для циркуляции вектора В значение Контур не охватывает токов, поэтому циркуляция должна быть равна нулю (см. (49.7)).

Отсюда следует, что Располагая участок контура 2-3 на любом расстоянии от оси, мы каждый раз будем получать, что магнитная индукция на этом расстоянии равна индукции на оси соленоида. Таким образом, однородность поля внутри соленоида доказана.

Теперь обратимся к контуру 1-2-3-4. Мы изобразили векторы штриховой линией, поскольку, как выяснится в дальнейшем, поле вне бесконечного соленоида равно нулю. Пока же мы знаем лишь, что возможное направление поля вне соленоида противоположно направлению поля внутри соленоида. Контур не охватывает токов; поэтому циркуляция вектора В по этому контуру, равная а, должна быть равна нулю.

Отсюда вытекает, что . Расстояния от оси соленоида до участков 1-4 и 2-3 были взяты произвольно. Следовательно, значение В на любом расстоянии от оси будет вне соленоида одно и то же. Таким образом, оказывается доказанной и однородность поля вне соленоида.

Циркуляция по контуру, изображенному на рис. 50.4, равна (для обхода по часовой стрелке). Этот контур охватывает положительный ток величины . В соответствии с (49.7) должно выполняться равенство

или после сокращения на а и замены на (см. )

Из этого равенства следует, что поле как внутри, так и снаружи бесконечного соленоида является конечным.

Возьмем плоскость, перпендикулярную к оси соленоида (рис. 50.5). Вследствие замкнутости линий В магнитные потоки, через внутреннюю часть 5 этой плоскости и через внешнюю часть S должны быть одинаковыми.

Поскольку поля однородны и перпендикулярны к плоскости, каждый из потоков равен произведению соответствующего значения магнитной индукции и площади, пронизываемой потоком. Таким образом, получается соотношение

Левая часть этого равенства конечна, множитель S в правой части бесконечно большой. Отсюда следует, что

Итак, мы доказали, что вне бесконечно длинного соленоида магнитная индукция равна нулю. Внутри соленоида поле однородно.

Положив в (50.3) , придем к формуле для магнитной индукции внутри соленоида:

Произведение называется числом ампер-витков на метр. При витков на метр и силе тока в 1 А магнитная индукция внутри соленоида составляет .

В магнитную индукцию на оси соленоида симметрично расположенные витки вносят одинаковый вклад (см. формулу (47.4)). Поэтому у конца полубесконечного соленоида на его оси магнитная индукция равна половине значения (50.4): - число витков на единицу его длины). В этом случае

Контур, проходящий вне тороида, токов не охватывает, поэтому для него Таким образом, вне тороида магнитная индукция равна нулю.

Для тороида, радиус которого R значительно превосходит радиус витка, отношение для всех точек внутри тороида мало отличается от единицы и вместо (50.6) получается формула, совпадающая с формулой (50.4) для бесконечно длинного соленоида. В этом случае поле можно считать однородным в каждом из сечений тороида. В разных сечениях поле имеет различное направление, поэтому говорить об однородности поля в пределах его тороида можно только условно, имея в виду одинаковость модуля В.

У реального тороида имеется составляющая тока вдоль оси. Эта составляющая создает в дополнение к полю (50.6) поле, аналогичное полю кругового тока.

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны вплотную в одном направлении, а длина катушки значительно больше радиуса витка.

Магнитное поле соленоида можно представить как результат сложения полей, создаваемых несколькими круговыми токами, имеющими общую ось. На рисунке 3 видно, что внутри соленоида линии магнитной индукции каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположное направление.

Поэтому при достаточно плотной намотке соленоида противоположно направленные участки линий магнитной индукции соседних витков взаимно уничтожаются, а одинаково направленные участки сольются в общую линию магнитной индукции, проходящую внутри соленоида и охватывающую его снаружи. Изучение этого поля с помощью опилок показало, что внутри соленоида поле является однородным, магнитные линии представляют собой прямые линии, параллельные оси соленоида, которые расходятся на его концах и замыкаются вне соленоида (рис. 4).

Нетрудно заметить сходство между магнитным полем соленоида (вне его) и магнитным полем постоянного стержневого магнита (рис. 5). Конец соленоида, из которого магнитные линии выходят, аналогичен северному полюсу магнита N , другой же конец соленоида, в который магнитные линии входят, аналогичен южному полюсу магнита S .

Полюсы соленоида с током на опыте легко определить с помощью магнитной стрелки. Зная же направление тока в витке, эти полюсы можно определить с помощью правила правого винта: вращаем головку правого винта по току в витке, тогда поступательное движение острия винта укажет направление магнитного поля соленоида, а следовательно, и его северного полюса. Модуль магнитной индукции внутри однослойного соленоида вычисляется по формуле

B = μμ 0 NI l = μμ 0 nl,

где Ν — число витков в соленоиде, I — длина соленоида, n — число витков, приходящееся на единицу длины соленоида.

Намагничивание магнетика. Вектор намагниченности.
Если по проводнику течет ток, то вокруг проводника создаётся МП. Мы пока рассматривали провода, по которым текли токи, находящиеся в вакууме. Если провода, несущие ток, находятся в некоторой среде, то м.п. изменяется. Это объясняется тем, что под действием м.п. всякое вещество способно приобретать магнитный момент, или намагничиваться (вещество становится магнетиком ). Вещества, намагничивающиеся во внешнем м.п. против направления поля называются диамагнетиками . Вещества, слабо намагничивающиеся во внешнем м.п. по направлению поля называются парамагнетиками Намагниченное в-во создаёт м.п. - , это м.п. накладывается на м.п., обусловленное токами - . Тогда результирующее поле:
. (54.1)

Истинное (микроскопическое) поле в магнетике сильно изменяется в пределах межмолекулярных расстояний. - усреднённое макроскопическое поле.


Для объяснения намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые микроскопические токи, обусловленные движением электронов в атомах и молекулах. Каждый такой ток обладает магнитным моментом и создаёт в окружающем пространстве м.п.

Если внешнее поле отсутствует, то молекулярные токи ориентированы беспорядочным образом, и обусловленное ими результирующее поле равно 0.

Намагниченностью называют векторную величину, равную магнитному моменту единицы объёма магнетика:

, (54.3)

где - физически бесконечно малый объём, взятый в окрестности рассматриваемой точки; - магнитный момент отдельной молекулы.

Суммирование производится по всем молекулам, заключённым в объёме (вспомним где, - поляризованность диэлектрика, - дипольный элемент ).

Намагниченность можно представить так:

Токи намагничивания I" . Намагничивание вещества связано с преимущественной ориентацией магнитных моментов отдельных молекул в одном направлении. Элементарные круговые токи, связанные с каждой молекулой, называются молекулярными. Молекулярные токи оказываются ориентированными, т.е. возникают токи намагничивания - .

Токи, текущие по проводам, вследствие движения в веществе носителей тока называют токами проводимости - .

Для электрона движущегося по круговой орбите по часовой стрелке; ток направлен против часовой стрелки и по правилу правого винта направлен вертикально вверх.

Циркуляция вектора намагниченности по произвольному замкнутому контуру равна алгебраической сумме токов намагничивания, охватываемых контуром Г.

Дифференциальная форма записи теоремы о циркуляции вектора .

Напряжённость магнитного поля (стандартное обозначение Н ) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M .

В СИ: где — магнитная постоянная .

В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ 0 μ H в системе СИ (см. Магнитная проницаемость , также см. Магнитная восприимчивость ).

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации , а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и μ 0 в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ , что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B 0 , который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B . Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи , которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля. Энергия магнитного поля как такового выражается только через фундаментальное B . Тем не менее видно, что величина H феноменологически и тут весьма удобна.

Виды магнетиков Диамагнетики имеют магнитную проницаемость чуть меньше 1. Отличаются тем, что выталкиваются из области магнитного поля.

Парамагнетики имеют магнитную проницаемость чуть более 1. Подавляющее количество материалов являются диа- и пара- магнетиками.

Ферромагнетики обладают исключительно большой магнитной проницаемостью, доходящей до миллиона.

По мере усиления поля проявляется явление гистерезиса , когда при увеличении напряженности и при последующем уменьшении напряженности значения В(Н) не совпадают друг с другом. В литературе различают несколько определений магнитной проницаемости.

Начальная магнитная проницаемость m н - значение магнитной проницаемости при малой напряженности поля.

Максимальная магнитная проницаемость m max - максимальное значение магнитной проницаемости, которое достигается обычно в средних магнитных полях.

Из других основных терминов, характеризующих магнитные материалы, отметим следующие.

Намагниченность насыщения - максимальная намагниченность, которая достигается в сильных полях, когда все магнитные моменты доменов ориентированы вдоль магнитного поля.

Петля гистерезиса - зависимость индукции от напряженности магнитного поля при изменении поля по циклу: подъем до определенного значения - уменьшение, переход через нуль, после достижения того же значения с обратным знаком - рост и т.п.

Максимальная петля гистерезиса - достигающая максимальной намагниченности насыщения.

Остаточная индукция B ост - индукция магнитного поля на обратном ходе петли гистерезиса при нулевой напряженности магнитного поля.

Коэрцитивная сила Н с - напряженность поля на обратном ходе петли гистерезиса при которой достигается нулевая индукция.

Магнитные моменты атомов

Магнитный момент Элементарные частицы обладают внутренним квантовомеханическим свойством известным как спин. Оно аналогично угловому моменту объекта вращающегося вокруг собственного центра масс, хотя строго говоря, эти частицы являются точечными и нельзя говорить об их вращении. Спин измеряют в единицах приведённой планковской постоянной (), тогда электроны, протоны и нейтроны имеют спин равный ½ . В атоме электроны обращаются вокруг ядра и обладают орбитальным угловым моментом помимо спина, в то время как ядро само по себе имеет угловой момент благодаря ядерному спину. Магнитное поле, создаваемое магнитным моментом атома, определяется этими различными формами углового момента, как и в классической физике вращающиеся заряженные объекты создают магнитное поле.

Однако, наиболее значительный вклад происходит от спина. Благодаря свойству электрона, как и всех фермионов, подчиняться правилу запрета Паули , по которому два электрона не могут находиться в одном и том же квантовом состоянии, связанные электроны спариваются друг с другом, и один из электронов находится в состоянии со спином вверх, а другой — с противоположной проекцией спина — состояние со спином вниз. Таким образом магнитные моменты электронов сокращаются, уменьшая полный магнитный дипольный момент системы до нуля в некоторых атомах с чётным числом электронов. В ферромагнитных элементах, таких как железо, нечётное число электронов приводит к появлению неспаренного электрона и к ненулевому полному магнитному моменту. Орбитали соседних атомов перекрываются, и наименьшее энергетическое состояние достигается, когда все спины неспаренных электронов принимают одну ориентацию, процесс известный как обменное взаимодействие. Когда магнитные моменты ферромагнитных атомов выравниваются, материал может создавать измеримое макроскопическое магнитное поле.

Парамагнитные материалы состоят из атомов, магнитные моменты которых разориентированы в отсутствии магнитного поля, но магнитные моменты отдельных атомов выравниваются при приложении магнитного поля. Ядро атома тоже может обладать ненулевым полным спином. Обычно при термодинамическом равновесии спины ядер ориентированы случайным образом. Однако, для некоторых элементов (таких как ксенон-129) возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами —состояния называемого гиперполяризацией. Это состояние имеет важное прикладное значение в магнитно-резонансной томографии.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергия W м магнитного поля катушки с индуктивностью L, создаваемого током I, равна

W м = LI 2 / 2

Особый интерес представляет магнитное поле внутри соленоида, длина которого значительно превосходит его диаметр. Внутри такого соленоида магнитная индукция имеет повсюду одно и то же направление, параллельное оси соленоида, и значит, линии поля параллельны между собой.

Измеряя каким-нибудь способом магнитную индукцию в разных точках внутри соленоида, мы можем убедиться в том, что если витки соленоида расположены равномерно, то индукция магнитного поля внутри соленоида имеет во всех точках не только одинаковое направление, но и одинаковое числовое значение. Итак, поле внутри длинного равномерно навитого соленоида однородно. В дальнейшем, говоря о поле внутри соленоида, мы всегда будем иметь в виду подобные «длинные» равномерные соленоиды и не будем обращать внимания на отступления от однородности поля в областях, близких к концам соленоида.

Подобные измерения, выполненные с разными соленоидами при различной силе тока в них, показали, что магнитная индукция поля внутри длинного соленоида пропорциональна силе тока и числу витков, приходящихся на единицу длины соленоида, т. е. величине , где – полное число витков соленоида, – его длина. Таким образом,

где – коэффициент пропорциональности, называемый магнитной постоянной (ср. с электрической постоянной , § 11). Числовое значение магнитной постоянной

Впоследствии (§ 157) выяснится, что единица, в которой выражена величина , может быть названа «генри на метр», где генри (Гн) – единица индуктивности. Следовательно, можно написать, что

Гн/м. (126.2)

В силу своей простоты поле соленоида используется в качестве эталонного поля.

Для характеристики магнитного поля, кроме магнитной индукции , используют также векторную величину , называемую напряженностью магнитного поля. В случае поля в вакууме величины и просто пропорциональны друг другу:

так что введение величины не вносит ничего нового. Однако в случае поля в веществе связь с имеет вид

где – безразмерная характеристика вещества, называемая относительной магнитной проницаемостью или просто магнитной проницаемостью вещества. При рассмотрении магнитных полей в веществе, например в железе, величина оказывается полезной. Подробнее об этом идет речь в § 144.

Из формул (126.1) и (126.3) следует, что в случае, когда соленоид находится в вакууме, напряженность магнитного поля

т. е., как говорят, равна числу ампер-витков на метр.

С помощью измерений магнитной индукции поля, создаваемого током, текущим по очень длинному тонкому прямолинейному проводнику, было установлено, что

где – сила тока в проводнике, – расстояние от проводника.

Согласно формуле (126.3) напряженность поля, создаваемого прямолинейным проводником, находящимся в вакууме, равна

В соответствии с формулой (126.7) единица напряженности магнитного поля носит название ампер на метр (А/м). Один ампер на метр есть напряженность магнитного поля на расстоянии одного метра от тонкого прямолинейного бесконечно длинного проводника, по которому течет ток силой ампер.

126.1. Магнитная индукция поля внутри соленоида равна 0,03 Тл. Какой силы ток проходит в соленоиде, если длина его равна 30 см, а число витков равно 120?

126.2. Как изменится магнитная индукция поля внутри соленоида из предыдущей задачи, если соленоид растянуть до 40 см или сжать его до 10 см? Что произойдет, если сложить соленоид пополам так, чтобы витки одной его половины легли между витками второй половины?

126.3. По соленоиду длины 20 см, состоящему из 60 витков диаметра 15 см, идет ток. Что произойдет с магнитным полем внутри соленоида, если уменьшить диаметр его витков до 5 см, сохранив прежнюю длину соленоида и использовав тот же самый кусок провода? Каким способом можно получить прежнюю магнитную индукцию поля, сохранив неизменными длину и диаметр витков соленоида?

126.4. Внутри соленоида длины 8 см, состоящего из 40 витков, расположен другой соленоид с числом витков на 1 см длины соленоида, равным 10. Через оба соленоида проходит одинаковый ток 2 А. Какова магнитная индукция поля внутри обоих соленоидов, если северные концы их обращены: а) в одну сторону; б) в противоположные стороны?

126.5. Имеются три соленоида длины 30 см, 5 см и 24 см с числом витков 1500, 1000 и 600 соответственно. По первому соленоиду идет ток 1 А. Какие токи должны идти по второму и третьему соленоидам, чтобы магнитная индукция внутри всех трех соленоидов была одной и той же?

126.6. Вычислите магнитную индукцию поля в каждом из соленоидов задачи 126.5.

126.7. В соленоиде длины 10 см нужно получить магнитное поле с напряженностью, равной 5000 А/м. При этом ток в соленоиде должен быть равен 5 А. Из скольких витков должен состоять соленоид?

126.8. Какова магнитная индукция поля внутри соленоида, длина которого равна 20 см, а полное число витков равно 500, при токе 0,1 А? Как изменится магнитная индукция, если соленоид будет растянут до 50 см, а ток уменьшен до 10 мА?

Самый частый вопрос владельцев АКПП: «АКПП стала плохо переключаться, Компьютер показывает проблему в соленоиде В (С, D...). Скажите какой соленоид мне заменить, чтобы все опять заработало? » Кажется, что стоит заменить какой-то небольшой клапан-соленоид и машина опять будет как прежде. Ответ по диагностике и выводам - .

Что же такое Соленоид?

Соленоид в АКПП это электромеханический кран-регулятор в АКПП, который в ответ на электроимпульс компьютера открывает или закрывает канал в гидроплите для управления потоками гидравлической жидкости.

Соленоиды управляют гидравлическими переключениями режимов работы современных АКПП, вариаторов и ДСГ. (Исключениями являются электрический Степ-мотор и Электроприводы некоторых ДСГ с сухим )

Соленоиды пришли на смену Говернору - примитивному механико-гидравлическому клапану, переключавшему скорости в гидравлически управляемых трансмиссиях, типа того, что в унитазе открывает и закрывает воду для заполнения смывного бака.


Конструкция соленоидов использует школьный опыт с магнитным стержнем внутри медной обмотки, по которой пропускается постоянный ток.

Магнитное поле обмотки толкает намагниченный стержень в одну сторону, а при перемене направления тока - движение сердечника внутри катушки меняется на обратное. Но в соленоидах АКПП противоположное движение сердечника обеспечивается не изменением направления тока, а возвратной пружиной (на картинке слева).

Где находятся соленоиды в АКПП


Соленоид (электроклапан ) как ему и положено стоит в гидравлической клапанной плите или, как ее называют мастера - в .

Соленоид вставлен в канал гидроблока, крепится болтом (или прижимной пластиной) а с другого конца через штекер электропроводки (шлейф) подсоединяется к электронному блоку управления АКПП (слева ниже ).


Штекер и шлейф-проводка, кстати, во многих автоматах довольно часто являются причиной неисправной работы соленоидов и являются такими же расходниками, как и сам соленоид.

В некоторых коробках гидроблок и крышка поддона находятся не снизу коробки, а - сбоку.

Соленоид соединяет гидравлическую систему коробки с электрической системой. И часто в этой цепочке именно в соленоидах компьютер находит ошибку. (коды ошибок неисправностей - )

Конструкция

On-Off Соленоиды.

Первые соленоиды для американских АКПП стали массово использоваться с 80-х годов и выглядели именно как соленоид , то есть: катушка с медной обмоткой. (слева вскрытый блок электроклапанов от Крайслера, до сих пор устанавливаемый на джипы и пикапы. )

Их функцией было - толкать стержень-плунжер в гидроплите, открывающий (или закрывающий) канал, по которым насос гонит масло в систему. Когда ток не подается на обмотку катушки, пружина возвращает стержень обратно. Такой соленоид имеет два положения: "Закрыт" и "Открыт". Так называемый: "on-off соленоид", соленоид-клапан .

В таких системах встречались проблемы или обрыва обмотки, ломалась возвращающая пружина. И ремонт старых соленоидов обычно заключался в перемотке оборванных или сгоревших проводов, пропайке, чистке или замене ослабевших пружин.

Справа - следующее поколение соленоида- электроклапана. ( Вольво -№206421B до 2006-го года устанавливался на европейские Вольво S80 и ХС90 и до сих пор устанавливается на множество американских представительских машин - Бьюик, Олдсмобил, Понтиак, Шевроле .)

Этот соленоид - конструктивно более сложный. Это не просто катушка с сердечником, у него уже имеется канал для масла (из белого пластика) с двумя выходами и металлический шариковый клапан, открывающий или закрывающий этот канал.

Такой соленоид сам уже является гидравлическим клапаном . Гидравлика и электрика в одном приборе. Этот тип соленоидов стали называть "электромагнитный клапан". Его уже гораздо легче менять, отсоединив от гидравлической системы, в которой он держит давление за счет резиновых колец-прокладок и от электического питания, отсоединив штекер (тоже иногда находят здесь проблему).

Положения электро-клапана называют: "нормально-открытым" или "нормально-закрытым". В обесточенном состоянии работает пружина. При подаче напряжения - работает магнитное поле обмотки, противодействуя пружине. В канал соленоида позже стали устанавливать фильтр-сетку, который предотвращает попадание внутрь клапана намагниченной железной пыли из масла.

Следующее поколение, появившееся в 90-х:

3-way соленоиды



Первые соленоиды были только "включателем" ON-OFF . Но довольно быстро авто-дизайнеры создали 3-WAY соленоиды , которые работают "переключателями".

Они соединяют уже не 2, а 3 канала: В одном положении (On) шарик открывает проход из первого во 2-й канал, а в другом (Off) - открывают проход из 2-го в 3-й канал. (слева ). Обычно второе положение служит для сброса давления из пакета сцепления. Это позволило одним прибором и включать пакет фрикционов сцепления и управлять отключением. Раньше эту функцию выполнял лишний механический клапан в сцеплении.

PWM- пропорциональные соленоиды, VBS, VFS

В середине 90-х у конструкторов разгорелся аппетит и они потребовали еще более интеллектуальных инструментов управления гидравликой. Были разработаны соленоиды-регуляторы .


Конструктивно "электро-регуляторы" работают по принципу: "Вентиля". В отличии от принципа "Крана" он-офф соленоидов, у которых есть или полностью открытое или полностью закрытое положение.

Такие соленоиды-регулятор приоткрывают или призакрывают сечение по кривой в зависимости от характера поступающего импульсного напряжения от компьютера. (Ток подается прерывисто, с разной длительностью этого прерывания )

Механическая часть соленоидов -электромеханических регуляторов 21 века становится все более разнообразной.

Они уже бывают как шариковые так и золотниковые 3-WAY, и даже 4-... 5-WAY,...

На первом этапе были разработаны PWM соленоиды с клапаном шарикового типа (слева), который довольно прост и дешев в изготовлении.

Позже появились довольно редкие VBS соленоиды (Various Bleed), в которых отверстие открывает-закрывает плоский клапан. Эти соленоиды уже могут адаптироваться к изменениям давления масла, но используются для узкого круга задач с низким давлением масла в линии. Самые сложные - VFS соленоиды, которые справляются и с высоким давлением масла в линии и малочувствительны по вариациям подающего давления. Они могут иметь клапан - золотник.

Пропорциональные (линейные) Соленоиды


Этот тип соленоидов выбрал японский гигант АТ - , поставщик автоматов для Тойоты-VAG-Volvo...

Внутри конструкции линейных соленоидов ходит золотник-плунжер по муфте с отверстиями типа тех, что ранее были частью гидроблока. То есть самый изнашиваемый участок плиты , который всегда был предметом ремонта, сейчас . И теперь во многих случаях уже не нужно восстанавливать или менять саму гидроплиту, а достаточно заменить износившийся соленоид с встроенным клапаном. Сама гидроплита стала служить гораздо дольше, и таким образом решили главную проблему всех современных АКПП - износ каналов гидроплиты ().

Именно такова особенность ремонта гидроблока современной 6-ти ступенчатой трансмиссии японской Aisin :

Здесь из 9-ти соленоидов чаще всего меняются 4 пропорциональных соленоида (указаны на схеме справа синими цифрами ). Остальные 5 соленоидов - простые "включатели" ON-OFF - практически не выходят из строя до конца жизни коробки.

VFS, VBS (Various Bleed) Соленоиды

На следующем этапе были разработаны VFS (Variable Force Solenoid) соленоиды. Их очень полюбил немецкий ZF.

Их конструкция относительно простая и дешевая. Но простота в изготовлении компенсируется чрезвычайно сложной системой управления.


Клапан по мере повышения давления и из-за износа (небольшого собственного веса) меняет степень открытия канала. И требуется точная обратная связь компьютеру, чтобы под эти изменения подстраиваться. Поэтому капризность тонко настроенных соленоидов VFS значительно выше и ресурс короче, чем срок службы пропорциональных соленоидов Айсин.

У европейского бестселлера 21-го века ZF 6HP21 - 6HP28 практически стали расходником, планово заменяемым после 3-5 лет напряженной службы.

Преимущество конструкции PWM соленоида - возможность использовать более прочные и износостойкие - анодированные (и следовательно - более дорогие) материалы для "узких мест" канала-муфты, по которому происходят поступательные движения клапана в грязном и горячем масле.

Материалом гидроплиты (и соленоидов) в последние десятилетия служит легкий и мягкий алюминиевый сплав. (Вместо вечного чугуна на старых добрых гидроплитах "золотого века" Америки ). А когда под давлением через эти "краны"-регуляторы гонится горячая смесь масла и фрикционной грязи и канал открывается не сразу на полное сечение, как раньше, а частично, то в этой узкой щели и происходит самый быстрый износ металла.

Для механической части (манифольда и золотника/плунжера) соленоидов здесь стали применять алюминиевый сплав, анодированные высокопрочными и грязеотталкивающими материалами.

Функциональные различия соленоидов

Соленоиды классифицируют еще и по своему назначению.

Наиболее распространены такие функции соленоидов:

- Соленоид EPC или LPC (Line Pressure Control). Соленоид контроля линейного давления.

Самый первый и главный из появившихся в гидроплите электроклапанов. Это соленоид-"вождь", который единолично распределяет все масло на остальные соленоиды и каналы. И в 4-х ступках ЕРС соленоид первым выходил из строя.

- Соленоид ТСС - Torque Converter Clutch (или SLU - Solenoid Lock-Up -блокировки муфты ) Соленоид управления блокировкой . Этот электроклапан делает самую "грязную" работу - он заставляет муфту гидротрансформатора подключаться - блокироваться, чтобы повысить кпд и удовлетворить запрос водителя на "спортивный режим" разгона. И именно через этот соленоид в первую очередь идет грязное и горячее масло из гидротрансформатора. Поэтому во многих гидроблоках соленоид ТСС/SLU - самое слабое звено.

Гидротрансформатор блокируется-разблокируется каждый раз, когда машина тормозит или разгоняется, кроме того, его фрикцион в современных акпп работает в так называемом режиме " регулируемого " когда гидротрансформатор еще интенсивнее греет масло в коробке и загрязняет его своей фрикционной накладкой. А в последнее время в эти перенагруженные фрикционы бубликов стали добавлять графитовые (или кевларовые) связующие, что влияет на здоровье соленоидов и гидроблока так же, как жирная пища - на сердце и сосуды полных людей. ( ).


- Shift solenoid - рядовой соленоид-переключатель, отвечающий за переключения скоростей, "шифтовик". Таких регуляторов давления в гидроплите обычно несколько и вся работа по переключению скоростей вверх или вниз в основном выполняется именно ими. Обычно на схеме они обозначаются как S1, S2, (SL1 ...- линейный шифтовик) или буквами А, В...

Для переключения скоростей работают одновременно сразу несколько соленоидов. Например в классических 4-х ступках 2 соленоида шифтовика, и мануалы выдают такие комбинации:

S1-открыт +S2-закрыт - включена 1 скорость (D)
S1-закр.+S2-закр. - переключение 1-2 скорость
S1-откр.+S2-откр. переключение 2-3 скорость
... итд.

И это - расписано в мануалах для простых 4-х ступок. Для 5-ти и 6-ти ступенчатых АКПП - все гораздо . (как читать ?)

Так что распространенный среди водителей миф: "если пропала 3-я скорость, то можно найти и заменить соленоид 3-й скорости" - обычно ни к чему кроме затрат времени и денег не приводит (кроме самообучения на ошибках) .

Такие таблицы есть в мануалах для каждой АКПП. По таблицам мастера определяют - какие соленоиды (или обгонные муфты) работают при проблемном переключении и на которые стоит обратить внимание при тестировании.

Новые типы соленоидов:

Управляющий (клапанами гидроблока) соленоид. Функционально соленоиды могут управлять клапанами плиты как транзистор в электросхеме.

Такие соленоиды только подают управляющее давление (с низким расходом) на клапан гидроблока, который уже сам подает или сбрасывает давление на поршни и фрикционы и служат для незаметного переключения передач.

- "Соленоид качества переключения передач " (работает только в момент переключения передачи для мягкого переключения с "проскальзыванием") ,


- "Соленоид управления охлаждением масла " (как термостат открывает канал для охлаждения масла через внешний радиатор), и др.

Специфика и конструкция соленоидов постоянно расширяется и усложняется, а диагностика и ремонт соленоидов упрощается до банальной замены.

Типичные проблемы соленоидов. Срок службы

Обычно на соленоиды как причину аварии указывает компьютер своим "кодами неисправности" типа "19146"-VAG (или OBDII: P2714 ). Расшифровка кодов неисправностей - .

Проблема №1 : соленоиды забиваются нагаром из масла, склеенным из мельчайшей пыли (бумажной, алюминиевой, стальной, бронзовой...) от изношенных и разбитых узлов и расходников. Проявляется в том, что "нахолодную" клапан-золотник соленоида (или гидроблока) работает нормально, а в горячем масле - клинит. Или наоборот.

Поэтому мастера очень не любят, когда фрикционная накладка съедается до клеевой основы и добавляет клеющие смолы в эту горячую масляную взвесь.

Для устранения нагара соленоиды-клапана (и детали гидроблка) промывают в различных растворителях и прочищают разными хитрыми способами с использованием ультразвука или переменного тока 12в. Рекомендовано при капремонте также проводить демагнетизацию (размагничивание) стальных деталей соленоида.

Проблема №2:

Износ деталей плунжера, манифольда, входного отверстия, протечки, связанные с износом.

PWM соленоиды имеют "умное управление". Компьютер учитывает "старость" соленоида №1 и увеличивает с помощью управляющего соленоида №2 расход масла для открытия канала такого изношенного соленоида №1. Но когда износ и "старческая деменция" достигают предела давления, компьютер бракует такой соленоид, что проявляется кодом ошибки. Естественно, что чем грязнее масло, тем быстрее изнашиваются каналы соленоидов, и тем напряженнее насос гонит через гидробок масло ATF, тем интенсивнее работают и изнашиваются клапана. Цепная реакция.

Проблемы №3, 4, ...8:

Ослабление возвращающей пружины, трещины корпуса, поломки конструкции, падение сопротивления обмотки (обрыв или КЗ). Здесь популярны пропайка контактов, перемотка, замена втулок, деталей.

Главная причина "преждевременной смерти" современных соленоидов - износ каналов манифольда, втулок, клапана и плунжера или шарика . (справа показан износ примыкания закрывающего шарика к отверстию )

Это начинается с засорения плунжера продуктами износа. Плунжер сначала клинит, что приводит к проблемам переключения (в зависимости от функции первого засорившегося соленоида), а затем этот нагар начинает истирать трущиеся поверхности плунжера, втулок плунжера и клапанов. После 2003-2004 годов и клапана и манифольды обычно делаются из анодированных сплавов, которые выдерживают большие истирающие нагрузки. Истираются в основном бронзовые втулки соленоидов.


Иногда мастера ремонтируют изношенные линейные соленоиды, "перевтуливая" плунжер. Выпускаются наборы 136419 для замены втулок соленоидов, что дает им еще жизни на 30-60 ткм (в зависимости от состояния остальных компонентов электрорегулятора) .

Ресурс качественных соленоидов измеряется количеством циклов открывания-закрывания. По этому показателю например "хендаевские" соленоиды привычно стоят чуть позади соответствующих американских соленоидов и еще подальше от продуктов лидеров Aisin, Jatco или ZF.

Но даже у самых надежных соленоидов ресурс не превышает 300 000 - 400 000 циклов. Это может наступить и после 400 ткм, а может и значительно раньше. В зависимости от того как нагружают их водитель и , подчиняющееся педали газа. Конструктивно в ранних версиях АКПП (например DP0, 01N, ...) режим их работы был организован таким образом, что одни соленоиды (обычно - ЕРС) работают в два-три раза напряженнее других и поэтому вырабатывают свой ресурс первыми.

Американский авторемонтный мир предпочитает планово ремонтировать соленоиды, заменяя втулки и очищая все внутренности соленоидов и гидроблока от нагара при каждом капремонте АКПП. Своевременная чистка и "перевтуливание" линейных соленоидов увеличивает ресурс соленоидов и гидроблока на 40-70%. Но обязательно при этом заменяются все изношенные уплотнения, кольцы и втулки, через которые теряется давление масла, иначе соленоиды сразу начинают работать на полное сечение.

Ремонт ГДТ с заменой муфты - тоже входит в эту работу по продлению жизни соленоидов и самой АКПП.

Как самому купить и заменить соленоиды? Вообще - поможет это?

Существует всего несколько АКПП с проблемами соленоидов, которые можно решить, лишь заменив соленоиды:

Например DP0, у которой срок жизни соленоидов EPC и TCC достаточно короток по сравнению с остальными расходниками. В некоторых случаях ремонта 4-х ступок замена обоих соленоидов (144431 ) может оживить машину и на некоторое время (пока скопятся деньги и желание на капремонт и установку ) позволит забыть о причинах выхода из строя трансмиссии (замена тефлоновых колец и )

В эту же группу входят некоторые АКПП Хёндай-Мицубиши, Лексуса и даже 6-ти ступки ZF.

Но к сожалению просто заменить соленоид это - "временный костыль", который очень часто является лишней тратой времени и средств. Обычно к этому времени и сам гидроблок нуждается в переборке-чистке и гидротрансформатор и коробка. Мастера очень не любят брать в ремонт коробку, в которой до этого делался "косметический" ремонт или менялась только часть необходимых деталей. Потому что распутывать клубки проблем автомата, в котором до тебя кто-то неудачно покопался, берутся только акпп-фанаты или мазохисты. Такая настоящая головоломка, для "шерлохолмсов".

Как идентифицировать-заказать-купить соленоиды?

1. Определите тип своей АКПП . (Ответственность за правильное определение типа лежит только на мастере, который берется лечить этот сложный агрегат ). Для этого перейдите на страницу " ". Если указано несколько вариантов для вашего авто (или ни одного) - скорее всего из-за того, что было выпущено много небольших серий вашего автомобиля в разных странах. Попробуйте почитать по каждой АКПП - внизу каждой страницы АКПП есть дополнительная таблица. Но надежнее - искать эту информацию не в справочниках, а на табличке самой АКПП (или на кузове). Можно определить тип АКПП по форме поддона или по фото фильтра . В общем - изучайте литературу, если хотите самостоятельно и успешно выполнить эту операцию.

2. На странице своей АКПП - изучите все, что написано в мануалах по соленоидам и гидроблоку.

Нажав на номер соленоида на оранжевом фоне, вы узнаете его цену, наличие на складе и полное описание детали, с указанием- для каких авто она используется. Но часто приходится подбирать соленоиды по ВИН-коду авто. Звоните и заказывайте.

3. Замена соленоида. Стоит изучить все, что пишет интернет по вашей АКПП. Или лучше (если вы не стремитесь сами стать профессионалом в этом увлекательном деле) - найти мастера, который уже имеет опыт и сделав положенные ошибки, сэкономит вам время и деньги.


Тест. Как проверить исправность соленоидов?

Даже если коды указали на какой-то соленоид, его нужно проверить с использованием диагностического оборудования. И лучше, если этим займется специалист.

У соленоидов имеется такая определяющая "жизнеспособность" характеристика как "вилка" сопротивления (при 20º C). Поэтому первый тест соленоидов - это проверка их сопротивления омметром. На странице популярных в ремонте АКПП можно найти такие таблицы по соленоидам.

Причина : От времени и из-за агрессивных условий работы метал проводов стареет, сопротивление обмотки увеличивается и когда омметр показывает, что сопротивление обмотки вышло за пределы максимально допустимого, то компьютер обнаруживает такой соленоид и "требует" его замены с помощью .


Если соленоид-электроклапан показывает нормальное сопротивление и щелкает при подаче на него напряжения, то мастера чистят-промывают его и оставляют служить дальше.

Кроме самих соленоидов и их клемм, часто причиной неисправностей является запитывающая проводка-шлейф (справа - 105446 ).

Современные соленоиды-электрорегуляторы уже невозможно "на коленке" проверить с помощью омметра и "пощелкиваний". PWM соленоиды уже требуют компьютера для проверки кривой, по которой меняется давление в зависимости от подаваемого тока, а с этим и квалифицированного электрика. И уже неразумно приговаривать соленоиды к замене по одним только кодам ошибок OBD-II. Если это, конечно, не типичные для данной АКПП проблемные соленоиды, которыми являются описанные ниже соленоиды-бестселлеры.

Встречаются проблемы и с самим ЭБУ (особенно часто - №340450 слева )

Что будет, если вовремя не заменить выработавшие свой ресурс соленоиды?

Соленоиды закрывают или открывают канал, блокирующий сцепление фрикционов. Не так страшно, если передачи переключаются с толчками. Это даже может быть полезным как "маркер", указывающий на необходимость делать ремонт АКПП.

Хуже, если канал недозакрыт или недооткрыт, что можно сравнить с недоотжатым сцеплением в МКП. Такой недовключенный пакет сцепления начинает проскальзывать от недостатка давления и жечь фрикционы и масло. Или недостаток давления приводит к работе всухую, от которой изнашивается "железо" и втулки, которые к этому времени уже изношены и травят масло и убьют новые соленоиды тем, что будут заставлять их сразу же работать на полное сечение.

Рекордсмен по замене втулок - новейшие ZF-бестселлеры и 6HP19 (№182030 - выше справа ). А после втулок вибрации всухую настолько разбивают все валы и сочленения, что восстанавливать коробку иногда уже не имеет смысла.

Это - самое неприятное и незаметное из всех многочисленных проявлений нештатной работы соленоидов. Сравнимо с тем, как переносить тяжелую ангину на ногах - вроде как работаешь, но сердце можно повредить на всю жизнь.

В чем заключается "ремонт" соленоидов:

Хорошее видео по чистке и ремонту гидроблока и соленоидов появились на ю-тьюбе . Там скрыты некоторые детали, но в целом дает представление - в чем заключается ремонт чистка соленоидов.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ