Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

КАФЕДРА МЕДИЦИНСКОЙ ФИЗИКИ

Методические указания

студентам по теме практического занятия

БИОФИЗИКА КЛЕТКИ.

МЕХАНИЗМЫ ТРАНСПОРТА ВЕЩЕСТВ.

Воронеж 2009

Методические указания разработаны на основании примерных рабочих программ по медицинской и биологической физике (специальности: лечебное дело, педиатрия, медико-профилактическое дело), физике и биофизике (специальности: фармация, сестринское дело), рекомендованных Центральным методическим советом ВГМА. Содержат основные теоретические вопросы по данной теме и дидактические единицы для подготовки к занятию и самоконтроля. Предназначены для студентов IиIIкурсов лечебного, педиатрического, медико-профилактического, фармацевтического факультетов, МИМОС (лечебное дело), ИСО.

Печатается по решению Центрального методического совета ВГМА

(протокол №6 от 16.04.2009 г.).

ТЕМА: Биофизика клетки

ЦЕЛЬ ЗАНЯТИЯ:

1. Овладеть необходимыми теоретическими знаниями в области мембранологии.

2. Выработать умения применять полученные знания для анализа конкретных физических явлений, наблюдаемых в биологических системах.

После изучения темы студент должен знать:

а) принципы организации, строение, физические свойства и функции клеточных мембран;

б) основные механизмы транспорта веществ через мембрану;

в) природу, механизм образования и способы распространения биоэлектрических потенциалов.

а) решать типовые задачи по количественному расчету процессов диффузии, осмоса, фильтрации;

б) проводить анализ и количественную оценку процессов, происходящих при формировании потенциала покоя и генерации потенциала действия.

МОТИВАЦИЯ ТЕМЫ

Плазматическая мембрана является ключевым компонентом, обеспечивающим жизнедеятельность клетки, и многие патологические состояния связаны с изменением структуры и функциональных свойств биомембран. Вопросы селективного транспорта веществ важны для понимания принципов применения фармакологических препаратов в терапии. Процессы биоэлектрогенеза лежат в основе функционирования нервной системы, сердца, скелетной мускулатуры. Поэтому тема "Биофизика клетки" в рамках дисциплины "Медицинская и биологическая физика" необходима студентам для прохождения профессиональных дисциплин и дисциплин специальности.

САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ ВО ВНЕУРОЧНОЕ ВРЕМЯ

Задание 1.

Изучить теоретический материал занятия, используя рекомендуемую литературу по следующей логической структуре учебного материала:

1. Современные представления об организации плазматической мембраны

а) жидко-кристаллическая мозаичная модель строения мембраны;

б) функции биологической мембраны;

в) подвижность компонентов биомембраны;

г) физические свойства биомембраны.

2. Селективный транспорт веществ

а) диффузия

– диффузия нейтральных и заряженных частиц через липидную фазу мембраны;

– диффузия веществ через мембранные поры и белковые каналы;

– облегченная диффузия

в) фильтрация

г) активный транспорт веществ

3. Биоэлектрогенез

а) мембранно-ионная теория возникновения потенциала покоя;

б) биофизические механизмы образования потенциала действия;

в) способы распространения биоэлектрических потенциалов.

Задание 2.

Подготовить реферативные сообщения на темы, полученные у преподавателя на предыдущем занятии.

Средства для самоподготовки студентов

во внеаудиторное время

1. Учебная и методическая литература

а) основная

– Ремизов А.Н. Медицинская и биологическая физика / А.Н. Ремизов, А.Г. Максина, А.Я. Потапенко. – М.: Дрофа, 2007. – С. 184-213.

– Физика и биофизика / Под ред. В.Ф. Антонова. – М.: ГЭОТАР-Медиа, 2008. – С. 180-271.

– Лекционный материал по теме "Биофизика клетки".

– Ремизов А.Н. Сборник задач по медицинской и биологической физике / А.Н. Ремизов, А.Г. Максина. – М.: Дрофа, 2001. – С. 79-85.

б) дополнительная

– Самойлов В.О. Медицинская биофизика / В.О. Самойлов. – СПб.: СпецЛит, 2004. – С. 19-131, 262-314.

– Артюхов В.Г. Биофизика / В.Г. Артюхов, Т.А. Ковалева, В.П. Шмелев. – Воронеж: Изд-во ВГУ, 1994. – С.146-227.

– Физиология человека / Под ред. Г.И. Косицкого. – М.: Медицина, 1985. – С. 19-44.

2. Консультации преподавателей (еженедельно по индивидуальному графику).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ПО ТЕМЕ ЗАНЯТИЯ

Строение и физические свойства биологических мембран.

Клеточная (плазматическая) мембрана – ультратонкая пленка (4-13 нм) на поверхности клетки или внутриклеточных органоидов, ограничивающая их от внешних объектов.

В 1972 г. С.Дж. Синджером и Г.Л. Николсоном была предложена жидко-кристаллическая мозаичная модель строения мембраны: в основе мембраны лежит текучий фосфолипидный бислой, в который погружены свободно диффундирующие белки, образующие в нем своеобразную мозаику.

Фосфолипиды являются амфифильными соединениями – имеют полярную гидрофильную часть (несущую электрический заряд) и длинные гидрофобные фрагменты. Такие молекулы в водном растворе будут самопроизвольно ориентироваться в пространстве таким образом, чтобы гидрофобные углеводородные цепи были закрыты от воды. Образуются двухслойные липосомы (рис. 1). Это расположение термодинамически выгодно, поскольку соответствует наименьшему значению свободной энергии Гиббса. Если количественно преобладают фосфолипиды с одним хвостом (лизолецитин), то формируются однослойные мицеллы. В составе мембран сосредоточения таких молекул формируют поры (рис. 1), через которые осуществляется транспорт воды, ионов и т.д., поскольку внутренняя часть поры гидрофильна.

липосома

Рис. 1. Самоорганизация липидных молекул в водном растворе

Липиды, формирующие бислой мембраны, обладают достаточно высокой подвижностью и способны к:

 вращению вокруг собственной оси (поворот на 1 радиан за 10 –9 с);

 латеральной диффузии – хаотичное тепловое перемещение молекул липидов и белков в плоскости мембраны. Среднее квадратическое перемещение (S кв) определяется по формуле Эйнштейна:

,

где D– коэффициент латеральной диффузии молекулы,t– время. ЭкспериментальноS кв можно определить методом флюоресцентных меток.

Частота перескоков молекулы рассчитывается по формуле:

,

где f– площадь, занимаемая одной молекулой в мембране.

 транс-переходам ("флип-флоп") – перемещение из одного монослоя в другой (среднее время перескока молекулы ≈ 1 час).

В физиологических условиях липиды мембран, находятся в жидком агрегатном состоянии, что обеспечивает относительную подвижность белковых молекул. Часть белков "заякорена" на структурах цитоскелета (микротрубочки и микрофиламенты) и их диффузия затруднена. Кроме того, липидный бислой содержит особые домены – рафты (от англ. плот, паром), которые обладают высокой плотностью, упорядоченностью, включают в себя мембранные белки и диффундируют в плоскости мембраны как единое целое.

Белковые молекулы имеют различную степень погруженности в липидную фазу. Различают: поверхностные белки, полупогруженные, погруженные (интегральные).

Углеводы, входящие в состав мембран химически связаны с белками или липидами.

Общие функции биологической мембраны:

 структурная – обеспечивает автономность клетки и внутриклеточных компартментов;

 барьерная – осуществляет селективный транспорт веществ;

 матричная – обеспечивает оптимальное расположение белковых ансамблей (например, ЭТЦ митохондрий);

 сигнальная – связывает информационные молекулы (например, гормоны) и выступает триггером дальнейших внутриклеточных событий.

Наряду с этим клеточные мембраны выполняют функции, зависящие от специализации клеток (генерация и проведение нервного импульса, мышечное сокращение, окисление субстратов и т.д.).

Физические свойства мембран.

Жидкокристаллическая структура мембраны чрезвычайно чувствительна к действию физических факторов среды. При снижении температуры происходит фазовый переход в твердокристаллическое состояние (гель), при этом меняются характеристические свойства мембраны (рис. 2). Увеличивается плотность гексагональной упаковки фосфолипидов (для лецитина от 0,6-0,8 нм 2 до 0,46-0,48 нм 2) и толщина мембраны (от 3,9 нм до 4,7 нм). В физиологических условиях текучесть мембраны уменьшается при повышении содержания в ней холестерина, ионов кальция, магния. Фазовые переходы подчиняются закону "все или ничего" – при плавном изменении действующего фактора физико-химические свойства мембраны изменяются скачкообразно.

Рис. 2. Фазовые переходы мембран.

Отдельная жирнокислотная цепь в жидкокристаллической мембране может принимать множество различных конфигураций за счет вращения одинарных С–С связей. В твердом бислое молекулы принимают полностью транс-конформацию и возможны лишь небольшие колебательные движения:

В жидком бислое возможны тепловые движения, сопровождающиеся транс-гош-переходами:

– транс-гош-конформация

Расположенные рядом гош-конформации могут образовывать в бислое полости – кинки (от англ. kink – петля), в которые могут попасть молекулы из внемембранного пространства. Последующее изменение конформации цепей приводит к движению кинка и перемещению вещества в продольной или поперечной плоскости мембраны (рис. 3)

Рис. 3. Движение кинка с веществом.

Для биологической мембраны характерен трансмембранный биопотенциал – разность потенциалов на внутренней и наружной сторонах. Его величина составляет ≈ – 60-90 мВ. Вследствие малой толщины мембраны напряженность электрического поля достигает 6-910 6 В/м. Емкостные свойства мембраны как конденсатора составляют 0,5-1,3 мкФсм –2 .

Транспорт веществ через мембрану.

Одна из основных функций биологической мембраны – селективный транспорт веществ. Принято различать

 пассивный транспорт – происходящий в направлении действия электрохимического градиента (концентрационного, электрического и т.д.);

 активный транспорт – процессы переноса веществ против существующих градиентов и требующие затрат энергии.

Пассивный транспорт объединяет ряд механизмов переноса веществ.

Диффузия – самопроизвольное перемещение вещества из области большей концентрации в область меньшей концентрации вследствие хаотического теплового движения молекул.Уравнение диффузии (уравнение Фика ) имеет вид:

,

где J– плотность потока – количество вещества переносимое через единицу площади за единицу времени [моль/м 2 с];– градиент молярной концентрации;D– коэффициент диффузии [м 2 /с]:

,

где R– универсальная газовая постоянная (8,31 Джмоль –1 К –1); Т – абсолютная температура (К);N A – постоянная Авогадро (6,0210 23 моль –1);r– радиус диффундирующих частиц (м);- вязкость среды (Нс/м 2). Таким образом, скорость диффузии будет зависеть от температуры, вязкости растворителя и размера частиц.

Для расчета диффузии через биологическую мембрану часто используют формулу:

,

где Р – коэффициент проницаемости; с i и с 0 – молярная концентрация частиц в клетке и снаружи. Коэффициент проницаемости прямо пропорционален коэффициенту диффузии (D), коэффициенту распределения вещества между водным раствором и липидной фазой мембраны (k) и обратно пропорционален толщине мембраны (l):

Коэффициент распределения тем выше, чем легче вещество растворяется в липидной фазе. Следовательно, переход гидрофильных соединений непосредственно через липидный бислой будет крайне затруднен (так, молекулы пропиленгликоля диффундируют через мембрану примерно в 20 раз быстрее, чем молекулы мочевины).

Если происходит перенос заряженных частиц (ионов), то помимо концентрационного градиента необходимо учитывать величину разности потенциалов биологической мембраны. Уравнение диффузии для таких частиц называется уравнением Нернста-Планка и имеет вид:

,

где u m – подвижность диффундирующих частиц выраженная для моля (u = u m N A);Z– заряд иона;F– постоянная Фарадея; с – молярная концентрация ионов;– градиент мембранного потенциала.

Кроме диффузии через липидный бислой мембраны транспорт веществ может происходить через липидные поры и белковые каналы (рис. 4).

Мембранный канал представляет собой интегральный белок (белковый комплекс, гликопротеид), пронизывающий липидный каркас мембраны и обеспечивающий перенос веществ через мембрану в сторону более низкого электрохимического потенциала. Вторичная структура белкового комплекса имеет-складчатый характер с цилиндрической полостью внутри, заполненной водой. Коэффициент проницаемости ионных каналов для гидрофильных веществ составляет 10 –8 -10 –9 м/с, что на 5-6 порядков меньше скорости переноса ионов в водной среде, но значительно превышает скорость их диффузии через липидную фазу.

Ионный канал содержит два основных компонента: селективный фильтр и воротный механизм. Первый имеет жесткую структуру, т.е. в этой части белковый комплекс не может изменять размеры поры и регулировать проницаемость мембраны. Функция селективного фильтра – пропускать через канал определенное вещество или группу сходных с ним веществ, т.е. избирательная проницаемость. Регулирование мембранной проницаемости обеспечивается воротными процессами. Они осуществляются "воротами канала", которые представляют собой части белкового комплекса, способные "раскручиваться" и "скручиваться" в ходе их механохимических реакций и благодаря этому создавать просвет внутри белкового комплекса или перекрывать его (сжимать или восстанавливать пору).

Проницаемость мембраны для данного вещества определяется только числом открытых в данный момент каналов. Поэтому мембранную проницаемость (Р) при переносе веществ по каналам рассчитывают по формуле:

,

где n– число открытых каналов на единице поверхности;r– радиус канала;D– коэффициент диффузии;l– длина канала (примерно соответствует толщине мембраны).

Переход канала из закрытого состояния в открытое и обратно осуществляется под действием определенных стимулов (сдвиг мембранного потенциала, химические, механические, световые модальности).

Облегченная диффузия происходит с участием специальных переносчиков. Например, антибиотик валиномицин осуществляет перенос ионов калия через мембрану. Его структура напоминает браслет (рис. 5) образованный изнутри полярными группами (обеспечивают связывание калия), а снаружи – неполярными (обуславливают гидрофобность молекулы). Ион калия встраивается в центральную область антибиотика на наружной поверхности мембраны, заряженный комплекс под действием электрического поля диффундирует через мембрану и на ее внутренней стороне распадается. Калий поступает в цитоплазму, а свободная молекула валиномицина возвращается обратно.

По современным представлениям, аналогично происходит перенос аминокислот, сахаров и ряда других веществ.

Примером фиксированного переносчика является антибиотик грамицидин. Две его молекулы встраиваются в мембрану и формируют полый цилиндр, в котором полярные группы расположены внутри. Скорость переноса ионов может составлять 10 10 с –1 , что примерно в 10 5 раз превышает производительность подвижных переносчиков.

Характерные черты облегченной диффузии:

 для ее реализации обязательно должен существовать концентрационный градиент переносимого вещества;

 при увеличении градиента концентрации скорость облегченной диффузии повышается до определенного предела ("насыщение" определяется концентрацией переносчика);

 скорость облегченной диффузии значительно превышает скорость простой, поскольку переносчик приводит к значительному повышению мембранной проницаемости для данного вещества;

 возможна конкуренция близких по структуре веществ за связывание с молекулой переносчика.

Осмос – движение растворителя через полупроницаемую мембрану (непроницаемую для растворенного вещества) в сторону более концентрированного раствора. По своей сути осмос – это простая диффузия молекул воды.

Осмотическое давление измеряется в атмосферах (в СИ – паскали) и определяется по формуле:

Р осм =RTCi,

где R– универсальная газовая постоянная, 8,3110 3
; Т – температура, К; С – концентрация растворенного вещества, г/моль;i– изотонический (изоосмотический) коэффициент (для не электролитовi= 1, для разбавленных растворов солей, кислот, щелочейi≈ 2-3). Сила, противодействующая осмосу – упругое сопротивление мембраны или дополнительная величина гидростатического давления. В тот момент, когда величина осмотического давления уравновешивается противодействующей силой, система переходит в состояние равновесия. Р осм большинства клеток организма человека составляет около 780 кПа (7,5-8,1 атм). В местах воспаления (опухоли) возможно увеличение до 15-20 атм.

Явление осмоса играет ключевую роль в жизнедеятельности организма, обеспечивая поступление воды через мембраны и тургор или упругость клеток (формообразование, эластические свойства тканей).

По сравнению с осмотическим давлением клеток, внешние растворы могут быть:

Изотоническими – имеют ту же величину осмотического давления, не вызывают изменения клеточных структур (0,9% водный растворNaClназывают физиологическим раствором). Для инъекций лекарственных препаратов используются преимущественно изотонические растворы.

Гипертоническими – растворы с большим осмотическим давлением, приводят к плазмолизу клеток ("сморщиванию") вследствие выхода из них воды.

Гипотоническими – растворы с меньшим осмотическим давлением приводят к разбуханию и разрыву клеточной оболочки – лизису, поскольку вода начинает поступать внутрь клетки. Повязки с гипертоническим раствором (10%NaCl) применяют в медицине при лечении гнойных ран (за счет осмоса происходит ток жидкости из раны и она очищается от микроорганизмов, продуктов распада). Горькую соль (MgSO 4 7H 2 O) и глауберову соль (Na 2 SO 4 10H 2 O) используют как слабительные средства. Они плохо всасываются в желудочно-кишечном тракте, и при применении гипертонических растворов этих солей в просвет кишечника переходит значительное количество воды из слизистой оболочки.

Фильтрация – движение раствора через поры в мембране под действием градиента давления. В общем виде, скорость переноса при фильтрации подчиняется закону Пуазейля:

Фильтрация играет огромную роль в капиллярном транспорте, поскольку обеспечивает перенос воды и растворенных в ней веществ из плазмы крови в тканевую жидкость. Направление и скорость движения воды определяется по формуле:

Q=f((Р гк – Р гт) – (Р ок – Р от)),

где Q– объемная скорость движения воды через капиллярную стенку;f– коэффициент фильтрации (определяется вязкостью раствора, количеством пор и т.д.); Р гк – гидростатическое давление в капилляре; Р гт – гидростатическое давление в тканевой жидкости; Р ок – онкотическое давление крови; Р от – онкотическое давление тканевой жидкости. Онкотическое давление – часть осмотического, создаваемое за счет белковых макромолекул (более мелкие молекулы свободно проходят через капиллярную стенку и не участвуют в формировании осмотического давления). Под действием Р гк и Р от жидкость стремится выйти из капилляра в ткань (фильтрация), а под действием Р гт и Р ок – возвратиться обратно в капилляр (реабсорбция). Градиент гидростатического давления в капиллярном русле приводит к тому, что в артериальной части артериол происходит фильтрация, а в венозной части – реабсорбция, причем между объемами отфильтрованной и реабсорбированной жидкости в норме существует динамическое равновесие (≈ 10% объема жидкости возвращается из интерстициального пространства в кровяное русло с помощью лимфатической системы).

Активный транспорт идет против существующих электрохимических градиентов и сопровождается ростом энергии Гиббса. Следовательно, он всегда происходит с затратой энергии запасенной в макроэргических связях АТФ. Впервые существование активного транспорта было показано в опытах Уссинга (1949 г).

Камера Уссинга (рис. 6) заполнена раствором Рингера и разделена на две половины кожей лягушки. Наблюдались потоки ионов Na + , при этом внутренняя сторона кожи приобретала положительный заряд по отношению к наружной. С помощью блока компенсации напряжения разность потенциала кожи приводили нулю и поддерживали одинаковую концентрацию ионов по обе стороны мембраны. Если бы транспорт ионов осуществлялся только пассивными механизмами, то потоки ионов через мембрану в обе стороны были бы равны, а ток в цепи отсутствовал. Однако электрический ток продолжал протекать через мембрану, следовательно, происходит однонаправленный перенос заряженных частиц. Метод радиоактивных изотопов показал, что поток ионовNa + внутрь клетки превышает поток из клетки. Дальнейшие опыты показали, что истощение запасов АТФ в коже лягушки приводит к остановке однонаправленного потока ионовNa + .

Познание функций человека - одна из труднейших задач. Развитие науки на первых этапах происходит - дифференциация дисциплин, направленных на глубокое изучение тех или иных проблем. На первом этапе мы пытаемся познать определенную часть и когда это удается сделать возникает другая задача - как составить общее представления. Возникают научные дисциплины на стыке первоначальных специальностей. Это относится и к биофизике, которая появилась на стыке физиологии, физики, физической химии и открыла новые возможности в понимании биологических процессов

Биофизика - наука, изучающая физические и физико-химические процессы на разных уровнях живой материи (молекулярном, клеточном, органном, целого организма), а также закономерности и механизмы воздействия физических факторов внешней среды на живую материю.

Выделяют-

  • молекулярная биофизика - кинетики и термодинамика процессов
  • биофизика клеток - изучение структуры клеток и физико-химические проявления - проницаемость, образование биопотенциалов
  • биофизика органов чувств - физико-химические механизмы рецепции, трансформацию энергии, кодирование информации ив рецепторах.
  • Биофизика сложных системы - процессы регулирования и саморегулирования и термодинамические особенности этих процессов
  • Биофизика воздействия внешних факторов - исследует влияние на организм ионизирующей радиации, ультразвука, вибрации, воздействия света

Задачи биофизика

  1. Установление закономерностей дивой природы путем изучения физических и химических явлений в организме
  2. Изучение механизмов воздействия физических факторов на организм

Эйлер(1707-1783) - законы теории гидродинамики, для объяснения движения крови по сосудам

Лавуазье (1780) - изучал обмен энергии в организме

Гальвани(1786) - основоположник учения о биопотенциалах, о животном электричестве

Гельмгольц(1821)

Рентген - пытался объяснить механизмы мышечного сокращения с позиции пьезо - эффектов

Аррениус - законы классической кинетики для объяснения биологических процессов

Ломоносов - закон сохранения и превращения энергии

Сеченов - изучал транспорт газа в крови

Лазарев - основоположник отечественной биофизической школы

Полинг - открытие пространственной структуры белка

Уотсон и Крик - открытие двойной структуры ДНК

Ходжкин, Хаксли, Катц - открытие ионной природы биоэлектрических явлений

Пригожин -теория термодинамики необратимых процессов

Эйген - теория гиперциклов, как основа эволюции

Сакман, Неер - установили молекулярную структуру ионных каналов

Биофизика становилась в связи с развитием медицины, т.к. там использовались методы физического воздействия на организма.

Развивалась биология и было необходимо проникнуть в тайны биологических процессов, протекающих на молекулярном уровне

Потребность промышленности, развитие которой привело к действию ан организм различных физически факторов - радиоактивное излучение, вибрации, невесомость, перегрузки

Методы биофизических исследований

  • Рентгеноструктурный анализ - исследование атомной структуры вещества, с помощью дифракции рентгеновских лучей. По дифракционной картине устанавливают распределение электронной плотности вещества, а уже по ней можно определить, какие атомы содержатся в веществе и как они расположены. Исследование кристаллических структур, жидкостей и белковых молекул.
  • Колоночная хроматография - различное распределение и анализ смесей между 2 фазами - подвижной и неподвижной. Она может быть связана с различной степенью вещества абсорбции или к различной степени ионного обмена. Может быть газовой, либо жидкостной. Распределение веществ используют в капиллярах - капилярная, либо в трубках, заполненных сорбентом - колончатая. Можно проводить на бумаге, пластинках
  • Спектральный анализ - качественное и количественное определение вещества по оптическим спектрам. Вещество определяют либо по спектру испускания - эмиссионный спектральный анализ или по спектру поглощения - абсорбционный. Содержание вещества определяется по относительной или абсолютной толщине линий в спектре. Также относят радиоспектроскопию - электронный парамагнитный резонанс и ядерно-магнитный резонанс.
  • Изотопная индикация
  • Электронная микроскопия
  • Ультрафиолетовая микроскопия - исследование в УФ лучах биологических объектов повышает контрастность изображения, особенно внутриклеточных структур и она позволяет исследовать иные клетки без предварительной окраски и фиксации препарата

Одним из важнейших условий существования является адекватное приспособлений функций, органов и тканей, систем к среде обитания. Происходит постоянное уравновешивание организма и среды. В этих процессах основной процесс - регуляция и управление физиологическими функциями.

Общие законы реализации, управления и переработки информации в разных системах изучаются наукой кибернетикой(кибернетика - искусство управления) Законы управления являются общими как у человека, так и у технических устройств. Возникновение кибернетики было подготовлено разработкой теорией автоматического регулирования, развитием радиоэлектроники, созданием теории информации.

Эта работа была изложена Шенноном(1948) в «Математическая теория связи»

Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. Кибернетика изучает те сигналы и факторы, которые приводят к определенным процессам управления.

Имеет большое значения для медицины. Анализ биологических процессов позволяет качественно и количественно изучить механизмы регулирования. Информационные процессы управления и регулирования являются определяющими в организме, т.е. являются первичными, на основе которых происходят все процессы.

Системы - организованный комплекс элементов, связанных друг с другом и выполняющих определенные функции в соответствии с программой всей системы. Элементами мозга будут являться нейроны. Элементы коллектива - люди, входящие в него. Только толпа не является кибернетической системой.

Программа - последовательность изменений системы в пространстве и времени, которые могут быть заложены в структуре смой системы или поступить в нее извне.

Связь - процесс взаимодействия элементов друг с другом, при котором происходит обмен веществом, энергией, информацией.

Сообщения бывают непрерывными и дискретными.

Непрерывное имеют характер непрерывно меняющейся величины(артериальное давление, температура, напряжение мышц, музыкальные мелодии).

Дискретное - состоят из отдельных, отличающихся друг от друга ступеней или градаций(порции медиаторов, азотистое основание ДНК, точки и тире азбуки Морзе)

Важен также процесс кодирования информации. Кодируется нервными импульсами, для восприятия информации нервными центрами. Элементы кода - символы и позиции. Символы являются безразмерными величинами, которые отличают что либо(буквы алфавита, математические знаки, нервный импульс, молекулы пахучих веществ, а позиции определяет пространственное и временное расположение символов).

Код информации содержит такую же информацию, как и исходное сообщение. Это явление изоморфности. Кодовый сигнал обладает очень малой энергетической величиной. Поступление информации оценивается по наличию или отсутствию сигнала.

Сообщение и информация - это не одно и тоже, ибо по теории информации

Информация - мера того количества неопределенности, которая устраняется после получения сообщения.

Возможность наступления события - априорная информация .

Та вероятность события после получения информации - апостериорная информация.

Информативность сообщения будет больше, если полученные сведенья повышают апостериорную вероятность.

Свойства информации.

  1. Информация имеет смысл только при наличии ее приемников(потребителя) - «если в комнате стоит телевизор, и в ней никого нет»
  2. Наличие сигнала не обязательно говорит о том, что предается информации, т.к. есть сообщения, которые не несут ничего нового, для потребителя.
  3. Информация может предаваться как на сознательном, так и на подсознательном уровнях.
  4. Если событие достоверно(т.е. его вероятность Р=1), сообщение о том, что оно произошло не несет никакой информации для потребителя
  5. Сообщение о событии, вероятность которого Р < 1, содержит в себе информацию, и тем большую, чем меньше вероятность события, которого произошло.

Дезинформация - отрицательное значение информации.

Мера неопределенности событий - энтропия (H)

Если log2 N=1, тогда N=2

Единица информации - бит (двойничная единица информации)

H=lg N (хартли)

1 хартли - количество информации, необходимое для выбора одной из десяти равновероятных возможностей. 1 хартли = 3,3 бит

Регулятор может работать по возмещению, когда воздействие на организм является компенсирующим действием регулятора, что приводит к нормализации функции

Управление направлено на запуск физиологических функций, на их коррекцию и на согласование процессов.

Наиболее древний - гуморальный механизм регуляции.

Нервный механизм.

Нервно-гуморальный механизм.

Развитие механизмов регуляции приводит к тому, что животные способны к движению и могут уходить из неблагоприятной среды в отличие от растений.

Форпостный механизм (у человека) - в форме условных рефлексов. На сигнальные раздражители мы можем осуществлять меры воздействия на окружающую среду.

Биофизика - раздел физики и современной биологии, изучающий физические аспекты существования живой природы на всех её уровнях, начиная от молекул и клеток и заканчивая биосферой в целом; это наука о физических процессах, протекающих в биологических системах разного уровня организации и о влиянии на биологические объекты различных физических факторов. Биофизика призвана выявлять связи между физическими механизмами, лежащими в основе организации живых объектов и биологическими особенностями их жизнедеятельности. Обобщённо можно сказать, что биофизика изучает особенности функционирования физических законов на биологическом уровне организации вещества. Биофизика - наука междисциплинарная и для работы в ней требуются знания физики, биологии, химии и медицины. Поэтому биофизически ориентированные исследования проводятся не только в специализированных институтах, но также и в биологических, химических, фармакологических и медицинских. В биофизике выделяют следующие разделы: кинетика биологических процессов; термодинамика биологических процессов: преобразования энергии в живых структурах; молекулярная биофизика; биофизика мембранных процессов: свойства биологических мембран и их частей; биофизика фотобиологических процессов; радиационная биофизика; математическая биофизика и др.

Биологические объекты, как правило, очень сложны и на протекающие в них процессы влияют многие факторы, которые часто зависят друг от друга. Физика позволяет создать упрощенные модели объекта, которые описываются законами термодинамики, электродинамики, квантовой и классической механики. С помощью соотношения физических данных с биологическими можно получить более глубокое понимание процессов в исследуемом биологическом объекте.

2. Структурные основы цитоплазматической мембраны её биологическое значение.

Живая клетка – элементарная живая система, являющаяся основой строения всех животных и растений.

Важнейшими условиями существования клетки являются:

1) Автономность по отношению к окружающей среде (вещество клетки не должно смешиваться с веществом окружения);

2) Постоянный, регулируемый обмен веществом и энергией с окружающей средой. Эти 2 условия обеспечиваются нормальным функционированием биологических мембран.

С точки зрения структуры мембрана представляет собой матрицу для мембранных ферментов, рецепторов и других компонентов, создающих барьерную функцию. Молекулы фосфолипидов состоят из полярной головки (П), в состав которой входит одно из полярных соединений (холин, этаноламин и др.) и неполярного хвоста (Г), который содержит глицерин, жирные кислоты, фосфорную кислоту. Фосфолипидные молекулы обладают свойством амфильности: полярная головка гидрофильна, т.е. смачивается водой, а «хвост» является гидрофобным, т.е. не смачивается водой. По форме молекулы фосфолипидов представляют сплющенные цилиндры, ¼ которых гидрофильна, а ¾ гидрофобны. В водных растворах такие молекулы самособираются, стараясь спрятать от воды гидрофобные хвосты, и образуют двойной фосфолипидный слой – собственно основу мембраны. В этот слой встраиваются поверхностные (ПБ) и интегральные (ИБ) белки. Поверхностные белки удерживаются электростатическими силами, а интегральные – прочными гидрофобными взаимодействиями. Также в состав мембраны могут входить белки 3-го типа – эти белки насквозь пронизывают мембрану. Белки 4-го типа образуют белковые каналы. Фосфолипидные молекулы могут быть лишены одно из хвостов, в таком случае они перестраиваются и образуют поры а мембране, что нарушает барьерную функцию мембраны. Такая модель мембраны получила название жидкостно-мозаичной и является общепринятой.

Выделяют 3 основные функции биологических мембран:

1) Барьерная – обеспечивает селективный, регулируемый активный и пассивный обмен веществом с окружающей средой;

2) Матричная – обеспечивает определённое взаимное расположение и ориентацию мембранных белков, обеспечивает их оптимальное взаимодействие;

3) Механическая - обеспечивает прочность и автономность клетки и внутриклеточных структур.

Кроме этого выделяют другие функции:

1) Энергетическая – синтез АТФ на внутренней мембране митохондрий;

2) Генерация и проведение биопотенциалов;

3) Рецепторная (большое кол-во рецепторов на наружной поверхности мембраны).

Но достаточна ли современная физика для решения биологических проблем, для обоснования теоретической биологии? Не потребуется ли биофизики новая, еще не существующая физика? В истории науки были ситуации, в которых ранее разработанная теория встречалась с границами своей применимости и оказывалась необходимым строить принципиально новую систему представлений. Именно так и возникли и теория относительности, и квантовая механика.

Обсуждая возможности физического истолкования явлений жизни, т.е. влияние физики на современное и последующее развитие биологии, не следует забывать и об обратном влиянии биологии на физику. Закон сохранения энергии, первое начало термодинамики, был открыт Майером, Джоулем, и Гельмгольцем. Как известно, Майер исходил из наблюдений над живыми организмами, над людьми. Менее известно, что Гельмгольц также основывался на биологических явлениях, руководствуя четкой антивиталистической концепцией. Не только биофизика, но физика в целом развивались на пути преодоления витализма.

Бор рассматривал эту проблему на основе концепции дополнительности, частным случаем является принцип неопределенности квантовой механики. Бор считал дополнительными исследований несовместимы. В то же время «ни один результат биологического исследования не может быть однозначно описан иначе как на основе понятий физики и химии». Таким образом, имеется дополнительность биологии, с одной стороны, и физики и химии -- с другой. Эта концепция не виталистична, она не ставит каких- либо границ применению физики и химии в исследованиях живой природы.

Развитие молекулярной биологии привело к атомистическому истолкованию основных явлений жизни -- таких как наследственность и изменчивость.

В 1945 году Шредингер написал книгу «Что такое жизнь с точки зрения физики», оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Первая из них -- термодинамические основы жизни. На первый взгляд имеется решительное противоречие между эволюции изолированной физической системы к состоянию с максимальной энтропией и биологической эволюцией, идущей от простого к сложному. Шредингер говорил, что организмы и биосфера в целом не изолированные, но открытые системы, обменивающиеся с окружающей средой и веществом, и энергией. Неравновесное состояние открытой системы поддерживаются оттоком энтропии в окружающую среду. Вторая проблема - общие структурные особенности организмов. По словам Шредингера, организм есть апериодический кристалл, т.е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов. Это утверждение справедливо для строения организмов, клеток и биологических макромолекул. Третья проблема -- соответствие биологических явлений законам квантовой механики. Обсуждая результаты радиобиологических исследований, проведенных Тимофеевым-Ресовским, Циммером и Дельбрюком, Шредингер отмечает квантовую природу радиационного мутагенеза. В то же время применения квантовой механики в биологии не тривиальны, так как организмы принципиально макроскопичны. Шредингер задает вопрос: « Почему атомы малы?» Очевидно, что этот вопрос лишен смысла, если не указано, по сравнению, с чем малы атомы. Они малы по сравнению с нашими мерами длины - метром, сантиметром. Но эти меры определяются размерами человеческого тела. Следовательно, говорит Шредингер, вопрос следует переформулировать: почему атомы много меньше организмов, иными словами, почему организмы построены из большого числа атомов? Ответ на этот вопрос заключается в том, что необходимая для жизни упорядоченность возможна лишь в макроскопической системе, в противном случае порядок разрушался бы флуктуациями. Наконец, Шредингер задавался вопросом об устойчивости вещества генов, построенных из легких атомов С, Н, К, О, Р, на протяжении множества поколений.

С расширением и углублением человеческих знаний о живых организмах появились такие разделы науки, которые изучают процессы и явления, относящиеся одновременно к различным областям знаний. Среди таких научных дисциплин биологическая физика, или биофизика. Что же она изучает и каковы ее методы исследований?

Известно, что физика изучает основные законы природы: строение атомов и ядер, свойства элементарных частиц, взаимодействие электромагнитных волн и частиц и т. д. Биофизика, возникшая на стыке биологии и физики, - это наука об основных физических и физико-химических процессах в живом организме и их регулировании.

Биофизикам нужно познать закономерности строения и работы живых организмов, не нарушая их свойств, сохраняя организм в живом, деятельном состоянии. Ведь, отмирая, организм теряет присущие ему свойства, все процессы в нем изменяются, и он становится обычной неживой системой. В этом заключается большая трудность. Отсюда возникла необходимость изучать живые организмы на разных «уровнях» - исследовать свойства биологических молекул, характерные особенности и работу клеток, изучать совместную работу органов в целом организме и т. д. Поэтому в биофизике выделились такие крупные разделы: молекулярная биофизика, биофизика клетки, биофизика процессов управления и регуляции и др. Кратко расскажем о каждом из основных разделов биофизики.

Молекулярная биофизика изучает свойства биологических молекул, физико-химические процессы в рецепторных клетках. Эти клетки называются рецепторными или чувствительными, так как они первыми воспринимают сигналы о свете, вкусе, запахе (по-латински «рецептио» - чувствую).

Молекулярная биофизика исследует, например, процессы, которые протекают в органах чувств животных - в органах зрения, слуха, осязания и обоняния. Мы привыкли, что в нашем организме все совершается просто, само собой, и подчас не задумываемся, насколько сложные биофизические процессы происходят, например, когда мы ощущаем вкус сахара или чувствуем запах цветов. А это одна из проблем, над которой много лет работает молекулярная биофизика. Дело в том, что ощущения вкуса или запаха возможны благодаря сложным физико-химическим процессам в рецепторных клетках при взаимодействии с ними молекул различных веществ.

Известно, что химики создали 1 млн. органических соединений и почти каждое из них имеет свой характерный запах. Человек может различать несколько тысяч запахов, причем некоторые вещества мы ощущаем при исключительно малой концентрации - всего миллионные и миллиардные доли миллиграмма на литр воды. Например, чтобы ощутить такие вещества, как скатол, тринитробутилтолуол, достаточно их концентрации 10 -9 мг/л. Животные намного чувствительнее человека. Например, геологи используют специально обученных собак для поиска по запаху рудных месторождений, расположенных глубоко под землей. Всем хорошо известна работа собак-ищеек, находящих след по ничтожно слабому запаху. Но, пожалуй, остротой обоняния всех превосходят рыбы и насекомые. Некоторые рыбы ощущают пахучее вещество, даже если оно содержится в воде в исчезающе малых концентрациях - всего 10 -11 мг/л. Бабочки обнаруживают чуть ли не одну молекулу пахучего вещества, приходящуюся на 1 м 3 воздуха.

Молекулярная биофизика помогает выяснить не только различие в чувствительности и строении органов обоняния у различных животных, но и сам процесс определения запаха. Сейчас установлено, что имеется 6-7 основных запахов, разными сочетаниями которых объясняется их многообразие. Этим основным запахам соответствуют определенные типы обонятельных клеток.

Молекулярная биофизика изучает свойства и процессы не только у животных, но и у растений. В частности, она занимается изучением фотосинтеза. В зеленом листе березы, черемухи, яблони или пшеницы происходят удивительные и сложные процессы. Солнце посылает на Землю колоссальное количество энергии, которая пропадала бы без пользы, если бы не зеленые листья, улавливающие ее и создающие с ее помощью из воды и углекислого газа органическое вещество и тем самым дающие жизнь всем живым организмам.

Фотосинтез протекает в зеленых частицах - хлоропластах, находящихся в клетках листа и содержащих растительный пигмент - хлорофилл. Порции световой энергии (фотоны) поглощаются пигментом и производят фотоокисление воды: она отдает свой электрон молекуле хлорофилла, а протон используется для восстановления углекислого газа до углеводов. Протон и электрон, как известно, составляют атом водорода; этот атом «по частям» отнимается у молекулы воды. В процессе фотосинтеза освобождается кислород, которым дышат все живые организмы.

Основа фотосинтеза - самый первый элементарный процесс: взаимодействие порций световой энергии (фотонов) с молекулой хлорофилла. Именно этот процесс изучает молекулярная биофизика в фотосинтезе, с тем чтобы познать, как происходит преобразование световой энергии в энергию химических связей и последующее превращение веществ. Если этот фундаментальный процесс будет познан до конца, его можно будет осуществлять в искусственных условиях. Тогда человечество овладеет самым быстрым и самым экономичным способом получения органических веществ, следовательно, продуктов питания и ценного сырья, которые дают сегодня человеку зеленые растения.

Существует тесная связь между изучением клеток и молекулярных процессов, происходящих в них, т. е. между молекулярной и клеточной биофизикой. Одна из них изучает молекулярные изменения, свойства биологических молекул и системы, образуемые молекулами в клетках (как говорят, субмолекулярные образования), их свойства и изменения, другая исследует свойства и функционирование различных клеток - выделительных, сократительных, обонятельных, светочувствительных и др.

Развитию биофизики клетки во многом способствовали успехи физики, радиоэлектроники, именно благодаря этим наукам биофизика получила электронные микроскопы, позволившие увеличивать микроскопические объекты в сотни тысяч раз. На вооружении биофизиков появился электронный парамагнитный резонанс, с помощью которого можно изучать особые активные части молекул - так называемые свободные радикалы, играющие очень важную роль во всех биологических процессах. С помощью высокочувствительных к свету приборов - фотоэлектронных умножителей (ФЭУ) стало возможным определять крайне малые потоки света. Использование этих приборов привело к большому открытию в биофизике клетки.

Давно была известна способность к свечению у живых организмов: светлячков и различных водных организмов, называемая биолюминесценцией. Но с помощью ФЭУ удалось обнаружить, что способностью к свечению обладают органы почти всех животных и растений. Это так называемое сверхслабое свечение - биохемилюминесценция - происходит в результате физико-химических реакций внутри клеток, и связано оно с внутриклеточным окислением веществ липидов, входящих в структурные элементы. Большую роль в этих процессах играют упомянутые нами свободные радикалы. По интенсивности сверхслабого свечения можно следить за уровнем окислительных обменных реакций и выделением энергии в результате многообразных реакций, идущих внутри клеток.

Обнаружение сверхслабого свечения, наличия свободных радикалов, связи их с жизнедеятельностью клетки резко изменило представления о клеточных процессах. Перед биофизикой клетки встала задача не только разобраться в ультрамикроскопическом строении клетки и ее органелл, но и выяснить, как связаны друг с другом эти элементы, как они работают, в чем причина слаженности, согласованности процессов, совершающихся в клетках.

При исследовании клетки в электронном микроскопе ученым открылся новый мир ультрамикроскопических, т. е. самых мельчайших, клеточных структур. Были обнаружены внутриклеточные мембраны, канальцы, трубочки, пузырьки. Все эти структуры, в миллионы раз тоньше человеческого волоса, играют определенную роль в жизнедеятельности клетки. Любая клетка, кажущаяся простым комочком цитоплазмы с ядром, представляет собой сложное образование с большим числом мельчайших частиц (структурных элементов), действующих точно и согласованно, в строгом порядке, тесно связанных между собой. Количество этих структурных элементов очень велико, например в нервной клетке до 70 тыс. частиц - митохондрий, благодаря которым клетка дышит и получает энергию для своей деятельности.

В любой клетке живого организма происходит поглощение необходимых веществ и выделение ненужных, совершается дыхание, деление, наряду с этим клетки выполняют специальные функции. Так, клетки сетчатки глаза определяют силу и качество света, клетки слизистой носа определяют запах веществ, клетки различных желез выделяют физиологически активные вещества - ферменты и гормоны, регулирующие рост и развитие организма.

О всей своей большой работе - увиденном, услышанном, опознанном - клетки нервной ткани животных сообщают электрическими импульсами в головной мозг - главный координирующий центр. Биофизика клетки в целом и один из ее важных разделов, называемый электрофизиологией клетки, изучают, как клетки получают необходимые сведения из окружающего пространства, как эти сведения зашифрованы в электрических сигналах - импульсах, как образуются в клетках биологические токи и потенциалы.

Клетки живого организма тесно связаны между собой, с головным мозгом - главным управляющим центром. В самих клетках, в тысячах их структурных элементов, происходят упорядоченные биохимические процессы. Благодаря чему так согласованно и точно совершаются эти сотни тысяч реакций?

Дело в том, что и клетка, и отдельный орган, и целостный организм представляют собой определенную систему, основанную на специфических законах регулирования и взаимосвязи. Вот эти особенности изучает самый молодой раздел - биофизика процессов управления и регуляции.

Расскажем об этом разделе биофизики, воспользовавшись следующим примером. Каждый орган человека состоит из большого числа клеток, выполняющих специфическую работу. Например, особую роль в обонянии играет слизистая оболочка носа - так называемый слизистый эпителий. Площадь его не более 4 см 2 , но содержит он чуть ли не 500 млн. обонятельных клеток - рецепторов. Сведения об их работе передаются по нервным волокнам, число которых достигает 50 млн., в обонятельный нерв и затем в головной мозг. Сигналы, идущие от клеток в виде первичных электрических импульсов, должны быть правильно расшифрованы. Для этого они направляются в различные отделы головного мозга, состоящие из громадного числа клеток. Например, только большие полушария головного мозга содержат 2*10 10 клеток, мозжечок -10 11 клеток. Мозг принимает необходимые "решения" и передает ответные сигналы - указания о том, как должны работать те или иные клетки, ткани или органы. В центральную нервную систему поступают сотни тысяч разнообразных сигналов из внешней среды о звуках, свете, запахах и сигналы о состоянии клеток самого организма. Из сказанного видно, насколько сложны взаимосвязи в любой живой системе - в отдельной клетке или целом организме, как сложна работа по управлению клетками, регулированию их состояния и контролю за согласованностью всех жизненных процессов.

Этот важный отдел биофизики опирается на закономерности, открытые другой наукой - кибернетикой. Биофизики, изучающие процессы управления и регуляции, пользуясь ее методами, разработали ряд электронных моделей, например черепахи, нервной клетки и процесса фотосинтеза, которые облегчают изучение сложных явлений регуляции в организме.

Исследование регуляторных процессов в живом организме показало, что они обладают удивительным свойством - саморегуляцией. Клетки, ткани, органы живых организмов представляют собой САМОрегулирующиеся, САМОорганизующиеся, САМОнастраивающиеся, САМОобучающиеся системы. Это означает, что работа клеток, органов и организма в целом определяется свойствами и качествами, заложенными в самом организме. Поэтому каждая клеточка или орган самостоятельно, без помощи извне регулирует постоянство состава среды внутри них. Если под воздействием какого-либо фактора их состояние изменяется, это удивительное свойство помогает им вернуться вновь в нормальное cостояние.

Хлоропласты в клетках листа изменяют свое расположение в зависимости от силы освещения: при сильном освещении они располагаются вдоль стенок клеток (слева); при слабом - по всей клетке. Это пример клеточной саморегуляции.

Вот только один простой пример такой саморегуляции. Мы уже рассказывали о важной роли хлоропластов, находящихся в клетках зеленого листа. Хлоропласты способны к самостоятельному передвижению в клетках под влиянием света, поскольку они очень чувствительны к нему. В солнечный яркий день при большой интенсивности света Хлоропласты располагаются вдоль клеточной стенки, как бы стараясь избежать действия сильного света. В пасмурные облачные дни хлоропласты располагаются по всей поверхности клетки, чтобы поглощать больше лучей. Переход хлоропластов из одного положения в другое под влиянием света (фототаксис) совершается благодаря клеточной саморегуляции.

Познание человеком природы, разнообразных живых организмов идет так стремительно и приводит к таким неожиданным результатам и выводам, что они не укладываются в рамки какой-либо одной науки. Биофизика положила начало новым разделам науки, расширяющим горизонты человеческих знаний. Так выделилась в самостоятельную отрасль биологии радиобиология - наука о действии различных видов радиации на живые организмы, космическая биология, изучающая проблемы жизни в космосе, механохимия, исследующая превращение химической энергии в механическую, происходящее в мышечных волокнах. На основе биофизических исследований возникла новая наука - бионика, изучающая живые организмы с целью использования принципов их работы для создания новых и более совершенных по конструкции приборов и аппаратов.

Мы рассказали лишь о небольшой части исследований, проводимых биофизиками, но примеров можно было бы привести значительно больше, как в области изучения молекул, субклеточных структур, так и организма в целом. Каждый день приносит новые открытия, изобретения, ценные идеи. Наш век - это время больших успехов во всех областях знания, в том числе и в изучении природы.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ