Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

1.3.1 Особенности классификации звеньев САУ Основная задача теории автоматического управления ТАУ -разработать методы, с помощью которых можно было бы находить или оценивать показатели качества динамических процессов в САУ. Другими словами, рассматриваются не все физические свойства элементов системы, а только те, которые влияют, связаны с видом динамического процесса. Не рассматриваются конструктивное ис­полнение элемента, его габаритные размеры, способ подведения

энергии, особенности дизайна, номенклатура используемых мате­риалов и т.д. Однако, важными будут такие, например, параметры, как масса, момент инерции, теплоемкость, сочетания RC, LC и т.д., напрямую определяющие вид динамического процесса. Особеннос­ти физического исполнения элемента важны только в той степени, в которой они будут влиять на его динамические показатели. Рас­сматривается, таким образом, только одно выделенное свойство эле­мента - характер его динамического процесса. Это позволяет свести рассмотрение физического элемента к его динамической модели в виде математической модели. Решение модели, т.е. дифференциаль­ного уравнения, описывающего поведение элемента, дает динами­ческий процесс, подлежащий качественной оценке.

В основу классификации элементов САУ положены не осо­бенности конструктивного выполнения или особенности их функ­ционального назначения (объект управления, элемент сравнения, регулирующий орган и т.д.), а тип математической модели, т.е. мате­матические уравнения связи между выходной и входной переменны­ми элемента. Причем эта связь может быть задана, как в виде диффе­ренциального уравнения, так и в другой трансформированной форме, например с помощью передаточных функций (ПФ). Дифференциаль­ное уравнение даёт исчерпывающую информацию о свойствах звена. Решив его, при том или ином заданном законе входной величины, по­лучаем реакцию, по виду которой оцениваем свойства элемента.

Введение понятия передаточной функции позволяет получить связь между выходной и входной величинами в операторной форме и при этом воспользоваться некоторыми свойствами передаточной функции, позволяющими существенно упростить математическое представление системы и воспользоваться некоторыми их свойства­ми. Для объяснения понятия ПФ рассмотрим некоторые свойства преобразования Лапласа.

1.3.2 Некоторые свойства преобразования Лапласа Решение моделей динамических звеньев САУ дает измене­ние переменных во временной плоскости. Мы имеем дело с функ­циями X(t). Однако, с помощью преобразования Лапласа их можно трансформировать в функции [Х(р)] с другим аргументом р и новы­ми свойствами.

Преобразование Лапласа есть частный случай соответствия типа: одной функции ставится в соответствие другая функция. Обе функции связаны между собой определённой зависимостью. Соот­ветствие напоминает зеркало, отображающее различным образом, в зависимости от формы, находящийся перед ней объект. Вид отобра­жения (соответствия) может быть выбран произвольным образом, в зависимости от решаемой задачи. Можно, например, искать со­ответствие между совокупностью чисел, смысл которого сводится к тому, как по выбранному числу у из области Y найти число х из области X. Такая связь может быть задана аналитически, в виде таб­лицы, графика, правила и т.д.


Аналогично может быть установлено соответствие между группами функций (рис. 3.1 а), например, в виде:

В качестве соответствия между функциями x(t) и х(р) (рис.3.1 б) может быть использован интеграл Лапласа:

при соблюдении условий: x(t) = 0 при и при t.

В САУ исследуются не абсолютные изменения переменных, а их отклонения от установившихся значений. Следовательно, x(t) - класс функций, описывающих отклонения переменных в САУ и для них выполняется оба условия преобразования Лапласа: первое - так как до приложения возмущения изменения переменных не происхо­дит, второе - так как с течением времени любое отклонение в рабо­тоспособной системе стремится к нулю.

Это условия существования интеграла Лапласа. Получим, в качестве примера изображения простейших функций но Лапласу.

Рис. 3.1. Виды отображения функций

Так, если дана единичная функция x(t) = 1, то

Для экспоненциальной функции x(t) = e -α t изображение по

Лапласу будет иметь вид:

Окончательно:

Полученные функции не сложнее исходных. Функция x(t) называется оригиналом, а х(р) - ее изображением. Условно прямое и обратное преобразование Лапласа можно представить в виде:

L=x(p),L -1 <=x(t).

При этом существует однозначная связь между оригиналом и изображением, и наоборот, оригиналу соответствует только единс­твенное изображение функции. Рассмотрим некоторые свойства преобразования Лапласа.

Изображение дифференциала функции. Пусть функции x(t) соответствует изображение х(р): x(t)-> х(р)- Необходимо найти изображение ее производной x(t) :

Таким образом

При нулевых начальных условиях

Для изображения производной n-го порядка:

Таким образом, изображение производной функции есть изоб­ражение самой функции, умноженное на оператор p в степени n , где п - порядок дифференцирования.

Элементарным динамическим звеном (ЭДЗ) называется мате­матическая модель элемента в виде дифференциального уравнения, не подлежащего дальнейшему упрощению.

1.3.3 Инерционное апериодическое звено первого порядка

Такое звено описывается дифференциальным уравнением первого порядка, связывающего входную и выходную величины:

Примером такого звена кроме термопары, электродвигателя постоянного тока, RL-цепочки, может служить пассивная RC - цепочка (рис. 3.2 г).

Используя основные законы описания электрических цепей получим математическая модель апериодического звена в диффе­ренциальной форме:

Получим связь между входной и выходной величинами звена в форме преобразования Лапласа:

Рис. 3.2. Примеры апериодических звеньев

Отношение выходной величины к входной дает оператор вида.

Что такое динамическое звено? На предыдущих занятиях мы рассматривали отдельные части системы автоматического управления и называли их элементами системы автоматического управления. Элементы могут иметь различный физический вид и конструктивное оформление. Главное, что на такие элементы подается некоторый входной сигнал х( t ) , и как отклик на этот входной сигнал, элемент системы управления формирует некоторый выходной сигнал у( t ) . Далее мы установили, что связь между выходным и входным сигналами определяется динамическими свойствами элемента управления, которые можно представить в виде передаточной функции W(s). Так вот, динамическим звеном называется любой элемент системы автоматического управления, имеющий определенное математическое описание, т.е. для которого известна передаточная функция.

Рис. 3.4. Элемент (а) и динамическое звено (б) САУ.

Типовые динамические звенья – это минимально необходимый набор звеньев для описания системы управления произвольного вида. К типовым звеньям относятся:

    пропорциональное звено;

    апериодическое звено I-ого порядка;

    апериодическое звено II-ого порядка;

    колебательное звено;

    интегрирующее звено;

    идеальное дифференцирующее звено;

    форсирующее звено I-ого порядка;

    форсирующее звено II-ого порядка;

    звено с чистым запаздыванием.

Пропорциональное звено

Пропорциональное звено иначе еще называется безынерционным .

1. Передаточная функция.

Передаточная функция пропорционального звена имеет вид:

W (s ) = K где К – коэффициент усиления.

Пропорциональное звено описывается алгебраическим уравнением:

у(t ) = K · х(t )

Примерами таких пропорциональных звеньев могут служить, рычажный механизм, жесткая механическая передача, редуктор, электронный усилитель сигналов на низких частотах, делитель напряжения и др.



4. Переходная функция .

Переходная функция пропорциональное звена имеет вид:

h(t) = L -1 = L -1 = K · 1(t)

5. Весовая функция.

Весовая функция пропорционального звена равна:

w(t) = L -1 = K ·δ(t)



Рис. 3.5. Переходная функция, весовая функция, АФЧХ и АЧХ пропорционального звена.

6. Частотные характеристики .

Найдем АФЧХ, АЧХ, ФЧХ и ЛАХ пропорционального звена:

W(j ω ) = K = K +0 ·j

A(ω ) =
= K

φ(ω) = arctg(0/K) = 0

L(ω) = 20·lg = 20·lg(K)

Как следует из представленных результатов, амплитуда выходного сигнала не зависит от частоты. В действительности ни одно звено не в состоянии равномерно пропускать все частоты от 0 до ¥, как правило на высоких частотах, коэффициент усиления становится меньше и стремиться к нулю при ω → ∞. Таким образом, математическая модель пропорционального звена является некоторой идеализацией реальных звеньев .

Апериодическое звено I -ого порядка

Апериодические звенья иначе еще называются инерционными .

1. Передаточная функция.

Передаточная функция апериодического звена I-ого порядка имеет вид:

W (s ) = K /(T · s + 1)

где K – коэффициент усиления; T – постоянная времени, характеризующая инерционность системы, т.е. продолжительность переходного процесса в ней. Поскольку постоянная времени характеризует некоторый временной интервал , то ее величина должна быть всегда положительной, т.е. (T > 0).

2. Математическое описание звена.

Апериодическое звено I-ого порядка описывается дифференциальным уравнением первого порядка:

T · d у(t )/ dt + у(t ) = K ·х(t )

3. Физическая реализация звена.

Примерами апериодического звена I-ого порядка могут служить: электрический RC-фильтр; термоэлектрический преобразователь; резервуар с сжатым газом и т.п.

4. Переходная функция .

Переходная функция апериодического звена I-ого порядка имеет вид:

h(t) = L -1 = L -1 = K – K·e -t/T = K·(1 – e -t/T )


Рис. 3.6. Переходная характеристика апериодического звена I-го порядка.

Переходный процесс апериодического звена I-ого порядка имеет экспоненциальный вид. Установившееся значение равно: h уст = K. Касательная в точке t = 0 пересекает линию установившегося значения в точке t = T. В момент времени t = T переходная функция принимает значение: h(T) ≈ 0.632·K, т.е. за время T переходная характеристика набирает только около 63% от установившегося значения.

Определим время регулирования T у для апериодического звена I-ого порядка. Как известно из предыдущей лекции, время регулирования – это время, после которого разница между текущим и установившимся значениями не будет превышать некоторой заданной малой величины Δ. (Как правило, Δ задается как 5 % от установившегося значения).

h(T у) = (1 – Δ)·h уст = (1 – Δ)·K = K·(1 – e - T у/ T), отсюда е - T у/ T = Δ, тогда T у /T = -ln(Δ), В итоге получаем T у = [-ln(Δ)]·T.

При Δ = 0,05 T у = - ln(0.05)·T ≈ 3·T.

Другими словами, время переходного процесса апериодического звена I-ого порядка приблизительно в 3 раза превышает постоянную времени.

Понятие"принцип" имеет латинское происхождение и в переводе на русский язык означает "основа", "первоначало".

Принципами гражданского процессуального права (процесса) называют фундаментальные его положения, основополагающие правовые идеи, закрепленные в нормах права наиболее общего характера. Принципы гражданского процессуального права выражаются как в отдельных нормах наиболее общего содержания, так и в целом ряде процессуальных норм, в которых находятся гарантии реализации на практике общих правовых предписаний.

Значение принципов : Они пронизывают все гражданские процессуальные институты и определяют такое построение гражданского процесса, который обеспечивает вынесение законных и обоснованных решений и их исполнение. Принципы есть основание системы норм гражданского процессуального права, центральные понятия, стержневые начала всей системы процессуальных законов.

Возникнув на основе новых взглядов на роль и значение судебной власти в обществе, принципы становятся важными предпосылками дальнейшего развития и совершенствования гражданского процессуального законодательства в направлении, обеспечивающем надлежащую защиту судами прав граждан и организаций.

Классификация принципов - это деление их состава на отдельные группы по какому-либо признаку.

I. По нормативному источнику:

Конституционные принципы (закрепленные в конституции);

Отраслевые (закрепленные в кодексе).

II. По сфере деятельности:

Общеправовые принципы (принцип законности);

Межотраслевые - специфически отраслевые.

III. По объекту правового регулирования:

Организационные принципы - принципы организации правосудия, которые определяют устройство судов и процесса одновременно;

Функциональные принципы: принципы, определяющие процессуальную деятельность труда и участников процессов.

Организационные принципы:

Осуществляют правосудие только судом (закреплено в Конституции РФ , Правосудие по гаржданским делам, подведомственным судам общей юрисдикции, осуществляется только этими судами по правилам, установленным законодательством о гражд. судопроизводстве.)

Сочетание единоличного и коллегиального начал в рассматриваемом гражданском деле означает, что гражд. дела в судах 1-й инстанции рассматриваются судьей единолично или коллегиально (в предусмотренных законом случаях). Если судья рассматривает единолично, он действует от имени суда)

Независимость судей и подчинение их только закону имеется в виду Конституция РФ, ФКЗ « О судебной системе РФ», ГПК и принимаемые на его основе иные ФЗ.

Принцип процессуального равноправия граждан и организаций перед законом и судом - все лица независимо от пола, расы, национальности, языка, происхождения, имущественного и должностного положения, места жительства, отношения к религии, убеждений, принадлежности к общественным объединениям и т.д. имеют равные процессуальные права при осуществлении правосудия.


Принцип гласности судебного разбирательства. Под принципом гласности понимается установленный за-коном порядок разбирательства дел судом, предусматривающий свободный доступ в зал заседаний всех желающих граждан, а также их право делать письмен-ные заметки и фиксировать все происходящее в зале.

Принцип языка судопроизводства. Данный принцип устанавливает русский язык в качестве основного языка судопроизводства. В республиках может быть использован другой язык - язык соответсвующего субъекта. Для лиц, не владеющих языком предоставляется и обеспечивается право участвовать в процессе на родном языке, в том числе с услугами переводчика.)

Функциональные принципы:

Законности - строгое соблюдение всеми субъектами правоотношений порядка судебного производства по гражданским делам в целях защиты прав и законных интересов физ. и юр. лиц. Данный принцип реализуется на всех стадиях рассмотрения дела в строгом соответствии с ГПК.

Диспозитивности. Гражданские дела возбуждаются, развиваются, изменяются, переходят из одной стадии процесса в другую и прекращаются под влиянием инициативы участвующих в деле лиц;

Состязательности. Гражданское производство в РФ проходит в форме спора, который заключается в доказывании обстоятельств, служащих основанием их требований или возражений сторон;

Объективной судебной истины. Суд может применять судебную норму к конкретным юридическим фактам, полно и правильно установленным в процессе судебного доказывания.

Устности. Разбирательство происходит устно и при неизменном составе судей.

Непосредственности. Исследование судом доказательств по делу происходит сразу, непосредственно в ходе судебного заседания.

Непрерывности. До окончания рассмотрения начатого дела или до отложения его разбирательства суд не в праве рассматривать другие дела.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ