Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Рис. 3.15

Поверхности вращения имеют весьма широкое применение во всех областях техники. Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии 1 вокруг неподвижной прямой i - оси вращения поверхности (рис.3.15). На чертеже поверхность вращения задается своим очерком. Очерком поверхности называются линии, которые ограничивают области ее проекций. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно, линия пересечения поверхности вращения плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями (рис. 3.15). Параллель наибольшего радиуса называют экватором, наименьшего - горлом. Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхностью вращения - меридианом. Меридиан, лежащий в плоскости, параллельной плоскости проекций, называют главным меридианом. В практике выполнения чертежей наиболее часто встречаются следующие поверхности вращения: цилиндрическая, коническая, сферическая, торовая.

Рис. 3.16

Цилиндрическую поверхность вращения . В качестве направляющей а следует взять окружность, а в качестве прямой b - ось i (рис.3.16). Тогда получим, что образующая l , параллельная оси i , вращается вокруг последней. Если ось вращения перпендикулярна горизонтальной плоскости проекций, то на П 1 цилиндрическая поверхность проецируется в окружность, а на П 3 - в прямоугольник. Главным меридианом цилиндрической поверхности являются две параллельные прямые.

Рис 3.17

Коническую поверхность вращения получим, вращая прямолинейную образующую l вокруг оси i . При этом образующая l пересекает ось i в точке S , называемой вершиной конуса (рис.3.17). Главным меридианом конической поверхности являются две пересекающиеся прямые. Если в качестве образующей взять отрезок прямой, а ось конуса перпендикулярной П 1 , то на П 1 коническая поверхность проецируется в круг, а на П 2 - в треугольник.



Сферическая поверхность образуется за счет вращения окружности вокруг оси, проходящей через центр окружности и лежащей в ее плоскости (рис.3.18). Экватор и меридианы сферической поверхности являются равными между собой окружностями. Поэтому при ортогональном проецировании на любую плоскость сферическая поверхность проецируется в круги.

Рис. 3.18 При вращении окружности вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, образуется поверхность, называемая торовой (рис.3.19).

Рис. 3.19

11.ПОЗИЦИОННЫЕ ЗАДАЧИ.ПРИНАДЛЕЖНОСТЬ ТОЧКИ, ЛИНИИ ПОВЕРХНОСТИ.ТЕОРЕМА МОНЖА. Под позиционными подразумеваются задачи, решение которых позволяет получить ответ о принадлежности элемента (точки) или подмножества (линии) множеству (поверхности). К позиционным относятся также задачи на определение общих элементов, принадлежащих различным геометрическим фигурам. Первая группа задач может быть объединена под общим названием задачи на принадлежность. К ним, в частности, относятся задачи на определение:1) принадлежности точки линии;2) принадлежности точки поверхности;3) принадлежности линии поверхности.Ко второй группе относятся задачи на пересечение. Эта группа содержит также три типа задач:1) на пересечение линии с линией;2) на пересечение поверхности с поверхностью;3) на пересечение линии с поверхностью. Принадлежность точки поверхности . Основное положение при решении задач для этого варианта принадлежности следующее: точка принадлежит поверхности, если она принадлежит какой-либо линии этой поверхности . В этом случае линии надо выбирать наиболее простыми, чтобы легче было построить проекции такой линии, затем использовать то обстоятельство, что проекции точки, лежащие на поверхности, должны принадлежать одноименным проекциям линии этой поверхности. Пример решение этой задачи показан на рисунке . Здесь есть два пути решения, поскольку можно провести две простейших линии, принадлежащих конической поверхности. В первом случае - проводится прямая линия - образующая конической поверхности S1 так, чтобы она проходила через какую-либо заданную проекцию точки С. Тем самым предполагаем, что точка С принадлежит образующей S1 конической поверхности, а следовательно - самой конической поверхности. В этом случае одноименные проекции точки С должны лежать на соответствующих проекциях этой образующей.Другая простейшая линия - окружность с диаметром 1-2 (радиус этой окружности - отсчитывается от оси конуса до очерковой образующей). Этот факт известен еще из школьного курса геометрии: при пересечении кругового конуса плоскостью, параллельной его основанию, или перпендикулярной к его оси, в сечении будет получаться окружность. Второй способ решения позволяет найти недостающую проекцию точки С, заданной своей фронтальной проекцией, принадлежащей поверхности конуса и совпадающей на чертеже с осью вращения конуса, без построения третьей проекции. Всегда следует иметь в виду, видима или не видима точка, лежащая на поверхности конуса (в случае, если она не видна, соответствующая проекция точки будет заключена в скобки). Очевидно, что в нашей задаче точка С принадлежит поверхности, поскольку проекции точки принадлежат одноимённым проекциям линий, использованных для решения как при первом, так и при втором способе решения. Принадлежность линии поверхности. Основное положение: линия принадлежит поверхности, если все точки линии принадлежат заданной поверхности . Это означает, что в данном случае принадлежности должна быть несколько раз решена задача о принадлежности точки поверхности. Торема Монжа :если две поверхности второго порядка описаны около третьей или вписаны в неё, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения окружности касания.

12.СЕЧЕНИЯ КОНУСА ВРАЩЕНИЯ ПРОЕЦИРУЮЩИМИ ПЛОСКОСТЯМИ .При пересечении поверхностей тел проецирующими плоскостями, одна проекция сечения совпадает с проекцией проецирующей плоскости. Конус может иметь в сечении пять различных фигур. Треугольник - если секущая плоскость пересекает конус через вершину по двум образующим.Окружность - если плоскость пересекает конус параллельно основанию (перпендикулярно оси).Эллипс - если плоскость пересекает все образующие под некоторым углом. Параболу - если плоскость параллельна одной из образующих конуса. Гиперболу - если плоскость параллельна оси или двум образующим конуса. Сечение поверхности плоскостью представляет собой плоскую фигуру, ограниченную замкнутой линией, все точки которой принадлежат как секущей плоскости, так и поверхности. При пересечении плоскостью многогранника в сечении получается многоугольник с вершинами, расположенными на ребрах многогранника. Пример . Построить проекции линии пересечения L поверхности прямого кругового конуса ω плоскостью β. Решение . В сечении получается парабола, вершина которой спроецируется в точку А (А′, А′′). Точки A, D, E линии пересечения являются экстремальными. На рис. построение искомой линии пересечения осуществлено с помощью горизонтальных плоскостей уровня αi, которые пересекают поверхность конуса ω по параллелям рi , а плоскость β - по отрезкам фронтально проецирующих прямых. Линия пересечения L полностью видима на плоскостях.

№13.Соосные поверхности. Метод концентрических сфер.

При построении линии пересечения поверхностей особенности пересечения соосных поверхностей вращения позволяют в качестве вспомогательных поверхностей-посредников использовать сферы, соосные с данными поверхностями. К соосным поверхностям вращения относятся поверхности, имеющие общую ось вращения. На рис. 134 изображены соосные цилиндр и сфера (рис. 134, а), соосные конус и сфера (рис. 134, б) и соосные цилиндр и конус (рис. 134, в)

Соосные поверхности вращения всегда пересекаются по окружностям, плоскости которых перпендикулярны оси вращения. Этих общих для обеих поверхностей окружностей столько, сколько существует точек пересечения очерковых линий поверхностей. Поверхности на рис. 134 пересекаются по окружностям, создаваемым точками 1 и 2 пересечения их главных меридианов. Вспомогательная сфера-посредник пересекает каждую из заданных поверхностей по окружности, в пересечении которых получаются точки, принадлежащие и другой поверхности, а значит, и линии пересечения. Если оси поверхностей пересекаются, то вспомогательные сферы проводят из одного центра-точки пересечения осей. Линию пересечения поверхностей в этом случае строят способом вспомогательных концентрических сфер. При построении линии пересечения поверхностей для использования способа вспомогательных концентрических сфер необходимо выполнение следующих условий:1) пересечение поверхностей вращения;2) оси поверхностей - пересекающиеся прямые - параллельны одной из плоскостей проекций, т. е. имеется общая плоскость симметрии;3) нельзя использовать способ вспомогательных секущих плоскостей, так как они не дают графически простых линий на поверхностях. Обычно способ вспомогательных сфер используется в сочетании со способом вспомогательных секущих плоскостей. На рис. 135 построена линия пересечения двух конических поверхностей вращения с пересекающимися во фронтальной плоскости уровня Ф (Ф1) осями вращения. Значит, главные меридианы этих поверхностей пересекаются и дают в своем пересечении точки видимости линии пересечения относительно плоскости П2 или самую высокую А и самую низкую В точки. В пересечении горизонтального меридиана h и параллели h", лежащих в одной вспомогательной секущей плоскости Г(Г2), определены точки видимости С и D линии пересечения относительно плоскости П1. Использовать вспомогательные секущие плоскости для построения дополнительных точек линии пересечения нецелесообразно, так как плоскости, параллельные Ф, будут пересекать обе поверхности по гиперболам, а плоскости, параллельные Г, будут давать в пересечении поверхностей окружности и гиперболы. Вспомогательные горизонтально или фронтально проецирующие плоскости, проведенные через вершину одной из поверхностей, будут пересекать их по образующим и эллипсам. В данном примере выполнены условия, позволяющие применение вспомогательных сфер для построения точек линии пересечения. Оси поверхностей вращения пересекаются в точке О (О1; О2), которая является центром вспомогательных сфер, радиус сферы изменяется в пределах Rmin < R < Rmах- Радиус максимальной сферы определяется расстоянием от центра О наиболее удаленной точки В (Rmax = О2В2), а радиус минимальной сферы определяется как радиус сферы, касающейся одной поверхности (по окружности h2) и пересекающей другую (по окружности h3).Плоскости этих окружностей перпендикулярны осям вращения поверхностей. В пересечении этих окружностей получаем точки Е и F, принадлежащие линии пересечения поверхностей:

h22 ^ h32 = E2(F2); Е2Е1 || А2А1; Е2Е1 ^ h21 =E1; F2F ^ h1 = F1 Промежуточная сфера радиуса R пересекает поверхности по окружностям h4 и h5, в пересечении которых находятся точки Ми N:h42 ^ h52 = M2(N2); M2M1 || А2А1, М2М1 ^ h41 = М1; N2N1 ^ h41 = N1 Соединяя одноименные проекции построенных точек с учетом их видимости, получаем проекции линии пересечения поверхностей.

№14. построение линии пересечения поверхностей, если хотя бы одна из них проецирующая. Характерные точки линии пересечения.

Прежде чем приступить к построению линии пересечения поверхностей, необходимо внимательно изучить условие задачи, т.е. какие поверхности пересекаются. Если одна из поверхностей является проецирующей, то решение задачи упрощается, т.к. на одной из проекций линия пересечения совпадает с проекцией поверхности. И задача сводится к нахождению второй проецирующей линии. При решении задачи следует отметить в первую очередь «характерные» точки или «особые». Это:

· Точки на крайних образующих

· Точки, делящие линию на видимую и невидимую часть

· Верхние и нижние точки и др. Далее следует разумно выбрать способ, каким будем пользоваться при построении линии пересечения поверхностей. Мы будем пользоваться двумя способами: 1. вспомогательных секущих плоскостей. 2. вспомогательных секущих сфер. К проецирующим поверхностям относятся: 1) цилиндр, если его ось перпендикулярна плоскости проекций; 2) призма, если ребра призмы перпендикулярны плоскости проекций. Проецирующая поверхность проецируется в линию на плоскость проекций. Все точки и линии, принадлежащие боковой поверхности проецирующего цилиндра или проецирующей призме проецируются в линию на ту плоскость, которой ось цилиндра или ребро призмы перпендикулярно. Линия пересечения поверхностей принадлежит обеим поверхностям одновременно и, если одна из этих поверхностей проецирующая, то для построения линии пересечения можно использовать следующее правило: если одна из пересекающихся поверхностей проецирующая, то одна проекция линии пересечения есть на чертеже в готовом виде и совпадает с проекцией проецирующей поверхности (окружность, в которую проецируется цилиндр или многоугольник, в который проецируется призма). Вторая проекция линии пересечения строится исходя из условия принадлежности точек этой линии другой не проецирующей поверхности.

Рассмотренные особенности характерных точек позволяют легко проверить правильность построения линии пересечения поверхностей, если она построена по произвольно выбранным точкам. В данном случае десяти точек достаточно для проведения плавных проекций линии пересечения. При необходимости может быть построено любое количество промежуточных точек. Построенные точки соединяют плавной линией с учетом особенностей их положения и видимости. Сформулируем общее правило построения линии пересечения поверхностей: выбирают вид вспомогательных поверхностей; строят линии пересечения вспомогательных поверхностей с заданными поверхностями; находят точки пересечения построенных линий и соединяют их между собой. Вспомогательные секущие плоскости выбираем таким образом, чтобы в пересечении с заданными поверхностями получались геометрически простые линии (прямые или окружности). Выбираем вспомогательные секущие плоскости. Чаще всего, в качестве вспомогательных секущих плоскостей выбирают проецирующие плоскости, в частности, плоскости уровня. При этом необходимо учитывать линии пересечения, получаемые на поверхности, в результате пресечения поверхности плоскостью. Так конус является наиболее сложной поверхностью по числу получаемых на нем линий. Только плоскости, проходящие через вершину конуса или перпендикулярные оси конуса, пересекают его соответственно по прямой линии и окружности (геометрически простейшие линии). Плоскость, проходящая параллельно одной образующей пересекает его по параболе, плоскость параллельная оси конуса пересекает его по гиперболе, а плоскость, пересекающая все образующие и наклонные к оси конуса, пересекает его по эллипсу. На сфере, при пересечении ее плоскостью, всегда получается окружность, а если пересекать ее плоскостью уровня, то эта окружность проецируется на плоскости проекции соответственно в прямую линию и окружность. Итак, в качестве вспомогательных плоскостей выбираем горизонтальные плоскости уровня, которые пересекают и конус, и сферу по окружностям (простейшие линии).Некоторые особые случаи пересечения поверхностей В некоторых случаях расположение, форма или соотношения размеров криволинейных поверхностей таковы, что для изображения линии их пресечения никаких сложных построений не требуется. К ним относятся пересечение цилиндров с параллельными образующими, конусов с общей вершиной, соосных поверхностей вращения, поверхностей вращения, описанных вокруг одной сферы.

А. Поверхности вращения общего вида (рис. 157).

Поверхностью вращения общего вида называют поверхность, которая образуется произвольной кривой (плоской или пространственной) при ее вращении вокруг неподвижной оси .

В состав определителя поверхности вращения входит образующая g, ось вращения i и условие о том, что эта образующая вращается вокруг оси i:

Ф (g, i); .

Каждая точка образующей (А, В, С, D, Е) при вращении вокруг оси i описывает окружность с центром на оси вращения. Эти окружности называют параллелями . Наибольшую и наименьшую параллель называют соответственно экватором и горлом (шейкой).

Плоскости α, проходящие через ось поверхности вращения, называют меридиональными , а линии, по которым они пересекают поверхность, - меридианами .

Меридиональную плоскость α 1 , параллельную плоскости проекции, принято называть главной меридиональной плоскостью , а линию ее пересечения с поверхностью вращения - главным меридианом *.

Задание поверхности вращения на эпюре Монжа проекциями геометрических фигур, входящих в состав его определителя, хотя и однозначно определяет поверхность, но обладает одним недостатком, заключающимся в том, что при таком задании трудно представить форму поверхности. Поэтому при задании поверхности вращения обычно указывают проекции ее оси, главного меридиана и экватора (иногда указывают окружность, по которой поверхность вращения пересекается с плоскостью проекции).

При этом указывают только горизонтальную проекцию экватора (или параллели) и фронтальную проекцию главного меридиана**.

Б. Частные виды поверхностей вращения.

В технике, в частности в машиностроении, поверхности вращения находят широкое применение. Это объясняется распространенностью вращательного движения и простотой обработки поверхностей вращения на станках. Особенно распространены поверхности, имеющие в меридиональном сечении кривую второго порядка или две прямые, на которые распадается эта кривая.

Рассмотрим некоторые частные виды поверхностей вращения. Возьмем в качестве образующей окружность. В зависимости от взаимного расположения окружности (или ее дуги) и оси вращения можно получить различные поверхности.

Тором называется поверхность, которая может быть получена при вращении окружности g вокруг оси i, не проходящей через ее центр О ***.

В зависимости от соотношения величин R - радиуса образующей окружности и расстояния t от центра окружности до оси вращения поверхности тора подразделяют на:

открытый тор (или кольцо) при R

закрытый тор при R ≥ t - окружность пересекает ось вращения или касается ее (табл. 7, рис. 158,6).

Сфера образуется в том случае, когда центр окружности принадлежит оси вращения О ∈ i, т. е. сферу можно рассматривать как частный случай тора, у которого t = 0 (табл. 7, рис. 158,в).

3. Глобоид.

Образующей этой поверхности является дуга окружности, плоскость которой может, в общем случае, не совпадать с осью вращения (табл. 7, рис. 158,г). Чертежи на рис. 162 дают представление об ор-

* На рис. 157 показаны не меридиональные плоскости α и α 1 , а полуплоскости, расположенные по одну сторону от оси вращения i. Соответственно на рисунке показаны только половина меридиана и главного меридиана.

** Здесь речь идет о поверхности, ось вращения которой i ⊥ π 1 . Если ось вращения (i ⊥ π 2 , то следует указывать фронтальную проекцию экватора и горизонтальную проекцию главного меридиана.

Поверхность тора может быть получена и в том случае, когда плоскость окружности пересекает ось поверхности. Следует иметь в виду, что в отличие от остальных поверхностей вращения, ббразующая которых - кривая второго порядка (или прямая), поверхность тора является поверхностью не второго, а четвертого порядка.

Таблица 7. Поверхности вращения; частные виды. Подкласс 2. Ф (g, i); .

тогональных проекциях тора (рис. 162,а и б), сферы (рис. 162,в), глобоида (рис. 162,г). Так как поверхности вращения, изображенные на рис. 162, симметричны относительно оси i, то при i ⊥ π 1 их горизонтальные проекции симметричны относительно горизонтальной оси; поэтому можно вычерчивать не всю горизонтальную проекцию, а лишь ее половину, как это сделано на рис. 162 (конечно, если условия задачи не требуют изображать ее полностью).


4. Эллипсоид вращения.

Этот вид поверхности образуется при вращении эллипса вокруг его оси, при этом, если за ось вращения принять малую ось , то получим сжатый эллипсоид вращения (рис. 159,с); когда вращение осуществляется вокруг большой оси [АВ] , образуется поверхность вытянутого эллипсоида вращения (рис. 159,6).

Рассмотренные поверхности вращения: тор, сфера, эллипсоид относятся к замкнутым поверхностям. Кроме замкнутых поверхностей вращения существуют незамкнутые поверхности, которые образуются, в частности, при вращении параболы, гиперболы и прямой (линий, имеющих несобственные точки).

5. Параболоид вращения.

Для того чтобы получить параболоид вращения, в определителе поверхности вращения за образующую g следует принять параболу, а за ось вращения i - ее ось (рис. 160). Для задания параболоида вращения на эпюре Монжа достаточно указать проекции образующей g и оси i.

6. Гиперболоид вращения.

При вращении гиперболы можно получить две различные поверхности:

а) однополостный гиперболоид вращения *, образуется при вращении гиперболы g вокруг ее мнимой оси i 1 (рис. 161,а);

б) двуполостный гиперболоид вращения, образуется при вращении гиперболы вокруг ее действительной оси i (рис. 161,6).

7. Коническая и цилиндрическая поверхности вращения.

Эти поверхности можно получить путем вращения прямой g вокруг оси i. Коническая и цилиндрическая поверхности были подробно рассмотрены в § 35 (см. рис. 147, 151 и 148, 152).

Конус вращения представляет собой частный случай, когда его ось вращения / _L Определитель конуса вращения выражается формулой Ф (/", /), где / - прямолинейная образующая (рис. 152).

Построение точки на поверхности конуса является, как известно, простейшей задачей. Для построения недостающей проекции точки нужно провести линию на поверхности через эту точку. Для поверхностей вращения эти линии являются прямолинейными (для конуса - /) или криволинейными меридианами и круговыми параллелями р. Непрерывное множество меридианов образует непрерывный каркас прямолинейных образующих поверхности конуса. Проекции точек, принадлежащих поверхности конуса, удобно строить с помощью параллелей и меридианов. Если точки Nn М принадлежат образующей конуса SM, совпадающей на фронтальной плоскости проекций П 2 с проекцией оси / 2 , то на горизонтальной плоскости проекций n t следует их строить с помощью параллелир (рис. 152, а). Точно так же для повышения точности графического построения можно построить с помощью параллели р точку А, определенную на эпюре с помощью образующей АВ (рис. 152, б).

Рис. 152

Линии, которые образуются при пересечении поверхности прямого конуса с плоскостью, называются коническими сечениями.

Если плоскость, пересекающая прямой конус вращения, параллельна горизонтальной плоскости проекций П 1? то в сечении конической поверхности будет окружность, т.е. кривая идет по параллели. При пересечении плоскостью, которая не параллельна ни одной из его образующих, в сечении получится эллипс (рис. 153).

Фронтально проецирующая плоскость Е на фронтальной плоскости проекций П 2 рассекает конус по проекции большой оси 1 2 -2 2

Рис. 153

эллипса. Она проецируется без искажений. Точки 1 и 2 являются опорными. Через середину большой оси эллипса проведена вспомогательная секущая плоскость (3 || flj - горизонтальная плоскость уровня, пересекающая конус по параллели р". Эта параллель проецируется на Щ в натуральную величину. Проекционная линия связи в пересечении с проекцией параллели р" отметит на П j малую ось эллипса 3J-4J. На П! она проецируется в натуральную величину. Для построения промежуточных точек 5 и 6 кривой сечения вводим дополнительную секущую горизонтальную плоскость уровня у || П,.

Точки 7 и 8 построены как симметричные точкам 5 и 6 относительно малой оси 3-4 эллипса. Натуральная величина кривой сечения эллипса построена при помощи способа замены плоскостей проекций П,/П 2 -> П 2 /П 4 .

Если секущая плоскость - фронтально проецирующая плоскость I ± П 2 - параллельна одной образующей конуса, то в сечении конуса получается парабола (рис. 154).

Опорные точки 1 - вершина парабола, точки 2 и 3 - следы параболы на плоскости у основания конуса. На рис. 154 показана вспомогательная секущая плоскость уровня (3, с помощью которой построены промежуточные точки 4 и 5 аналогично алгоритму построения эллиптического сечения. Натуральная величина параболы построена с помощью способа замены плоскостей проекций.


Рис. 154 146

Гиперболическое сечение конуса получается, если секущая плоскость Е _L П 2 параллельна двум образующим конуса. При прохождении такой плоскости через вершину конуса точку S гипербола вырождается в две прямые (образующие конуса). Секущая плоскость Е параллельна двум образующим конуса SA и SB и пересекает конус по гиперболе (рис. 155).

Рис. 155

Секущая плоскость? пересекает коническую поверхность таким образом, что в сечении получаются две ветви гиперболы, имеющие одну действительную ось i и другую мнимую, перпендикулярную к i ось у. В точке О гипербола имеет две взаимно перпендикулярные асимптоты, которые касаются ветвей гиперболы в двух бесконечно удаленных точках и принадлежат плоскости гиперболы. Асимптоты гиперболы параллельны образующим SA и SB конуса. Проводим горизонтальную плоскость уровня Р || П] и строим точки 5 и 6. Далее строим точки 7 и 8 как симметричные точкам 5 и 6 относительно мнимой оси гиперболы j. Натуральную величину ветвей гиперболы строят с помощью замены плоскостей проекций.

8.ПОВЕРХНОСТИ ВРАЩЕНИЯ

Если перемещение образующей линии представляет собой вращение вокруг некоторой неподвижной прямой (оси), то образованная в этом случае поверхность называется поверхностью вращения (рис.2.3.45).

Образующая линия может быть плоской или пространственной кривой, а также прямой. Каждая точка, например В(В 1 , В 2), образующей линии l(l 1 , l 2)при вращении вокруг оси i(i 1 , i 2) описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения (рис. 2.3.45). Эти окружности называются параллелями. Следовательно, плоскости, перпендикулярные оси, пересекают поверхность вращения по параллелям. Линия, например, m(m 1 , m 2) пересечения поверхности вращения плоскостью ( 1), проходящей через ось, называется меридианом. Все меридианы поверхности вращения конгруэнтны. Меридиан l(l 1 , l 2), который является результатом пересечения поверхности вращения с плоскостью уровня ( 1), называется главным. Проекция главного меридиана на плоскость, которой параллельна плоскость уровня, является очерковой линией соответствующей проекции поверхности вращения. Множество всех параллелей или меридианов представляет собой непрерывный каркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан. Проекции точки располагаются на соответствующих проекциях параллели или меридиана. Задать точку на поверхности или построить вторую проекцию точки, если одна задана, можно при помощи параллели или меридиана, которые проходят через эту точку. Геометрическая часть определителя поверхности вращения состоит из оси вращения i и образующей линии l. Чертеж поверхности вращения будет простейшим, если ось вращения расположить перпендикулярно одной из плоскостей проекций, а в качестве образующей линии взять главный меридиан (рис. 2.3.45, б). Алгоритмическая часть определителя поверхности вращения состоит из операции вращения образующей l вокруг оси i и построения каркаса параллелей необходимой плотности. При проектировании различных инженерных сооружений, машин и механизмов наибольшее распространение получили поверхности, образующиеся вращением прямой линии и кривых второго порядка.

а. Поверхности, образуемые вращением прямой (линейчатые поверхности вращения)

Вращением прямой линии образуются: 1) цилиндр вращения, если прямая l параллельна оси i (рис. 2.3.46); 2)конус вращения, если прямая l пересекает ос i (рис. 2.3.47); 3)однополостный гиперболоид вращения, если прямая l(ВС) скрещивается с осью i (рис. 2.3.48).

Рис. 2.3.46

Поверхность (рис. 2.3.48) имеет две образующие линии l(ВС) и l"(В"С"), наклоненные в разные стороны и пересекающиеся в точке (А), принадлежащей наименьшей параллели. Отрезок ОА является кратчайшим расстоянием между образующей и осью. Таким образом, на поверхности однополостного гиперболоида располагаются два семейства прямолинейных образующих. Все образующие одного семейства - скрещивающиеся прямые.

Рис. 2.3.47

Каждая образующая одного семейства пересекает все образующие другого. Через каждую точку поверхности проходят две образующие разных семейств. Меридианом поверхности является гипербола. Все рассмотренные линейчатые поверхности вращения являются поверхностями второго порядка. Построение проекций точки, принадлежащей каждой из них, можно выполнить при помощи параллели или прямолинейной образующей, проходящих через нее.

Рис. 2.3.48

б. Поверхности, образуемые вращением кривых второго порядка вокруг их осей

1. Сфера образуется вращением окружности вокруг ее диаметра (рис. 2.3.49). 2. Эллипсоид вращения образуется вращением эллипса вокруг большой или малой оси. 3. Параболоид вращения образуется вращением параболы вокруг ее оси.

Рис. 2.3.49

4. Однополостный гиперболоид вращения образуется вращением гиперболы вокруг ее мнимой оси. Эта поверхность образуется также вращением прямой (рис. 2.3.48 справа). 5. Двуполостный гиперболоид вращения образуется вращением гиперболы вокруг ее действительной оси. При вращении асимптот гиперболы образуется конус вращения, который называется асимптотическим по отношению к поверхности гиперболоида. Все рассмотренные поверхности вращения являются поверхностями второго порядка. Построение проекции точки, принадлежащей каждой из них, можно выполнить при помощи параллели, проходящей через эту точку. в. Поверхности, образуемые вращением кривых второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости Существует теорема: "При вращении плоской или пространственной алгебраической кривой n-го порядка вокруг произвольной оси образуется алгебраическая поверхность вращения, имеющая в общем случае порядок 2n". Из этой теоремы следует, что при вращении кривой второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости, образуется поверхность четвертого порядка. Наиболее распространенной поверхностью четвертого порядка является тор.

Рис. 2.3.50

Тором называется поверхность, образованная вращением окружности вокруг оси, принадлежащей плоскости окружности, но не проходящей через ее центр. При этом ось вращения может пересекать окружность, касаться ее и располагаться вне окружности. В первых двух случаях тор называется закрытым, в последнем - открытым, или кольцом. На рис. 2.3.50 изображены проекции тора-кольца. Являясь поверхностью четвертого порядка, тор пересекается произвольной прямой в четырех точках, произвольной плоскостью по кривой четвертого порядка.

Рис. 2.3.50,1(анимационный) Эта кривая распадается на две окружности (параллели), если плоскость перпендикулярна оси тора (плоскость на рис. 2.3.50), на две окружности (меридиан), если плоскость проходит через ось тора(плоскости Г и Г" на рис. 2.3.50), на две окружности, если плоскость проходит через центр тора и касается его меридиана (плоскость). Проекции точки, например М, принадлежащей поверхности тора, можно построить при помощи параллели (рис. 2.3.50). На рис. 2.3.51 показана динамическая сцена формообразования поверхности тора.

Линия пересечения двух поверхностей второго порядка в общем случае представляет собой алгебраическую кривую четвертого порядка. В частных случаях она может распадаться на линии низших порядков, сумма порядков которых равна четырем: а) на четыре прямые - 1 + 1 + 1 + 1 (рис. 4.56, a). Общие образующие m, m", n, n", по которым пересекаются два цилиндра с параллельными осями, являются частями распавшейся кривой;

б) на две прямые и кривую второго порядка - 1 + 1 +2 (рис. 4.56, б); в) на прямую и кривую третьего порядка - 1 + 3; г) на две кривые второго порядка - 2+2 (рис. 4.57, 4.58, 4.59). Признаки распадения кривой четвертого порядка на две кривые второго порядка сформулированы в следующих теоремах: Теорема 1 . Если две поверхности второго порядка пересекаются по одной плоской кривой (1 - 5 - 2 - 6 на рис. 4.57), то они пересекаются еще по одной кривой, которая тоже будет плоской (3 - 5 - 4 - 6 на рис. 4.57).

Примечание. Плоская кривая, принадлежащая поверхности второго порядка, является кривой второго порядка. Теорема 2. Если две поверхности второго порядка имеют касание в двух точках (1 и 2 на рис. 4.58), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания. Сфера, имеющая двойное касание с поверхностью второго порядка (рис. 4.59), может быть использована для нахождения круговых сечений тех поверхностей второго порядка, которые их имеют. Пусть требуется найти круговые сечения эллиптического цилиндра (рис. 4.59). Проведем сферу с центром на оси цилиндра и диаметром, равным длине отрезка /1 - 2/ - большой оси эллипса. Эта сфера будет касаться двух образующих цилиндра в точках 1 и 2. Линия пересечения со сферой распадается на две окружности, расположенные в профильно проецирующих плоскостях и". Полученные окружности определяют два семейства круговых сечений эллиптического цилиндра.Теорема 3 (теорема Монжа ). Если две поверхности второго порядка описаны около третьей или вписаны в не<(рис. 4.60), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения линий касания (прямая 5 - 6). Теорема Монжа является частным случаем теоремы 2. Построение проекций указанных выше кривых второго порядка (рис. 4.58, 4.58, 4.59, 4.60) ясно из чертежей.

Заканчивая рассмотрение второй позиционной задачи на пересечение поверхностей, приведем несколько динамических сцен, демонстрирующих процесс взаимного пересечения поверхностей. На рис.4.61 показано пересечение поверхностей сферы и эллиптическогo цилиндра. На рис. 4.62 сфера пересекается с пирамидой, а на рис. 4.63 показано пересечение двух кривых поверхностей.

В числе кривых поверхностей - линейчатых и нелинейчатых - имеются широко распространенные в практике поверхности вращения. Поверхностью вращения называют поверхность, получаемую от вращения какой-либо образующей линии вокруг неподвижной прямой - оси поверхности 1).

Поверхность вращения можно задать образующей и положением оси. На рис. 330 показана такая поверхность. Здесь образующей служит кривая ABC, осью - прямая OO 1 , расположенная в одной плоскости с ABC. Каждая точка образующей описывает окружность. Таким образом, плоскость, перпендикулярная к оси поверхности вращения, пересекает эту поверхность по окружности. Такие окружно

1) В процессе образования поверхности вращения ось неподвижна.

сти называются параллелями . Наибольшую из параллелей называют экватором , наименьшую - горлом поверхности 1).

Плоскость, проходящую через ось поверхности вращения, называют меридиональной плоскостью . Линия пересечения поверхности вращения меридиональной плоскостью называется меридианом поверхности .

Можно назвать вершиной поверхности вращения точку пересечения меридиана этой поверхности с ее осью, если в пересечении не образуется прямой угол.

Если ось поверхности вращения параллельна пл. π 2 , то меридиан, лежащий в плоскости, параллельной пл. π 2 , называется главным меридианом . При таком положении главный меридиан проецируется на пл. тс 2 без искажения. Если ось поверхности вращения перпендикулярна к пл. π 1 то горизонтальная проекция поверхности имеет очерк в виде окружности. Наиболее целесообразным с точки зрения изображений является перпендикулярность оси поверхности вращения к пл. π 1 или к π 2 , или к π 3 .

Некоторые поверхности вращения представляют собой частные случаи поверхностей, рассмотренных в § 50. Таковы: 1) цилиндр вращения, 2) конус вращения, 3) гиперболоид вращения однополостный, 4) эллипсоид вращения, 5) параболоид вращения, 6) гиперболоид вращения двуполостный.

Для цилиндра и конуса вращения меридианы являются прямыми линиями - в первом случае параллельными оси и равноудаленными от нее, во втором случае пересекающими ось в одной и той же ее точке под одним и тем же углом к оси. Так как цилиндр и конус вращения - поверхности, бесконечно простирающиеся в направлении их образующих, то на изображениях обычно их ограничивают какими-либо линиями, например следами этих поверхностей на плоскостях проекций или какой-либо из параллелей. Известные из стереометрии прямой круговой цилиндр и прямой круговой конус ограничены поверхностью вращения и плоскостями, перпендикулярными к ее оси. Меридианы такого цилиндра - прямоугольники, а конуса - треугольники.

Для гиперболоида вращения меридианом является гипербола, причем, если осью вращения служит действительная ось гиперболы, то образуется двуполостный гиперболоид вращения; если же вращать гиперболу вокруг ее мнимой оси, то однополостный .

Однополостный гиперболоид вращения может быть образован также вращением прямой линии в случае, если образующая и ось вращения - скрещивающиеся прямые.

На рис. 331 показан однополостный гиперболоид вращения, образованный вращением прямой АВ вокруг указанной оси и ограниченный двумя параллелями; окружность, проведенная из центра 0 1 есть горло поверхности.

На однополостном гиперболоиде вращения можно нанести прямолинейные образующие в двух направлениях, например так, как показано на рис. 331, и с наклоном в обратную сторону, под тем же углом к оси.

Кроме прямых (пар) на этой поверхности могут быть еще гиперболы, параболы, эллипсы и окружности.

1) Точнее, экватором называют ту из параллелей, которая больше соседних с нею параллелей по обе стороны от нее, рассматриваемых до первого горла; горло - наименьшая из соседних параллелей до первого экватора. Отсюда поверхность вращения может иметь несколько экваторов и горл.

На рис. 331 справа показано построение фронтальной проекции однополостного гиперболоида вращения по его оси и образующей. Прежде всего найден радиус горла поверхности. Для этого проведен перпендикуляр О" 1 1" к горизонтальной проекции образующей. Этим определена горизонтальная проекция общего перпендикуляра к оси и образующей. Натуральная величина отрезка, выраженного проекциями O" 1 1" и О" 1 1", равна радиусу горла поверхности. Далее, путем поворота точки c проекциями 2",2";3",3";A",A" выведены в плоскость α,параллельную пл. π 2 , что


дает возможность провести очерковую линию фронтальной проекции гиперболоида. Горизонтальная его проекция представит собой три концентрические окружности.

Для параболоида вращения меридианом является парабола , ось которой служит осью поверхности.

Для эллипсоида вращения меридианом является эллипс . Поверхность может быть образована вращением эллипса вокруг его большой оси («вытянутый» эллипсоид вращения - рис. 332, слева) или вокруг его малой оси («сжатый» эллипсоид вращения - рис, 332, справа). Эллипсоид вращения - поверхность ограниченная; она может быть изображена полностью. Также полностью может быть изображена и сфера. Для сферы экватор и меридианы - равные между собой окружности.

Обратим еще раз внимание на то, что такие поверхности вращения, как цилиндр, конус и однополостный гиперболоид, являются линейчатыми, т. е. их можно

образовать вращением прямой линии 1). Но эллипсоид, параболоид и двуполостный гиперболоид образуются при вращении не прямой, а эллипса, параболы и гиперболы, причем ось вращения выбирается так, чтобы образующая кривая располагалась симметрично по отношению к этой оси. То же можно сказать и относительно однополостного гиперболоида вращения, если он образуется в результате вращения гиперболы вокруг ее мнимой оси.

Так как ось вращения выбирается совпадающей с осью симметрии эллипса, параболы, гиперболы, то эллипс и Гипербола образуют по две поверхности, так как у них по две оси симметрии, а парабола - одну поверхность, так как у нее одна ось симметрии, Следовательно, каждая из образуемых поверхностей получается только при вращении одним способом. Между тем сфера, которую можно рассматривать как эллипсоид при равных большой и малой осях образующего эллипса, переходящего при этом в окружность, может быть образована вращением более чем одним


способом: образующая окружность симметрична относительно каждого из ее диаметров.

При вращении окружности (или ее дуги) вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, получается поверхность с названием тор 2). Так называют и тело, ограниченное тором - поверхностью.

Различают (рис. 333):

1) открытый тор, иначе круговое кольцо,

2) замкнутый,

3) самопересекающийся.

На рис. 333 они изображены в простейшем положении: ось тора перпендикулярна к плоскости проекций, в данном случае к пл. π 1 .

Образующей для открытого и замкнутого торов служит окружность, для самопересекающегося - дуга окружности. В открытый и замкнутый торы могут быть вписаны сферы. Тор можно рассматривать как поверхность, огибающую одинаковые сферы, центры которых находятся на окружности.

Тор имеет две системы круговых сечений: в плоскостях, перпендикулярных к его оси, и в плоскостях, проходящих через ось тора 3).

1) Закономерность в расположении прямолинейных образующих однополостного гиперболоида вращения применена в конструкции, известной под названием «башня Шухова». В. Г. Шухов (1853 - 1939) - один из выдающихся русских инженеров. «Башня Шухова» применяется в устройстве радиомачт, водонапорных башен и др.

2) Фр. tore (от torus (лат.) - выпуклость, узел) - кольцеобразный выступ на колонне.

3) Существует третья система круговых сечений открытого тора, которая в книге не рассматривается.

Поверхность, называемая тором, весьма часто встречается в машиностроении и архитектуре. На рис. 334 слева изображена деталь, поверхность вращения которой содержит самопересекающийся тор и открытый тор, а справа на том же рисунке показана схематически


поверхность перехода от одного цилиндрического свода к другому, имеющая форму замкнутого тора с осью ОО 1

Из поверхностей вращения упомянем еще катеноид 1). Эта поверхность образуется при полном обороте цепной линии 2) вокруг лежащей с ней в одной плоскости горизонтальной оси.

Положение точки на поверхности вращения определяется при помощи окружности, проходящей через эту точку на поверхности вращения.

Но это не исключает возможности применять прямолинейные образующие в случае линейчатых поверхностей вращения, подобно тому, как это показано на рис. 314 для цилиндров и конусов общего вида.

На рис. 330 показано применение параллели для построения проекции точки, принадлежащей данной поверхности вращения. Если дана проекция М", то проводим фронтальную проекцию F"F" 1 параллели, а затем радиусом R = O" 1 F" проводим окружность - горизонтальную проекцию параллели - и на ней находим проекцию М". Если бы была задана проекция М", то следовало бы провести радиусом R = O" 1 F" окружность, по точке F" найти F" и провести F"F" 1 - фронтальную проекцию параллели, на которой должна быть проекция М". На рис, 332 показано построение проекций точки К, принадлежащей эллипсоиду вращения, а на рис. 335 - точки М, принадлежащей поверхности кругового кольца.

На рис. 335 справа показано нахождение проекций точек на сфере. По данной проекции А" точки А построена фронтальная проекция А"; по данной проекции В" найдена горизонтальная проекция В" точки В, удовлетворяющей дополнительному условию, что точка В невидима, если смотреть на пл. π 2 .

Точка С задана на экваторе: ее проекция С" находится на очерке горизонтальной проекции сферы, т. е. на горизонтальной проекции экватора. Точки К и М лежат на главном меридиане; они принадлежат параллелям, на которых находятся точки А и В. Точка D также находится на главном меридиане, причем она невидима, если смотреть на пл. π 1 .

Рассмотрим пример построения проекций точек, принадлежащих поверхности вращения. Пусть требуется привести точку А, вращая ее вокруг данной оси MN, на заданную поверхность вращения (рис. 336, а). Так как в данном случае ось поверхности вращения и ось вращения точки А перпендикулярны к плоскости проекций π 1 , то окружность вращения точки А проецируется на π 1 без искажения, равно как и та параллель поверхности вращения, которая получается при пересечении этой поверхности плоскостью вращения точки А. В этой плоскости расположен и центр вращения точки А - точка О (точка пересечения оси вращения MN с плоскостью вращения α). Остальное ясно из чертежа. В положении А 2 на поверхности точка окажется невидимой на пл. π 2 .

2) Catena (лат.) - цепь.

2) Цепная линия - кривая, форму которой принимает цепь, подвешенная в ее двух точках, или вообще тяжелая нерастяжимая нить, подвешенная за ее концы.

Положим, что будет поставлен вопрос о выборе оси вращения для того, чтобы далее точка А могла оказаться на заданной поверхности вращения, На с. 100 был рассмотрен аналогичный вопрос, но там требовалось выбрать ось, чтобы поворотом вокруг нее можно было ввести точку в плоскость, Тогда было установлено, что имеется зона, в которой нельзя брать оси, так как при повороте вокруг таких осей точка не соприкоснется с плоскостью. Эта зона определялась параболическим цилиндром, причем парабола возникла при рассмотрении взаимного положения вращаемой точки и прямой, на которой эта точка должна была бы оказаться, соприкоснувшись с плоскостью.

Теперь, очевидно, вопрос будет, решаться при рассмотрении взаимного положения точки А и окружности (параллели) на поверхности тела вращения,

Из рис. 336, а следует, что проекция О" центра вращения должна быть расположена так, чтобы R A не был меньше расстояния точки О" до ближайшей точки на проекции окружности радиуса r, Если же взять точку О" на равных расстояниях от А" и от проекции этой окружно

сти (например, в О" 1 или O" 2 ; см. рис, 336,6), то в ней уже можно установить ось вращения; окружность вращения точки А коснется окружности радиуса r, т, е, точка А соприкоснется с поверхностью вращения.

Где на чертеже лежат все точки, одинаково удаленные от точки А" и от окружности радиуса r? Они расположены на гиперболе (рис, 336,6), для которой точка А" служит одним из фокусов, точка О" 1 , в которой отрезок А"1" делится пополам, - одной из вершин. Если разделить отрезок А"З" пополам, то мы получим вторую вершину гиперболы (точка О" 3); второй фокус расположится в точке С", т. е. в центре окружности, полученной при пересечении поверхности тела вращения плоскостью α (рис. 336, а).

Из рассмотренного вытекает, что точки, расположенные на обеих ветвях гиперболы или между ними, могут быть выбраны каждая в качестве горизонтальной проекции оси вращения.

Может быть случай, когда точка находится внутри поверхности вращения. Следовательно, проводя через точку плоскость вращения, мы получим проекцию А" внутри проекции окружности радиуса r, по которой плоскость вращения точки А пересекает поверхность вращения (рис, 336, в). И на этот раз очевидно, что R A не должен быть меньше расстояния точки О" (т, е, проекции оси) до ближайшей точки проекции окружности радиуса r. Предельные положения проекций осей расположатся теперь как точки эллипса с фокусами в точках А" и С", с большой осью на прямой 1"З", с вершинами в точках O" 3 и O" 3 . Внутри этого эллипса не следует брать проекции осей; такие оси не дадут возможности ввести точку А в поверхность вращения,

Итак, вопрос, как выбрать ось вращения, чтобы, вращая вокруг нее точку, ввести эту точку в плоскость или в поверхность вращения, ось которой параллельна оси вращения, привел нас к эллипсу (рис. 336, в), -параболе (рис, 244), гиперболе (рис. 336,6) как геометрическим местам центров вращения.

При решении различных задач применяются те или иные поверхности в качестве геометрических мест точек или линий, отвечающих определенным условиям. Например, заданы пл. α и точка К вне этой плоскости; определить, как расположатся в пл. α точки, отстоящие от точки К на заданное расстояние r (расстояние r больше, чем расстояние точки К до пл. α). В данном случае решение связано с применением сферы как геометрического места точек, отстоящих от точки К на расстояние r, Плоскость α пересечет эту сферу по окружности, которая,и даст решение задачи.

Если бы требовалось построить в пл. α точки, отстоящие на расстояние r не от точки, а от некоторой прямой АВ, не лежащей в пл. α, то геометрическим местом таких точек в пространстве оказалась бы поверхность цилиндра вращения с осью АВ и радиусом r, а искомые в пл. α точки получились бы на линии пересечения этого цилиндра пл. α.

В дальнейшем на рис. 368 справа и 401 можно видеть примеры применения конических поверхностей вращения как геометрических мест прямых, проходящих через заданную точку.

Если в задаче поставлен вопрос о точках, равноотстоящих от заданных плоскости α и точки М, то в качестве геометрического места таких точек в пространстве следовало бы использовать параболоид вращения с фокусом параболы в точке М.

Применение тех или иных поверхностей в качестве геометрических мест, конечно, не исчерпывается приведенными примерами.

Вопросы к § 51

  1. Что называется поверхностью вращения?
  2. Чем можно задать поверхность вращения?
  3. Что называется параллелями и меридианами на поверхностях вращения, экватором, горлом, главным меридианом?
  4. 1) Предлагаем читателю составить чертеж и выполнить решение этой и последующих задач.

  5. Какая из осей гиперболы служит осью вращения для образования: а) однополостного, б) двуполостного гиперболоида вращения?
  6. Можно ли образовать однополостный гиперболоид вращения при помощи прямой линии?
  7. Какие поверхности вращения (кроме однополостного гиперболоида) являются линейчатыми?
  8. Как образуется поверхность, называемая тором?
  9. В каком случае для тора применяется название «круговое кольцо»?
  10. Сколько систем круговых сечений имеет тор?
  11. Как определяется положение точки на поверхности вращения?


Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ