Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Кинематика межзвёздных полётов

Пусть полёт туда и полёт обратно состоят из трёх фаз: равноускоренного разгона, полёта с постоянной скоростью и равноускоренного торможения.

Собственное время любых часов имеет вид:

где - скорость этих часов. Земные часы неподвижны (), и их собственное время равно координатному . Часы космонавтов имеют переменную скорость . Так как корень под интегралом остаётся всё время меньше единицы, время этих часов, независимо от явного вида функции , всегда оказываются меньше . В результате .

Если разгон и торможение проходят релятивистски равноускоренно (с параметром собственного ускорения ) в течение , а равномерное движение - , то по часам корабля пройдёт время :

, где - гиперболический арксинус

Рассмотрим гипотетический полёт к звёздной системе Альфа Центавра , удалённой от Земли на расстояние в 4,3 световых года . Если время измеряется в годах, а расстояния в световых годах, то скорость света равна единице, а единичное ускорение св.год/год² близко к ускорению свободного падения и примерно равно 9,5 м/c².

Пусть половину пути космический корабль двигается с единичным ускорением, а вторую половину - с таким же ускорением тормозит (). Затем корабль разворачивается и повторяет этапы разгона и торможения. В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Максимальная скорость корабля достигнет 0,95 от скорости света.

За 64 года собственного времени космический корабль с единичным ускорением потенциально может совершить путешествие (вернувшись на Землю) к галактике Андромеды , удалённой на 2,5 млн св. лет . На Земле за время такого полёта пройдёт около 5 млн лет. Развивая вдвое большее ускорение (к которому тренированный человек вполне может привыкнуть при соблюдении ряда условий и использования ряда приспособлений, например, анабиоза), можно подумать даже об экспедиции к видимому краю Вселенной (около 14 млрд. св. лет), которая займёт у космонавтов порядка 50 лет; правда, возвратившись из такой экспедиции (через 28 млрд. лет по земным часам), её участники рискуют не застать в живых не то что Землю и Солнце, но даже нашу Галактику. Исходя из этих расчётов, чтобы космонавты избежали футурошока по возвращении на Землю, разумный радиус доступности для межзвёздных экспедиций с возвратом не должен превышать нескольких десятков световых лет, если, конечно, не будут открыты какие-либо принципиально новые физические принципы перемещения в пространстве-времени. Впрочем, обнаружение многочисленных экзопланет даёт основания полагать, что планетные системы встречаются у достаточно большой доли звёзд, поэтому космонавтам будет что исследовать и в этом радиусе (например, планетные системы ε Эридана и Глизе 581).

Пригодность различных типов двигателей для межзвездных полётов

Пригодность различных типов двигателей для межзвездных полётов была рассмотрена на заседании Британского межпланетного общества в 1973 г. Тони Мартином . Электроракетный двигатель с ядерным реактором имеет небольшое ускорение, поэтому потребуются столетия для достижения нужной скорости, что позволяет использовать его только в кораблях поколений . Термические ядерные двигатели типа NERVA имеют достаточную величину тяги, но низкую скорость истечения рабочей массы, порядка 5-10 км/сек, поэтому для разгона до нужной скорости потребуется огромное количество топлива. Таким образом корабль с таким двигателем будет еще на несколько порядков тихоходней корабля с электрореактивным двигателем. Для полета к соседней звезде на таком корабле уйдут десятки и сотни тысяч тысяч лет.(полет до альфы центавра на скорости 30 км/сек займет 40 тыс лет). Для прямоточного двигателя потребуется воронка огромного диаметра для сбора разреженного межзвездного водорода, имеющего плотность 1 атом на кубический сантиметр. Если для сбора межзвездного водорода использовать сверхмощное электромагнитное поле, то силовые нагрузки на генерирующую катушку окажутся настолько велики, что их преодоление кажется маловероятным даже для техники будущего.

Проекты межзвездных экспедиций

Проекты звездолётов-ракет

Проект «Орион»

Ракетный корабль по проекту «Дедал» оказался таким громадным, что строить его пришлось бы в открытом космосе. Он должен был весить 54 000 т (почти весь вес - ракетное топливо) и мог бы разогнаться до 7,1 % скорости света, неся на себе полезную нагрузку весом 450 т. В отличие от проекта «Орион», рассчитанного на использование крохотных атомных бомб, проект «Дедал» предусматривал использование миниатюрных водородных бомб со смесью дейтерия и гелия-3 и системой зажигания при помощи электронных лучей. Но огромные технические проблемы и опасения, связанные с ядерным двигателем, привели к тому, что проект «Дедал» также был отложен на неопределённое время.

Технологические идеи Дедала использованы в проекте термоядерного звездолета «Икарус» .

Проекты звездолётов, движителем которых является давление электромагнитных волн.

В 1971 году в докладе Г. Маркса на симпозиуме в Бюракане было предложено использовать для межзвёздных перелётов лазеры рентгеновского диапазона . Позже возможность использования этого типа движителя исследовалась НАСА . В результате был сделан следующий вывод: «Если будет найдена возможность создания лазера, работающего в рентгеновском диапазоне длин волн, то можно говорить о реальной разработке летательного аппарата (разгоняемого лучом такого лазера), который сможет покрывать расстояния до ближайших звёзд значительно быстрее, чем все известные в настоящее время системы с ракетными двигателями. Расчёты показывают, что с помощью космической системы, рассмотренной в данной работе, можно достичь звезды Альфа Центавра… примерно за 10 лет» .

В 1985 году Р. Форвардом была предложена конструкция межзвёздного зонда, разгоняемого энергией микроволнового излучения. Проектом предусматривалось, что зонд достигнет ближайших звёзд за 21 год.

На 36-м Международном астрономическом конгрессе был предложен проект лазерного звездолёта, движение которого обеспечивается энергией лазеров оптического диапазона, расположенных на орбите вокруг Меркурия . По расчётам, путь звездолёта этой конструкции до звезды Эпсилон Эридана (10,8 световых лет) и обратно занял бы 51 год.

Преимуществом солнечного парусника является отсутствие топлива на борту. Его недостатком является невозможность использования паруса для путешествия назад к Земле, поэтому он хорош для запуска автоматических зондов, станций и грузовых кораблей, но малопригоден для пилотируемых полётов с возвратом (либо космонавтам нужно будет взять с собой второй лазер с запасом топлива для установки в пункте назначения, что фактически сводит на нет все преимущества парусника).

Аннигиляционные двигатели

Теоретические расчёты американских физиков Ронана Кина и Вей-мин Чжана показывают, что на основе современных технологий возможно создание аннигиляционного двигателя, способного разогнать космический корабль до 70 % от скорости света. Предложенный ими двигатель быстрее других теоретических разработок благодаря особому устройству сопла. Однако основными проблемами при создании аннигиляционных ракет (англ. ) с подобными двигателями являются получение нужного количества антивещества, а также его хранение . По состоянию на май 2011 года рекордное время хранения атомов антиводорода составило 1000 секунд (~16,5 минут) . По оценкам НАСА 2006 года, производство миллиграмма позитронов стоило примерно 25 миллионов долларов США . По оценке 1999 года, один грамм антиводорода стоил бы 62,5 триллиона долларов .

Прямоточные двигатели, работающие на межзвёздном водороде

Основная составляющая массы современных ракет - это масса топлива, необходимого ракете для разгона. Если удастся каким-нибудь образом использовать в качестве рабочего тела и топлива окружающую ракету среду, можно значительно сократить массу ракеты и достичь за счёт этого больших скоростей движения.

Ещё одним недостатком термоядерного прямоточного двигателя является ограниченность скорости, которой может достичь оснащённый им корабль (не более 0,119c = 35,7 тыс. км/с). Это связано с тем, что при улавливании каждого атома водорода (который можно в первом приближении считать неподвижным относительно звёзд) корабль теряет определённый импульс, который удастся компенсировать тягой двигателя только если скорость не превышает некоторого предела. Для преодоления этого ограничения необходима как можно более полная утилизация кинетической энергии улавливаемых атомов, что представляется достаточно трудной задачей.

Допустим, экран уловил 4 атома водорода. При работе термоядерного реактора четыре протона превращаются в одну альфа-частицу, два позитрона и два нейтрино. Для простоты пренебрежём нейтрино (учёт нейтрино потребует точного расчёта всех стадий реакции, а потери на нейтрино составляют около процента), а позитроны проаннигилируем с 2 электронами, оставшимися от атомов водорода после изъятия из них протонов. Ещё 2 электрона пойдут на то, чтобы превратить альфа-частицу в нейтральный атом гелия, который благодаря полученной от реакции энергии будет ускорен в сопле двигателя.

Итоговое уравнение реакции без учёта нейтрино:

4править] Фотонный двигатель на магнитных монополях

Если справедливы некоторые варианты теорий Великого объединения , такие как модель "т Хоофта - Полякова , то можно построить фотонный двигатель, не использующий антивещество, так как магнитный монополь гипотетически может катализировать распад протона на позитрон и π 0 -мезон :

π 0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона, и нерешённой остаётся только проблема зеркала.

Фотонный двигатель на магнитных монополях мог бы работать и по прямоточной схеме.

В то же время в большинстве современных теорий Великого объединения магнитные монополи отсутствуют, что ставит под сомнение эту привлекательную идею.

Системы торможения Межзвездных Кораблей

Предложены несколько способов:

1. Торможение на внутренних источниках - ракетное

2. Торможение за счёт лазерного луча, присылаемого с Солнечной Системы.

3. Торможение магнитным полем с использованием Магнитного Паруса Зубрина на сверхпроводниках.

Корабли поколений

Возможны также межзвёздные путешествия с использованием звездолётов, реализующих концепцию «кораблей поколений » (например, по типу колоний О’Нейла). В таких звездолётах создаётся и поддерживается замкнутая биосфера , способная поддерживать и воспроизводить себя в течение нескольких тысяч лет. Полёт происходит с небольшой скоростью и занимает очень долгое время, на протяжении которого успевают смениться многие поколения космонавтов.

Опасности внешней среды

Эту проблему подробно рассмотрел Иван Корзников в статье "Реальности межзвездных полётов" . Столкновение с межзвездной пылью будет происходить на околосветовых скоростях и по физическому воздействию напоминать микровзрывы. При скоростях больше 0,1 С защитный экран должен иметь толщину десятки метров и массу сотни тысяч тонн. Но этот экран будет надёжно защищать только от межзвездной пыли. Столкновение с метеоритом будет иметь фатальные последствия. Иван Корзников приводит расчеты, что при скорости более 0,1 С космический корабль не успеет изменить траекторию полёта и избежать столкновения. Иван Корзников считает, что при субсветовой скорости космический корабль разрушится до достижения цели. По его мнению межзвездное путешествие возможно только при существенно меньших скоростях (до 0,01 С).

Энергия и ресурсы

Для межзвездного полёта потребуются большие запасы энергии и ресурсов, которые придется везти с собой. Это одна из малоизученных проблем в межзвездной космонавтике.

Например, самый проработанный на сегодняшний день проект «Дедал» с импульсным термоядерным двигателем за полвека достиг бы звезды Барнарда (шесть световых лет), затратив 50 тысяч тонн термоядерного горючего (смесь дейтерия и гелия-3) и доставив к цели полезную массу в 4 тысячи тонн .

Сверхсветовое движение

В научно-фантастических произведениях нередко упоминаются методы межзвёздных перелётов, основанные на перемещении в пространстве быстрее скорости света в вакууме. Хотя

12 апреля 2016 года знаменитый британский физик Стивен Хокинг и российский бизнесмен и меценат Юрий Мильнер объявили о выделении $100 млн на финансирование проекта Breakthrough Starshot . Целью проекта стала разработка технологий для создания космических аппаратов, способных совершить межзвездный полет к альфе Центавра.

В тысячах фантастических романов описаны гигантские фотонные звездолеты размером с небольшой (или большой) город, уходящие в межзвездный полет с орбиты нашей планеты (реже - с поверхности Земли). Но, по замыслу авторов проекта Breakthrough Starshot , все будет происходить совсем не так: в один знаменательный день две тысячи какого-то года к одной из ближайших звезд, альфе Центавра, стартует не один и не два, а сразу сотни и тысячи маленьких звездолетиков размером с ноготь и массой в 1 г. И у каждого из них будет тончайший солнечный парус площадью в 16 м 2 , который и понесет звездолет со все возрастающей скоростью вперед - к звездам.

«Выстрел к звёздам»

Основой проекта Breakthrough Starshot стала статья профессора физики Калифорнийского университета в Санта-Барбаре Филипа Любина «План для межзвездных полетов» (A Roadmap to Interstellar Flight ). Основная заявленная цель проекта состоит в том, чтобы сделать межзвездные полеты возможными уже при жизни следующего поколения людей, то есть не через столетия, а через десятилетия.

Сразу после официального анонса программы Starshot на авторов проекта обрушилась волна критики со стороны ученых и технических специалистов в различных областях. Критически настроенные эксперты отмечали многочисленные некорректные оценки и просто «белые пятна» в плане программы. Некоторые замечания были приняты во внимание, и план полета был несколько скорректирован в первой итерации.

Итак, межзвездный зонд будет представлять собой космический парусник с электронным модулем StarChip массой 1 г, соединенным сверхпрочными стропами с солнечным парусом площадью 16 м 2 , толщиной 100 нм и массой 1 г. Конечно, света нашего Солнца недостаточно, чтобы разогнать даже столь легкую конструкцию до скоростей, при которых межзвездные путешествия не будут длиться тысячелетиями. Поэтому главная изюминка проекта StarShot - это разгон с помощью мощного лазерного излучения, которое фокусируется на парусе. По оценкам Любина, при мощности лазерного луча 50–100 ГВт ускорение составит около 30 000 g, и за несколько минут зонд достигнет скорости в 20% световой. Полет к альфе Центавра продлится около 20 лет.

Вопросы без ответов: волна критики

Филип Любин в своей статье приводит численные оценки пунктов плана, однако многие ученые и специалисты относятся к этим данным весьма критически.
Конечно, для проработки столь амбициозного проекта, как Breakthrough Starshot , требуются годы работы, да и $100 млн - не такая уж и большая сумма для работы подобного масштаба. В особенности это касается наземной инфраструктуры - фазированной решетки лазерных излучателей. Установка такой мощности (50–100 ГВт) потребует гигантского количества энергии, то есть рядом нужно будет построить как минимум десяток крупных электростанций. Помимо этого, потребуется отводить от излучателей огромное количество тепла на протяжении нескольких минут, и как это делать - пока что совсем неясно. Таких вопросов без ответов в проекте Breakthrough Starshot огромное количество, однако пока что работа только началась.
«В научный совет нашего проекта входят ведущие специалисты, ученые и инженеры в различных релевантных областях, включая двух нобелевских лауреатов, - говорит Юрий Мильнер. - И я слышал весьма сбалансированные оценки реализуемости этого проекта. При этом мы, безусловно, полагаемся на совокупную экспертизу всех членов нашего научного совета, но в то же время открыты для более широкой научной дискуссии».

Под звёздными парусами

Одна из ключевых деталей проекта - это солнечный парус. В исходном варианте площадь паруса изначально составляла всего 1 м 2 , и из-за этого он мог не выдержать нагрева при разгоне в поле лазерного излучения. Новый вариант использует парус площадью 16 м 2 , так что тепловой режим будет хотя и довольно жестким, но, по предварительным оценкам, не должен расплавить или разрушить парус. Как пишет сам Филип Любин, в качестве основы для паруса планируется использовать не металлизированные покрытия, а полностью диэлектрические многослойные зеркала: «Такие материалы характеризуются умеренным коэффициентом отражения и чрезвычайно низким поглощением. Скажем, оптические стекла для волоконной оптики рассчитаны на большие световые потоки и имеют поглощение порядка двадцати триллионных на 1 мкм толщины». Добиться хорошего коэффициента отражения от диэлектрика при толщине паруса в 100 нм, а это много меньше длины волны, непросто. Но авторы проекта возлагают некоторые надежды на использование новых подходов, таких как монослои метаматериала с отрицательным показателем преломления.

Солнечный парус

Один из главных элементов проекта - солнечный парус площадью в 16 м 2 и массой всего 1 г. В качестве материала паруса рассматриваются многослойные диэлектрические зеркала, отражающие 99,999% падающего света (по предварительным расчетам этого должно хватить, чтобы парус не расплавился в поле излучения 100-ГВт лазера). Более перспективный подход, позволяющий сделать толщину паруса меньшей длины волны отражаемого света, - это использование в качестве основы паруса монослоя метаматериала с отрицательным показателем преломления (такой материал к тому же имеет наноперфорацию, что еще уменьшает его массу). Второй вариант - это использование материала не с высоким коэффициентом отражения, а с низким коэффициентом поглощения (10 −9), такого, как оптические материалы для световодов.

«Кроме того, нужно учитывать, что отражение от диэлектрических зеркал настраивается на узкий диапазон длин волн, а по мере ускорения зонда эффект Доплера сдвигает длину волны более чем на 20%, - говорит Любин. - Мы это учитывали, поэтому отражатель будет настроен примерно на двадцатипроцентную ширину полосы излучения. Мы спроектировали такие отражатели. Если необходимо, доступны и отражатели с большей шириной полосы».

Лазерная установка

Основная силовая установка звездолета не полетит к звездам - она будет расположена на Земле. Это наземная фазируемая решетка лазерных излучателей размером 1×1 км. Суммарная мощность лазеров должна составлять от 50 до 100 ГВт (это эквивалентно мощности 10–20 Красноярских ГЭС). Предполагается с помощью фазирования (то есть изменения фаз на каждом отдельном излучателе) сфокусировать излучение с длиной волны 1,06 мкм со всей решетки в пятно диаметром несколько метров на расстояниях вплоть до многих миллионов километров (предельная точность фокусировки 10 −9 радиана). Но такой фокусировке сильно мешает турбулентная атмосфера, размывающая луч в пятно размером примерно в угловую секунду (10 −5 радиана). Улучшения на четыре порядка предполагается достичь с помощью адаптивной оптики (АО), которая будет компенсировать атмосферные искажения. Лучшие системы адаптивной оптики в современных телескопах уменьшают размытие до 30 угловых миллисекунд, то есть до намеченной цели остается еще примерно два с половиной порядка. «Чтобы победить мелкомасштабную атмосферную турбулентность, фазируемая решетка должна быть разбита на очень мелкие элементы, размер излучающего элемента для нашей длины волны должен составлять не более 20–25 см, - объясняет Филип Любин. - Это минимум 20 млн излучателей, но такое количество меня не пугает. Для обратной связи в системе АО мы планируем использовать много опорных источников - бакенов - и на зонде, и на материнском корабле, и в атмосфере. Кроме того, мы будем отслеживать зонд на пути к цели. Мы также хотим использовать звезды как бакен для настройки фазирования решетки при приеме сигнала от зонда по прибытии, но для надежности будем отслеживать зонд».

Прибытие

Но вот зонд прибыл в систему альфы Центавра, сфотографировал окрестности системы и планеты (если они есть). Эту информацию нужно каким-то образом передать на Землю, причем мощность лазерного передатчика зонда ограничена единицами ватт. А через пять лет этот слабый сигнал нужно принять на Земле, выделив из фонового излучения звезды. По замыслу авторов проекта, у цели зонд маневрирует таким образом, что парус превращается в линзу Френеля, фокусирующую сигнал зонда в направлении Земли. Согласно оценкам, идеальная линза при идеальной фокусировке и идеальной ориентации усиливает сигнал мощностью 1 Вт до 10 13 Вт в изотропном эквиваленте. Но как рассмотреть этот сигнал на фоне гораздо более мощного (на 13–14 порядков!) излучения звезды? «Свет от звезды на самом деле довольно слаб, поскольку ширина линии нашего лазера очень мала. Узкая линия - ключевой фактор в сокращении фона, - говорит Любин. - Идея сделать из паруса линзу Френеля на основе тонкопленочного дифракционного элемента достаточно сложна и требует большой предварительной работы, чтобы понять, как именно лучше сделать это. Этот пункт на самом деле - один из главных в нашем плане проекта».

Межзвездный полет - вопрос не веков, а десятилетий

Юрий Мильнер ,
российский бизнесмен и меценат,
основатель фонда Breakthrough Initiatives:
За последние 15 лет произошли существенные, можно сказать, революционные продвижения по трем технологическим направлениям: миниатюризация электронных компонентов, создание нового поколения материалов, также удешевление и увеличение мощности лазеров. Сочетание этих трех тенденций приводит к теоретической возможности разогнать наноспутник до почти релятивистских скоростей. На первом этапе (5–10 лет) мы планируем провести более углубленное научно-инженерное исследование, чтобы понять, насколько этот проект реализуем. На сайте проекта есть список из примерно 20 серьезных технических проблем, без решения которых мы не сможем идти дальше. Это не окончательный список, но, опираясь на мнение научного совета, мы считаем, что первый этап проекта имеет достаточную мотивацию. Я знаю, что проект звездного паруса подвергается серьезной критике со стороны специалистов, но думаю, что позиция некоторых критически настроенных экспертов связана с не совсем точным пониманием того, что же мы реально предлагаем. Мы финансируем не полет к другой звезде, а вполне реалистичные многоцелевые разработки, связанные с идеей межзвездного зонда лишь общим направлением. Эти технологии найдут применение и для полетов в Солнечной системе, и для защиты от опасных астероидов. Но постановка столь амбициозной стратегической цели, как межзвездный полет, представляется оправданной в том смысле, что развитие технологий за последние 10–20 лет, вероятно, делает реализацию подобного проекта вопросом не веков, как многие предполагали, а скорее - десятилетий.

С другой стороны, фазированная решетка оптических излучателей / приемников излучения общей апертурой в километр - это инструмент, способный видеть экзопланеты с расстояния десятков парсек. Используя приемники с перестраиваемой длиной волны, можно определить состав атмосферы экзопланет. Нужны ли вообще в таком случае зонды? «Конечно, использование фазируемой решетки как очень большого телескопа открывает новые возможности в астрономии. Но, - добавляет Любин, - мы планируем добавить к зонду инфракрасный спектрометр в качестве более долговременной программы в дополнение к камере и другим датчикам. У нас отличная группа фотоники в Калифорнийском университете в Санта-Барбаре, которая является частью коллаборации».

Но в любом случае, по словам Любина, первые полеты будут совершаться в пределах Солнечной системы: «Поскольку мы можем посылать огромное количество зондов, это дает нам много разных возможностей. Мы также можем посылать подобные маленькие (wafer-scale , то есть на чипе) зонды на обычных ракетах и использовать те же технологии для изучения Земли или планет и их спутников в Солнечной системе».

Редакция благодарит газету «Троицкий вариант - наука» и ее главного редактора Бориса Штерна за помощь в подготовке статьи.

Солнечная система уже давно не представляет особого интереса для фантастов. Но, что удивительно, и у некоторых ученых наши «родные» планеты не вызывают особого вдохновения, хотя они еще практически не исследованы.

Едва прорубив окно в космос, человечество рвется в неведомые дали, причем уже не только в мечтах, как раньше.
Еще Сергей Королев обещал в скором времени полеты в космос «по профсоюзной путевке», но этой фразе уже полвека, а космическая одиссея по-прежнему удел избранных - слишком дорогое удовольствие. Однако же два года назад HACA запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технического фундамента для космических полетов.


Эта беспрецедентная программа должна привлечь ученых, инженеров и энтузиастов со всего мира. Если все увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться, как на трамваях.

Так какие же проблемы нужно решить, чтобы звездные полеты стали реальностью?

ВРЕМЯ И СКОРОСТЬ ОТНОСИТЕЛЬНЫ

Звездоплавание автоматических аппаратов кажется некоторым ученым почти решенной задачей, как это ни странно. И это при том, что совершенно нет никакого смысла запускать автоматы к звездам с нынешними черепашьими скоростями (примерно 17 км/с) и прочим примитивным (для таких неведомых дорог) оснащением.

Сейчас за пределы Солнечной системы ушли американские космические аппараты «Пионер-10» и «Вояджер-1», связи с ними уже нет. «Пионер-10» движется в сторону звезды Альдебаран. Если с ним ничего не случится, он достигнет окрестностей этой звезды... через 2 миллиона лет. Точно так же ползут по просторам Вселенной и другие аппараты.

Итак, независимо от того, обитаем корабль или нет, для полета к звездам ему нужна высокая скорость, близкая к скорости света. Впрочем, это поможет решить проблему полета только к самым близким звездам.

«Даже если бы мы умудрились построить звездный корабль, который сможет летать со скоростью, близкой к скорости света, - писал К. Феоктистов, - время путешествий только по нашей Галактике будет исчисляться тысячелетиями и десятками тысячелетий, так как диаметр ее составляет около 100 000 световых лет. Но на Земле-то за это время пройдет намного больше».

Согласно теории относительности, ход времени в двух движущихся одна относительно другой системах различен. Так как на больших расстояниях корабль успеет развить скорость очень близкую к скорости света, разница во времени на Земле и на корабле будет особенно велика.

Предполагается, что первой целью межзвездных полетов станет альфа Центавра (система из трех звезд) - наиболее близкая к нам. Со скоростью света туда можно долететь за 4,5 года, на Земле за это время пройдет лет десять. Но чем больше расстояние, тем сильней разница во времени.

Помните знаменитую «Туманность Андромеды» Ивана Ефремова? Там полет измеряется годами, причем земными. Красивая сказка, ничего не скажешь. Однако эта вожделенная туманность (точнее, галактика Андромеды) находится от нас на расстоянии 2,5 миллиона световых лет.



По некоторым расчетам, путешествие займет у космонавтов более 60 лет (по звездолетным часам), но на Земле-то пройдет целая эра. Как встретят космических «неадертальцев» их далекие потомки? Да и будет ли жива Земля вообще? То есть возвращение в принципе бессмысленно. Впрочем, как и сам полет: надо помнить, что мы видим галактику туманность Андромеды такой, какой она была 2,5 млн лет назад - столько идет до нас ее свет. Какой смысл лететь к неизвестной цели, которой, может, уже давно и не существует, во всяком случае, в прежнем виде и на старом месте?

Значит, даже полеты со скоростью света обоснованны только до относительно близких звезд. Однако аппараты, летящие со скоростью света, живут пока лишь в теории, которая напоминает фантастику, правда, научную.

КОРАБЛЬ РАЗМЕРОМ С ПЛАНЕТУ

Естественно, в первую очередь ученым пришла мысль использовать в двигателе корабля наиболее эффективную термоядерную реакцию - как уже частично освоенную (в военных целях). Однако для путешествия в оба конца со скоростью, близкой к световой, даже при идеальной конструкции системы, требуется отношение начальной массы к конечной не менее чем 10 в тридцатой степени. То есть звездолет будет походить на огромный состав с топливом величиной с маленькую планету. Запустить такую махину в космос с Земли невозможно. Да и собрать на орбите - тоже, недаром ученые не обсуждают этот вариант.

Весьма популярна идея фотонного двигателя, использующего принцип аннигиляции материи.

Аннигиляция - это превращение частицы и античастицы при их столкновении в какие-либо иные частицы, отличные от исходных. Наиболее изучена аннигиляция электрона и позитрона, порождающая фотоны, энергия которых и будет двигать звездолет. Расчеты американских физиков Ронана Кина и Вей-мин Чжана показывают, что на основе современных технологий возможно создание аннигиляционного двигателя, способного разогнать космический корабль до 70% от скорости света.

Однако дальше начинаются сплошные проблемы. К сожалению, применить антивещество в качестве ракетного топлива очень непросто. Во время аннигиляции происходят вспышки мощнейшего гамма-излучения, губительного для космонавтов. Кроме того, контакт позитронного топлива с кораблем чреват фатальным взрывом. Наконец, пока еще нет технологий для получения достаточного количества антивещества и его длительного хранения: например, атом антиводорода «живет» сейчас менее 20 минут, а производство миллиграмма позитронов обходится в 25 миллионов долларов.

Но, предположим, со временем эти проблемы удастся разрешить. Однако топлива все равно понадобится очень-очень много, и стартовая масса фотонного звездолета будет сравнима с массой Луны (по оценке Константина Феоктистова).

ПОРВАЛИ ПАРУС!

Наиболее популярным и реалистичным звездолетом на сегодняшний день считается солнечный парусник, идея которого принадлежит советскому ученому Фридриху Цандеру.

Солнечный (световой, фотонный) парус - это приспособление, использующее давление солнечного света или лазера на зеркальную поверхность для приведения в движение космического аппарата.
В 1985 году американским физиком Робертом Форвардом была предложена конструкция межзвездного зонда, разгоняемого энергией микроволнового излучения. Проектом предусматривалось, что зонд достигнет ближайших звезд за 21 год.

На XXXVI Международном астрономическом конгрессе был предложен проект лазерного звездолета, движение которого обеспечивается энергией лазеров оптического диапазона, расположенных на орбите вокруг Меркурия. По расчетам, путь звездолета этой конструкции до звезды эпсилон Эридана (10,8 световых лет) и обратно занял бы 51 год.

«Маловероятно, что по данным, полученным в путешествиях по нашей Солнечной системе, мы сможем существенно продвинуться вперед в понимании мира, в котором мы живем. Естественно, мысль обращается к звездам. Ведь раньше подразумевалось, что полеты около Земли, полеты к другим планетам нашей Солнечной системы не являются конечной целью. Проложить дорогу к звездам представлялось главной задачей».

Эти слова принадлежат не фантасту, а конструктору космических кораблей и космонавту Константину Феоктистову. По мнению ученого, ничего особо нового в Солнечной системе уже не обнаружится. И это при том, что человек пока долетел только до Луны...


Однако за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида.

Все это пока теория, однако первые шаги уже делаются.

В 1993 году на российском корабле «Прогресс М-15» в рамках роекта «Знамя-2» был впервые развернут солнечный парус 20-метровой ширины. При стыковке «Прогресса» со станцией «Мир» ее экипаж установил на борту «Прогресса» агрегат развертывания отражателя. В итоге отражатель создал яркое пятно 5 км в ширину, которое прошло через Европу в Россию со скоростью 8 км/с. Пятно света имело светимость, примерно эквивалентную полной Луне.



Итак, преимущество солнечного парусника - отсутствие топлива на борту, недостатки - уязвимость конструкции паруса: по сути, это тонкая фольга, натянутая на каркас. Где гарантия, что по дороге парус не получит пробоин от космических частиц?

Парусный вариант может подойти для запуска автоматических зондов, станций и грузовых кораблей, но непригоден для пилотируемых полетов с возвратом. Существуют и другие проекты звездолетов, однако они, так или иначе, напоминают вышеперечисленные (с такими же масштабными проблемами).

СЮРПРИЗЫ В МЕЖЗВЕЗДНОМ ПРОСТРАНСТВЕ

Думается, путешественников во Вселенной поджидает множество сюрпризов. К примеру, едва высунувшись за пределы Солнечной системы, американский аппарат «Пионер-10» начал испытывать силу неизвестного происхождения, вызывающую слабое торможение. Высказывалось много предположений, вплоть до о неизвестных пока эффектах инерции или даже времени. Однозначного объяснения этому феномену до сих пор нет, рассматриваются самые различные гипотезы: от простых технических (например, реактивная сила от утечки газа в аппарате) до введения новых физических законов.

Другой аппарат, «Вояд-жер-1», зафиксировал на границе Солнечной системы область с сильным магнитным полем. В нем давление заряженных частиц со стороны межзвездного пространства заставляет поле, создаваемое Солнцем, уплотняться. Также аппарат зарегистрировал:

  • рост количества высокоэнергетических электронов (примерно в 100 раз), которые проникают в Солнечную систему из межзвездного пространства;
  • резкий рост уровня галактических космических лучей - высокоэнергетических заряженных частиц межзвездного происхождения.
И это только капля в море! Впрочем, и того, что сегодня известно о межзвездном океане, достаточно, чтобы поставить под сомнение саму возможность бороздить просторы Вселенной.

Пространство между звездами не пустое. Везде есть остатки газа, пыли, частицы. При попытке движения со скоростью, близкой к скорости света, каждый столкнувшийся с кораблем атом будет подобен частице космических лучей большой энергии. Уровень жесткой радиации при такой бомбардировке недопустимо повысится даже при полетах к ближайшим звездам.

А механическое воздействие частиц при таких скоростях уподобится разрывным пулям. По некоторым расчетам, каждый сантиметр защитного экрана звездолета будет непрерывно обстреливаться с частотой 12 выстрелов в минуту. Ясно, что никакой экран не выдержит такого воздействия на протяжении нескольких лет полета. Или должен будет иметь неприемлемую толщину (десятки и сотни метров) и массу (сотни тысяч тонн).



Собственно, тогда звездолет будет состоять в основном из этого экрана и топлива, которого потребуется несколько миллионов тонн. В силу этих обстоятельств полеты на таких скоростях невозможны, тем паче, что по дороге можно нарваться не только на пыль, но и на что-то покрупнее, или попасть в ловушку неизвестного гравитационного поля. И тогда гибель опять-таки неминуема. Таким образом, если и удастся разогнать звездолет до субсветовой скорости, то до конечной цели он не долетит - слишком много препятствий встретится ему на пути. Поэтому межзвездные перелеты могут осуществляться лишь с существенно меньшими скоростями. Но тогда фактор времени делает эти полеты бессмысленными.

Получается, что решить проблему транспортировки материальных тел на галактические расстояния со скоростями, близкими к скорости света, нельзя. Бессмысленно ломиться через пространство и время с помощью механической конструкции.

КРОТОВАЯ НОРА

Фантасты, стараясь побороть неумолимое время, сочинили, как «прогрызать дырки» в пространстве (и времени) и «сворачивать» его. Придумали разнообразные гиперпространственные скачки от одной точки пространства до другой, минуя промежуточные области. Теперь к фантастам присоединились ученые.

Физики принялись искать экстремальные состояния материи и экзотические лазейки во Вселенной, где можно передвигаться со сверхсветовой скоростью вопреки теории относительности Эйнштейна.



Так появилась идея кротовой норы. Эта нора осуществляет смычку двух частей Вселенной подобно прорубленному тоннелю, соединяющему два города, разделенные высокой горой. К сожалению, кротовые норы возможны только в абсолютном вакууме. В нашей Вселенной эти норки крайне неустойчивы: они попросту могут сколлапсировать до того, как туда попадет космический корабль.

Однако для создания стабильных кротовых нор можно использовать эффект, открытый голландцем Хендриком Казимиром. Он заключается во взаимном притяжении проводящих незаряженных тел под действием квантовых колебаний в вакууме. Оказывается, вакуум не совсем пуст, в нем происходят колебания гравитационного поля, в котором спонтанно возникают и исчезают частицы и микроскопические кротовые норы.

Остается только обнаружить одну из нор и растянуть ее, поместив между двумя сверхпроводящими шарами. Одно устье кротовой норы останется на Земле, другое космический корабль с околосветовой скоростью переместит к звезде - конечному объекту. То есть звездолет будет как бы пробивать тоннель. По достижении звездолетом пункта назначения кротовая нора откроется для реальных молниеносных межзвездных путешествий, продолжительность которых будет исчисляться минутами.

ПУЗЫРЬ ИСКРИВЛЕНИЯ

Сродни теории кротовых нор пузырь искривления. В 1994 году мексиканский физик Мигель Алькубьерре выполнил расчеты согласно уравнениям Эйнштейна и нашел теоретическую возможность волновой деформации пространственного континуума. При этом пространство будет сжиматься перед космическим кораблем и одновременно расширяться позади него. Звездолет как бы помещается в пузырь искривления, способный передвигаться с неограниченной скоростью. Гениальность идеи состоит в том, что космический корабль покоится в пузыре искривления, и законы теории относительности не нарушаются. Движется при этом сам пузырь искривления, локально искажающий пространство-время.

Несмотря на невозможность перемещаться быстрее света, ничто не препятствует перемещению пространства или распространению деформации пространства-времени быстрее света, что, как полагают, и происходило сразу после Большого взрыва при образовании Вселенной.

Все эти идей пока не укладываются в рамки современной науки, однако в 2012 году представители НАСА заявили о подготовке экспериментальной проверки теории доктора Алькубьерре. Как знать, может, и теория относительности Эйнштейна когда-нибудь станет частью новой глобальной теории. Ведь процесс познания бесконечен. А значит, однажды мы сможем прорваться чрез тернии к звездам.

Ирина ГРОМОВА

Межзвёздный полёт -- путешествие между звёздами пилотируемых аппаратов или автоматических станций. Чаще всего под межзвёздным полётом понимают пилотируемое путешествие, иногда с возможной колонизацией внесолнечных планет.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Основываясь на предвидимых технологиях и ресурсных возможностях, можно дать абрис будущих межзвездных перелетов.

При рассмотрении космического корабля любого назначения удобно разделить его на две части - двигательную установку и полезную нагрузку. Под двигательной установкой принято понимать не только собственно двигатели, но и баки с топливом, необходимые силовые конструкции. Для проблематики межзвездных перелетов именно двигательная установка является ключевым фактором, определяющим осуществимость проекта. Однако проблемы создания двигательной установки выходят за рамки настоящего рассмотрения. Сейчас для нас важно то, что существуют технологии, которые в ходе своего развития могут стать приемлемыми для осуществления межзвездных перелетов. Здесь на первом месте технологии использования инерциального термоядерного синтеза для ракетного движения. На американской установке NIF (National Ignition Facility) для исследования лазерного термоядерного синтеза стоимостью 3,5 миллиардов долларов уже получены результаты, говорящие о том, что ракетный двигатель на данном принципе может быть создан. Еще более мощная установка такого типа строится у нас под Саровом. Эти установки мало похожи на ракетные двигатели, но если их условно "разрезать" пополам, избавиться от фундаментов, стенок и многого ненужного в космосе оборудования, мы получим ракетный двигатель, который может быть доведен и до межзвездного варианта. Не вдаваясь в детали, отметим, что такие двигатели по необходимости будут большими, тяжелыми и очень мощными. Двигатель для межзвездного корабля должен иметь тот же порядок мощности, что и вся мощность, потребляемая человечеством на сегодняшний день. Располагая таким двигателем (а если такого двигателя нет, то и говорить не о чем), можно более свободно себя чувствовать, рассматривая параметры полезной нагрузки. По аналогии, если для велосипедиста лишние 50 кг уже ощутимы, то тепловоз и лишние 50 тонн не заметит.

Вооружившись таким пониманием, мы можем попробовать представить первую межзвездную экспедицию. При этом придется использовать результаты расчетов и оценок, которые сделаны, но здесь, по понятным причинам, воспроизведены быть не могут.

Строительство эскадры межзвездных кораблей начнется в точках Лагранжа системы Земля-Луна (точки гравитационного равновесия). Материалы по большей части могут доставляться с лунных баз - например контейнеры с ними выстреливаются электромагнитными пушками и улавливаются специальными станциями-ловушками в районе строительства.

Один корабль - это сотни тысяч тонн полезной нагрузки, миллионы тонн - двигатели, десятки миллионов тонн - топливо. Цифры могут напугать, но, чтобы не сильно пугаться, их можно сравнить с другими крупными строительствами. Давным-давно за 20 лет была построена пирамида Хеопса весом более 6 миллионов тонн. Или уже в наши времена -- в Канаде в 1965 году был построен остров "Норт-Дам". Только грунта потребовалось 15 миллионов тонн, а постройка заняла всего 10 месяцев. Самый большой морской корабль -- Knock Nevis -- имел водоизмещение 825 614 тонн. Строительство в космосе имеет свои специфические трудности, но имеет и некоторые преимущества, например, облегчение силовых элементов из-за невесомости, практическое отсутствие ограничений по массе и размерам (на Земле достаточно большая конструкция просто раздавит сама себя).

Примерно 95% массы межзвездного корабля составит термоядерное топливо. Вероятно, в его качестве будут использоваться бороводороды, топливо -- твердое, баки не нужны, что очень улучшает характеристики корабля и облегчает его постройку. Набирать бороводороды лучше не системе Земля-Луна, а где-нибудь подальше от Солнца, в системе Сатурна, например, чтобы избежать потерь на сублимацию. Время строительства можно оценить в несколько десятков лет. Срок не так уж и велик, а кроме того, теми же строителями параллельно будут вестись и другие работы в рамках освоения Солнечной системы. Строительство лучше начинать с сооружения жилых блоков корабля, в которых и поселятся строители и другие специалисты. Заодно, за время строительства и накопления топлива будет в течение десятилетий проверена стабильность работы замкнутой системы жизнеобеспечения.

Замкнутая система жизнеобеспечения - наверное, второй по сложности вопрос после проблемы двигателей. Один человек потребляет примерно 5 кг воды, еды и воздуха в сутки, если все брать с собой, потребуется больше 200 тысяч тон припасов. Решение - повторное использование ресурсов, так как это происходит на планете Земля.

В полной мере масштаб межзвездных расстояний перелетов можно ощутить, только если заняться рассмотрением средств осуществления таких полетов. Конечно, такое рассмотрение не имеет целью "ощутить расстояние". Не может оно рассматривается и как проектирование конкретной конструкции межзвездных кораблей. Исследование вопросов межзвездных перелетов сегодня носит инженерно-теоретический характер. Нельзя доказать невозможность осуществления межзвездных перелетов, но и никому не удалость доказать их осуществимость. Выход из ситуации не прост - надо предложить такую конструкцию межзвездных кораблей, которая была бы воспринята инженерно-научным сообществом, как реализуемая.

Полеты одиночных межзвездных кораблей, являющиеся правилом в фантастической литературе, исключаются, возможен перелет только эскадры кораблей, примерно с десяток аппаратов. Это требование безопасности, а кроме того - и обеспечение разнообразия жизни за счет общения между экипажами разных кораблей.

Поле завершения строительства эскадры она перемещается к запасенным запасам топлива, стыкуется с ними и направляется в полет. По всей видимости, разгон будет очень медленным и в течение года-двух более мобильные аппараты смогут забросить на корабли то, что позабыли, и снять с борта передумавших.

Перелет продлится 100-150 лет. Медленный разгон с ускорением примерно в сотую долю земного в течение десятка лет, десятки лет полета по инерции, и несколько более быстрое, чем разгон, торможение. Быстрый разгон существенно сократил бы время перелета, но он не возможен из-за неизбежно большой массы двигательной установки.

Перелет не будет столь насыщен космическими приключениями, как описано в фантастической литературе. Внешних угроз практически нет. Облака космической пыли, завихрения пространства, провалы во времени - вся эта атрибутика угрозы не представляет ввиду ее отсутствия. Даже тривиальные метеориты крайне редки в межзвездном пространстве. Основная внешняя проблема - галактическое космическое излучение, космические лучи. Это изотропный поток ядер элементов, имеющих большую энергию и, следовательно, высокую проникающую способность. На Земле от них нас защищает атмосфера и магнитное поле, в космосе, если полет длительный, надо принимать специальные меры, экранировать жилую зону корабля так, чтобы доза космического излучения не сильно превышала земной уровень. Здесь поможет простой конструктивный прием - запасы топлива (а они очень большие) располагаются вокруг жилых отсеков и экранируют их от радиации большую часть времени перелета.


Меньше всего в наше время специалисты обсуждают межзвездные путешествия на космических кораблях. И дело тут не в том, что эта тема набила оскомину, поскольку обсуждалась в деталях в течение столетий (правда, эти детали были из области фантастики). Дело также не в том, что отпала необходимость в межзвездных полетах и мы будем общаться с внеземными цивилизациями только с помощью различных сигналов. Никакими сигналами путешествие в другие миры не заменить. «Лучше один раз увидеть, чем сто раз услышать». Сигналы не дадут нам ни вещественных, осязаемых предметов, ни реальных представителей фауны и флоры. С помощью сигналов мы не сможем установить контакт с цивилизациями, которые к нему технологически еще не готовы. Можно указать и на другие стороны вселенской жизни, которые останутся за бортом, если мы не можем освоить космический транспорт. Так почему же эта проблема сейчас не рассматривается специалистами в практической плоскости? Ответ на этот вопрос очень прост: мы пока не готовы к таким полетам. Это «пока» может длиться еще сотни лет, хотя очень легко ошибиться, предсказывая развитие науки и техники на будущее.

Несмотря на столь неблагоприятное состояние дел с межзвездными перелетами, имеет смысл ознакомиться с самой проблемой. Если мы не хотим находиться в пути миллионы лет (а это абсурдно), то надо обеспечить большую скорость корабля. Скорость, превышающая скорость света, невозможна, скорость света для корабля также нереальна. Поэтому при разных оценках оперируют скоростью, составляющей 10 % от скорости света. Ее называют децисветовой. Сантисветовая скорость в сто раз меньше скорости света.

Широко обсуждался вопрос о течении времени при космических перелетах. Время существенно замедляется. Так, ядро Галактики, которое удалено от нас на расстояние около 30 тысяч световых лет, можно будет достичь за 21 год и даже ближайшей галактики - туманности Андромеды - за 28 лет. Космический корабль в начале полета некоторое время должен ускоряться и перед посадкой соответственно замедляться. Каждый из этих отрезков времени может составить по нескольку лет. Течение времени на покинутой планете, естественно, не замедляется. Поэтому за время путешествия землян к туманности Андромеды и обратно на Земле пройдет более 3 миллионов лет. Хотя это и очень напоминает фантастику, но именно такое число следует из теории относительности А. Эйнштейна, то есть является строго научным результатом.

Очень легко оценить, что должна представлять собой ракета (ее возможности), для того чтобы она смогла достичь децисветовой или сантисветовой скорости. Скорость ракеты V, которой она достигает после выгорания горючего массой М, зависит и от массы ракеты М, и от скорости выброса рабочего вещества ракеты W. Эта зависимость выражается формулой

Мы не можем увеличивать массу горючего, не увеличивая массу ракеты, - ведь горючее приходится грузить на ту же ракету. Правда, можно ракету также дозаправлять в пути, в космосе, но такую возможность мы учтем позднее.

Совершенно ясно, что чем легче ракета, тем проще ее разогнать до большой скорости. Необходимость грузить на ракету большую массу горючего не позволяет сделать ее сколь угодно легкой. Выход один - искать такое горючее, которое было бы очень эффективным в смысле получения энергии. Естественно, можно говорить только о термоядерном горючем. Более эффективного горючего мы пока не знаем, хотя оно наверняка есть. Человек вынужден исходить из того, чем он располагает в настоящее время. Так, в прошлом веке очень серьезно обсуждался проект путешествия на Луну с использованием парового двигателя. Но вернемся к ракетам. Оказалось, что даже использование урана в качестве горючего может позволить развить скорость ракеты только до 1300 км/с. По земным меркам это очень большая скорость, но она в 23 раза меньше скорости света. Использование термоядерного горючего (когда происходит не расщепление ядер, а их синтез) позволит эту скорость несколько увеличить. Но достичь децисветовой скорости все равно не удастся.

Чтобы показать, насколько эта задача технологически сложна, приведем такой пример. На каждый грамм массы должна приходиться мощность 3 миллиона ватт. При этом ускорение ракеты будет равно величине земного ускорения. Сравним эту величину с реально доступной. Так, подводная лодка весом 800 тонн, использующая атомный двигатель, развивает мощность в 15 миллионов ватт. Нам же надо, чтобы эту мощность развивал двигатель весом 5 граммов. Сюда должны включаться все составные части движущейся ракеты (а не только двигатель).

Фотонные ракеты, о которых писали не только фантасты, но и ученые, явно не справятся с задачей межзвездных полетов.

Не так давно было предложено новое решение проблемы создания движителя для межзвездных перелетов. Предлагается не загружать на ракету горючее дома, на Земле, а брать его по мере необходимости прямо в космосе. Таким горючим может служить водород, который содержится в межзвездном пространстве. Ядра водорода можно заставить вступать в термоядерные реакции и так развивать необходимую мощность, не перегружая ракету большим запасом горючего. При этом запаса вообще никакого не надо. Ракета засасывает из окружающего пространства межзвездный водород, использует его и отработанное рабочее вещество выбрасывает. Все в этом проекте было бы отлично, только имеется одно «но»: плотность межзвездного водорода очень мала, в каждом кубическом сантиметре имеется всего примерно по одному атому водорода. Это глубочайший вакуум, которого мы никогда не достигнем на Земле в самых хитроумных вакуумных насосах! Для того, чтобы набрать необходимое количество водорода, надо процедить огромные объемы вокруг ракеты. Расчеты показывают, что для того, чтобы обеспечить себя горючим, ракета должна захватывать водород из окрестностей на расстоянии до 700 километров! Как технически это можно сделать - непонятно. Какие же лопасти надо приделать ракете, чтобы она смогла загребать водород из всего этого пространства? Кроме того, надо иметь в виду, что плотность межзвездного водорода может быть в тысячи раз меньше. Тогда как? Имеются идеи и на этот счет. Одна из них состоит в том, что надо нейтральный водород превратить в электрически заряженные частицы (ионы), а их можно всасывать в ракету с помощью электрических полей. Но это только идея. Как все это осуществить практически - совершенно неясно.

Таким образом, принципиально создать межзвездные корабли можно (никакие законы природы этому не препятствуют), а практически сделать мы это еще не готовы.

Более реально уже в наше время создать автоматическую космическую станцию с задачей достичь ближайших к нам планет других звезд. Такой проект был представлен на Таллинском симпозиуме М.Я. Маровым и У.Н. Закировым. Проведенные ранее У.Н. Закировым расчеты показывают, что представляется возможным вывести контейнер с научной аппаратурой к одной из ближайших звезд. Это должно занять примерно 40–50 лет. Проект предусматривает создание пятиступенчатой ракеты. При этом первые две ступени предназначены для работы на первом участке, пока ракета ускоряется до скорости, составляющей 40 % от скорости света. Еще две ступени точно так же предназначены для осуществления торможения ракеты по мере подхода к цели. Надо иметь в виду, что при столь больших скоростях «тормозной путь» ракеты очень большой. Время торможения ракеты, точно так же, как и время ее ускорения, составит один-два года! Пятую ступень ракеты планируется использовать на последнем этапе полета для маневрирования и обеспечения посадки автоматической станции.

Принципиально новым и очень интересным является предложение авторов проекта не брать на борт станции сразу все горючее, а после использования первой ступени ракеты произвести ее дозаправку в космосе. На первый взгляд это может показаться странным - ведь для этого нам придется послать следом за ракетой (а точнее, одновременно с ней) специальный заправщик. Какой выигрыш от этого возможен? Но оказывается, возможен. Оказывается, если не проводить дозаправку в космосе, то придется первоначальную массу ракетной системы увеличить почти в десять раз! Так что, несмотря на расходы в связи с созданием специального «заправщика», игра стоит свеч. При этом вся система становится вполне реальной. Так, масса контейнера с аппаратурой (полезная нагрузка) составит примерно 450 килограммов; мacca paкeтнoй системы составит примерно 3000 тонн, что вполне реально, так как такие ракеты уже освоены при осуществлении программы освоения Луны. Разбивка массы по пяти ступеням предусматривается следующей: 2780, 293, 44, 8 и 3 тонны.

Осуществление разработанного проекта - дело непростое и недешевое. Возможен еще один вариант: использовать отработанный тритий. Но техническая сторона дела опять же до конца непонятна и, несомненно, непроста.

Что должен делать такой зонд в космосе? Установленная на нем аппаратура должна позволять исследовать межзвездную среду, местоположение планет и физические условия от них. Зонд должен давать возможность обнаруживать сигналы внеземных цивилизаций, анализировать их, выходить на связь с абонентами и т. д. То есть делать все то, что должны делать автоматические зонды в космосе, или, другими словами, зонд должен заниматься «всеми основными видами космической науки». Эти слова принадлежат исследователю проблемы зондов Брейсуэллу.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ