Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ


При любой температуре молекулы жидкости частично покидают ее поверхность. Происходит испарение жидкости.
Испарение
Повседневные наблюдения показывают, что количество воды, спирта, эфира, бензина, керосина и любой другой жидкости, содержащейся в открытом сосуде, постепенно уменьшается, а с течением времени жидкость и вовсе может исчезнуть. Например, хорошо закупоренный пузырек с чернилами может стоять в шкафу сколь угодно долго, и количество чернил в нем не меняется. Если же пузырек оставить открытым, то, заглянув в него через достаточно продолжительное время, мы увидим, что жидкости в нем нет.
В действительности жидкости бесследно не исчезают - они испаряются, т. е. превращаются в пар.
Те же наблюдения позволяют установить, что испарение происходит с поверхности жидкости при любой температуре. Скорость испарения тем больше, чем больше площадь свободной поверхности жидкости, выше ее температура и чем быстрее удаляются образовавшиеся над жидкостью пары. Поэтому чтобы белье быстрее высохло, его распрямляют, а не вешают скомканным. Белье быстрее высыхает при более высокой температуре воздуха и на ветру. Испарение также ускоряется при уменьшении внешнего давления, вернее при уменьшении давления водяных паров, содержащихся в окружающей среде.
Скорость испарения различных жидкостей различна. Эфир испаряется быстрее бензина, а бензин быстрее спирта. Все эти три жидкости, называемые летучими, испаряются быстрее воды. Поэтому их следует содержать в хорошо закрывающихся сосудах. Ртуть - очень медленно испаряющаяся жидкость.
Молекулярная картина испарения
Молекулы жидкости участвуют в хаотическом движении. При этом чем выше температура жидкости, тем интенсивнее движутся молекулы, тем больше их кинетическая энергия. Но средняя кинетическая энергия молекул имеет при заданной температуре определенное значение. У каждой молекулы энергия в данный момент может оказаться как меньше, так и больше средней. Кинетическая энергия некоторых молекул в какой-то момент может стать столь большой, что они окажутся способными вылететь из жидкости, преодолев силы притяжения остальных молекул (рис. 6.1). В этом и состоит процесс испарения.

Молекулярно-кинетическая теория позволяет объяснить условия, ускоряющие процесс испарения. Чем больше площадь свободной поверхности жидкости, тем больше число вылетающих молекул, тем быстрее происходит испарение.
Чем выше температура жидкости, тем большее число молекул обладает достаточной для вылета из жидкости кинетической энер-
Конденсация пара
Вылетевшая с поверхности жидкости молекула принимает участие в хаотическом тепловом движении молекул пара. Беспорядочно двигаясь, она может навсегда удалиться от поверхности жидкости в открытом сосуде, но может и вернуться снова в жидкость. Этот процесс превращения пара в жидкость, обратный процессу испарения, называют конденсацией (от позднелатинского слова condensatio - уплотнение, сгущение). Если поток воздуха над сосудом (ветер) уносит с собой образовавшиеся пары жидкости, то жидкость испаряется быстрее, так как уменьшаются шансы молекулы пара вновь вернуться в жидкость.
Охлаждение при испарении
При испарении жидкость покидают молекулы, кинетическая энергия которых больше их средней кинетической энергии. Поэтому среднее значение кинетической энергии остающихся молекул жидкости уменьшается. А это означает понижение температуры испаряющейся жидкости. Вот почему вы чувствуете, что в жаркий летний день становится прохладно сразу после купания. Испарение воды с поверхности тела приводит к охлаждению его. Известно также, что в мокрой одежде холоднее, чем в сухой, особенно при ветре. Очень сильное охлаждение получается, если испарение происходит быстро. При быстром испарении эфира при атмосферном давлении может произойти охлаждение ниже О °С. Это можно обнаружить так. В вогнутое очковое стекло надо налить немного эфира и поставить его на стол, смоченный водой. При быстром испарении эфира (испарение ускоряют продуванием воздуха над эфиром) стеклышко примерзает к поверхности стола. Охлаждением при испарении летучих жидкостей пользуются врачи, когда нужно заморозить кожу больного, чтобы сделать ее нечувствительной к боли.
В жарких странах для охлаждения воды ее обычно содержат в пористых глиняных сосудах. Вода, просачивающаяся через поры сосуда, испаряется, охлаждая воду в сосуде.
Если лишить жидкость возможности испаряться, то охлаждение ее будет происходить гораздо медленнее. Вспомните, как долго остывает жирный суп. Слой жира на его поверхности мешает выходу быстрых молекул воды. Жидкость почти не испаряется, и ее температура падает медленно (сам жир испаряется крайне медленно, так как его большие молекулы более прочно сцеплены друг с другом, чем молекулы воды).
Испарение твердых тел
Испаряются не только жидкости, но и твердые тела. Молекулы, которые расположены у поверхности твердого тела и имеют достаточную кинетическую энергию, способны покинуть тело. Процесс перехода вещества из твердого состояния непосредственно в газообразное называется сублимаци- е й или возгонкой.
Например, нафталин или камфара испаряются при комнатной температуре и нормальном давлении, минуя жидкое состояние. Точно так же испаряются кристаллы брома или иода, особенно если их подогреть. Испаряется также лед. Ес-ли влажное белье развесить на морозе, то вода замерзает, а затем лед испаряется, и белье высыхает.
При испарении жидкостей они охлаждаются, так
как жидкость покидают наиболее быстрые молекулы.

Например с поверхности открытого сосуда, с поверхности водоема и т. д. Испарение происходит при любой температуре, но для всякой жидкости с повышением температуры скорость его увеличивается. Объем, занимаемый данной массой вещества, при испарении скачком возрастает.

Облака на небе, иней на деревьях - это все следствия процессов испарения воды и конденсации водяного пара.

Следует различать два основных случая. Первый, когда испарение происходит в замкнутом сосуде и температура во всех точках сосуда одинакова. Так, например, испаряется вода внутри парового котла или в чайнике, закрытом крышкой, если температура воды и пара ниже температуры кипения . В этом случае объем образующегося пара ограничен пространством сосуда. Давление пара достигает некоторого предельного значения, при котором он находится в тепловом равновесии с жидкостью; такой пар называется насыщенным , а его давление - упругостью пара . Второй случай, когда пространство над жидкостью незамкнутое; так испаряется вода с поверхности пруда. В этом случае равновесие не достигается практически никогда, и пар ненасыщенный, а скорость испарения зависит от многих факторов.

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс - конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

При испарении вылетающие из жидкости молекулы должны преодолеть притяжение соседних молекул и совершить работу против удерживающих их в поверхностном слое сил поверхностного натяжения . Поэтому, чтобы испарение происходило, испаряющемуся веществу надо сообщить тепло, черпая его из запаса внутренней энергии самой жидкости или отбирая у окружающих тел. Количество тепла, которое нужно сообщить жидкости, находящейся при данной температуре и фиксированном давлении, чтобы перевести ее в пар при этой же температуре и давлении, называется теплотой испарения . Упругость пара растет с ростом температуры тем сильнее, чем больше теплота испарения.

Если к испаряющейся жидкости не подводить тепла извне или подводить его недостаточно, то жидкость охлаждается. Вот почему, оставив мокрую руку на воздухе, мы ощущаем холод. Заставляя жидкость, помещенную в сосуд с нетеплопроводными стенками, усиленно испаряться, можно добиться значительного ее охлаждения. Согласно кинетической теории , испаряются наиболее быстрые молекулы, средняя энергия остающихся в жидкости молекул убывает - вот почему жидкость охлаждается.

Иногда испарением называют также сублимацию , или возгонку , т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

При температурах ниже температуры плавления давление насыщенных паров большинства твердых тел очень мало, и их испарение практически отсутствует. Бывают, однако, исключения. Так, вода при 0 °C имеет давление насыщенных паров 4,58 мм рт. ст., а лед при −1 °C - 4,22 мм рт. ст. и даже при −10 °C - всё еще 1,98 мм рт. ст. Этими сравнительно большими упругостями водяного пара объясняется легко наблюдаемое испарение твердого льда, в частности известный всем факт высыхания мокрого белья на морозе.



Добавить свою цену в базу

Комментарий

Испарение жидкости происходит при любой температуре и тем быстрее, чем выше температура, больше площадь свободной поверхности испаряющейся жидкости и быстрее удаляются образовавшиеся над жидкостью пары.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Это процесс интенсивного парообразования не только со свободной поверхности, но и в объеме жидкости. В объеме образуются пузыри, заполненные насыщенным паром. Они поднимаются вверх под действием выталкивающей силы и разрываются на поверхности. Центрами их образования являются мельчайшие пузырьки посторонних газов или частиц различных примесей.

Если пузырек имеет размеры порядка нескольких миллиметров и более, то вторым слагаемым можно пренебречь и, следовательно, для больших пузырьков при неизменном внешнем давлении жидкость закипает, когда давление насыщенного пара в пузырьках становится равным внешнему давлению.

В результате хаотического движения над поверхностью жидкости молекула пара, попадая в сферу действия молекулярных сил, вновь возвращается в жидкость. Этот процесс называется конденсацией.

Испарение и кипение

Испарение и кипение – это два способа перехода жидкости в газ (пар). Сам процесс такого перехода называется парообразованием. То есть испарение и кипение – это способы парообразования. Между этими двумя способами есть существенные отличия.

Испарение происходит только с поверхности жидкости. Оно является результатом того, что молекулы любой жидкости постоянно перемещаются. Причем скорость у молекул разная. Молекулы с достаточно большой скоростью, оказавшись на поверхности, могут преодолеть силу притяжения других молекул и оказаться в воздухе. Молекулы воды, находящиеся по отдельности в воздухе, как раз и образуют пар. Увидеть глазами пар невозможно. То, что мы видим, как водяной туман, это уже результат конденсации (обратный парообразованию процесс), когда при охлаждении пар собирается в виде мельчайших капелек.

В результате испарения сама жидкость охлаждается, так как ее покидают наиболее быстрые молекулы. Как известно, температура как раз определяется скоростью движения молекул вещества, то есть их кинетической энергией.

Скорость испарения зависит от многих причин. Во-первых, она зависит от температуры жидкости. Чем температура выше, тем испарение быстрее. Это и понятно, так как молекулы двигаются быстрее, а значит, им легче вырваться с поверхности. Скорость испарения зависит от вещества. У одних веществ молекулы притягиваются сильнее, и следовательно, труднее вылетают, а у других – слабее, и следовательно, легче покидают жидкость. Испарение также зависит от площади поверхности, насыщенности воздуха паром, ветра.

Самое главное, что отличает испарение от кипения, это то, что испарение протекает при любой температуре, и оно протекает только с поверхности жидкости.

В отличие от испарения, кипение протекает только при определенной температуре. Для каждого вещества, находящегося в жидком состоянии, характерна своя температура кипения. Например, вода при нормальном атмосферном давлении кипит при 100 °C, а спирт при 78 °C. Однако с понижением атмосферного давления температура кипения всех веществ немного понижается.

При кипении из воды выделяется растворенный в ней воздух. Поскольку сосуд обычно нагревают снизу, то в нижних слоях воды температура оказывается выше, и пузыри сначала образуются именно там. В эти пузыри испаряется вода, и они насыщаются водяным паром.

Так как пузыри легче самой воды, то они поднимаются вверх. Из-за того, что верхние слои воды не прогрелись до температуры кипения, пузыри остывают и пар в них обратно конденсируется в воду, пузыри становятся тяжелее и снова опускаются.

Когда все слои жидкости прогреваются до температуры кипения, то пузыри уже не опускаются, а поднимаются на поверхность и лопаются. Пар из них оказывается в воздухе. Таким образом, при кипении процесс парообразования происходит не на поверхности жидкости, а по всей ее толще в образующихся пузырьках воздуха. В отличие от испарения, кипение возможно лишь при определенной температуре.

Следует понимать, что когда жидкость кипит, то происходит и обычное испарение с ее поверхности.

От чего зависит скорость испарения жидкости?

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс – конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

Иногда испарением называют также сублимацию, или возгонку, т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

Итак, скорость испарения зависит от:

  1. Рода жидкости. Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.
  2. Испарение происходит тем быстрее, чем выше температура жидкости. Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.
  3. Скорость испарения жидкости зависит от площади её поверхности. Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.
  4. Испарение жидкости происходит быстрее при ветре. Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Выводы

Мы говорим, что вода испаряется. Но что это значит? Испарение – это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.

Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них – сцепление, которое притягивает их друг к другу. Другая – это тепловое движение отдельных молекул, которое заставляет их разлетаться.

Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.

Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.

Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.

Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.

Урок: Испарение. Поглощение энергии при испарении жидкости и выделение её при конденсации пара

На этом уроке мы рассмотрим вопрос, связанный с испарением, а также с поглощением энергии при испарении жидкости и с выделением энергии при конденсации пара.

На предыдущих уроках мы рассматривали различные процессы и, в частности, говорили о плавлении, о нагревании тел, об отвердевании или кристаллизации тел.

Сегодня мы рассмотрим процессы, при которых образуется пар (разновидность газа) или газ.

Давайте вспомним схему, по которой происходят различные процессы превращения агрегатных состояний (Рис. 1).

Рис. 1.

Парообразование может происходить двумя способами: кипение и испарение . Как правило, указывают первый способ – кипение.

На сегодняшнем уроке мы подробно рассмотрим второй способ парообразования: испарение.

Определение

Испарение – это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. То есть тогда, когда поверхность жидкости открыта и с поверхности начинается переход вещества из жидкого состояния в газообразное.

Вспомним, для начала, схему, на которой представлена картина превращений одного состояния вещества в другое состояние.

Конденсация

Парообразование

Десублимация

Сублимация

Отвердевание

Плавление

Таблица, в которой описаны названия процессов переходов между агрегатными состояниями вещества, выглядит следующим образом:

Переход

Название

Твёрдое жидкое

Плавление

Жидкое твёрдое

Отвердевание (кристаллизация)

Жидкое газообразное

Парообразование

Газообразное жидкое

Конденсация

Твёрдое газообразное

Сублимация

Газообразное твёрдое

Десублимация

Процесс испарения происходит не мгновенно, поэтому мы говорим, что испарение – процесс непрерывный и, соответственно, испарение жидкости происходит в течение некоторого времени.

Как происходит испарение?

Рассмотрим поверхность жидкости. Мы знаем, что жидкость состоит из атомов и молекул, которые находятся в непрерывном движении. Соответственно, может найтись такая частица данного вещества, у которой скорость (а, соответственно, и энергия) будет достаточно велика для того, чтобы преодолеть притяжение своих соседей и покинуть жидкость, то есть перейти в газообразное состояние. Поэтому говорят, что испарение происходит со свободной поверхности.

Рассмотрим факторы, которые влияют на испарение (в частности, его скорость).

1. Строение вещества

В первую очередь испарение связано со строением самого вещества. Можно привести следующий пример: возьмём две бумажные салфетки, смочим одну салфетку водой, а другую – эфиром. Можно заметить, что та салфетка, которая смочена эфиром, высохнет гораздо быстрее. Это объясняется тем, что сила взаимодействия между молекулами эфира гораздо меньше, чем сила взаимодействия между молекулами воды. И поэтому испарение происходит у эфира быстрее.

2. Площадь поверхности

Площадь свободной поверхности жидкости играет очень важную роль: если площадь поверхности достаточно большая, то количество частиц, покидающих жидкость, будет, конечно же, больше, и в этом случае испарение будет происходить быстрее. Можно привести такой пример: если в блюдце налить воду и такое же количество воды налить в стакан, то из блюдца испарение будет происходить гораздо быстрее (Рис. 2). Другой пример: все знают, что бельё, перед тем как его повесить сушиться, встряхивают и расправляют. В этом случае площадь белья увеличивается, соответственно, площадь испарения также увеличивается, и сам процесс испарения происходит быстрее.

Рис. 2. Блюдце и стакан с водой () ()

3. Температура

Ещё одно явление, которое влияет на испарение, – это изменение температуры. Чем температура выше, тем быстрее происходит испарение. То есть, нагревая тело, мы можем увеличивать скорость процесса испарения, ускорять его, или, наоборот, если мы будем понижать температуру, то процесс испарения будет замедляться. Объясняется это тем, что с увеличением температуры возрастает скорость движения частиц. А раз скорость движения возрастает, то большее количество частиц может покинуть жидкость и перейти в газообразное состояние.

Поскольку движение частиц происходит непрерывно, то процесс испарения также непрерывен. Поскольку при любой температуре движение частиц не прекращается, то и испарение может происходить практически при любой температуре. Поэтому испарение происходит даже при низкой температуре. Например, лужи на улице высыхают не только летом, когда жарко, но и осенью, когда холодно (Рис. 3). Отличается лишь скорость высыхания луж.

Рис. 3. ()

Возникает вопрос: что можно сказать об энергии жидкости при испарении? Так как жидкость покидают наиболее быстрые частицы, то они обладают большей кинетической энергией. Следовательно, в целом энергия испаряющейся жидкости уменьшается. Пояснить это можно на следующем примере: возьмём несколько человек, построим их в ряд и измерим их средний рост. Затем из этого строя уберём самых высоких и снова измерим средний рост. В результате, вполне логично, получится меньшее значение. То же самое происходит и с энергией. Каждый раз частицы с наибольшей энергией уходят из жидкости, и внутренняя энергия жидкости уменьшается.

Однако в жизни это охлаждение мы замечаем крайне редко. С чем же это связано? Это происходит из-за того, что жидкость сообщается с окружающими телами, в первую очередь, конечно, с воздухом, и поэтому, охлаждаясь, одновременно получает энергию из окружающих тел, то есть из воздуха. В результате этого «теплообмена» температура поддерживается на одном уровне. А испарение происходит с приблизительно одинаковой интенсивностью.

4. Ветер

Следующий фактор, который влияет на испарение, – это наличие ветра. Представьте себе, что над поверхностью жидкости образуется газ. Процесс испарения, как мы выяснили, продолжается непрерывно. Но точно так же будет происходить процесс возвращения молекул обратно в жидкость. Если же дует ветер, то он уносит молекулы, которые перешли из жидкости в газ, и не даёт им вернуться обратно в жидкость. В этом случае процесс испарения ускоряется, то есть скорость испарения возрастает.

Очень важно заметить и то, что в быту часто встречается так называемое испарение в закрытых сосудах. К примеру, если взять кастрюлю, в которой находится вода, то на поверхности крышки с внутренней стороны образуются капельки воды. То есть, поскольку внутри кастрюли ветра нет, то процесс испарения и возвращения молекул обратно в жидкость в данном случае выравнивается. Вот такое состояние называют динамическим равновесием .

Определение

Динамическое равновесие – это состояние системы «пар – жидкость», при которой количество молекул, вышедших из жидкости (перешедших в пар), равно количеству молекул, которое вернулось из пара обратно в жидкость.

Если же преобладает испарение над возвращением частиц обратно в жидкость, то такой пар, который находится над жидкостью, называется ненасыщенным .

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным .

При динамическом равновесии общая масса системы «пар – жидкость» не меняется: количество молекул, которые «вылетели» с поверхности жидкости, равно количеству молекул, которые «вернулись». Поэтому в целом масса всей системы «пар – жидкость» не изменяется.

Кроме испарения существует и обратный ему процесс, который называется конденсацией (от латинского – «сгущаю»).

То есть, конденсация – это процесс перехода пара (газа) в жидкость. Этот процесс происходит всегда с выделением количества теплоты (так как внутренняя энергия вещества уменьшается). То есть температура окружающих тел будет повышаться (жидкость передаёт избыточную энергию окружающим телам).

Конденсация происходит так же непрерывно, как и испарение. Точнее, можно сказать, что эти два процесса происходят одновременно, непрерывно.

Подтверждением этого, например, является образование облаков, ведь облака – это сконденсированная жидкость. Выпадение росы или, например, дождь, который идёт, – это всё процессы, которые связаны с конденсацией.

Отметим, что существует испарение не только с поверхности жидкостей, но и твёрдых тел. Для этого существует наглядный пример: если зимой мокрое бельё повесить на улице, то оно замёрзнет, то есть покроется коркой льда. Но, через некоторое время выяснится, что бельё сухое, то есть вода, даже в твёрдом состоянии, куда-то исчезла. Это и есть процесс испарения твёрдого тела, в данном случае льда. Встречаются испарения и других веществ, например, нафталина. Запах нафталина, который мы чувствуем, говорит о том, что нафталин также способен к испарению.

На следующем уроке мы рассмотрим вопросы, связанные с другим процессом перехода из жидкого состояния в газообразное – парообразованием.

Кипение. Зависимость температуры кипения от давления. Процесс испарения может происходить не только с поверхности жидкости, но и внутри жидкости. Пузырьки пара внутри жидкости расширяются и всплывают на поверхность, если давление насыщенного пара равно внешнему давлению или превышает его. Этот процесс называется кипением.

При температуре 100 °С давление насыщенного водяного пара равно нормальному атмосферному давлению, поэтому при нормальном давлении кипение воды происходит при 100 °С. При температуре 80 °С давление насыщенного пара примерно в два раза меньше нормального атмосферного давления. Поэтому вода кипит при 80 °С, если давление над ней уменьшить до 0,5 нормального атмосферного давления (рис. 96).

При понижении внешнего давления температура кипения жидкости понижается, при повышении давления температура кипения повышается.


При испарении жидкость покидают молекулы, кинетическая энергия которых больше их средней кинетической энергии. Поэтому среднее значение кинетической энергии остающихся молекул жидкости уменьшается. А это означает понижение температуры испаряющейся жидкости. Вот почему вы чувствуете, что в жаркий летний день становится прохладно сразу после купания. Испарение воды с поверхности тела приводит к охлаждению его. Известно также, что в мокрой одежде холоднее, чем в сухой, особенно при ветре. Очень сильное охлаждение получается, если испарение происходит быстро. При быстром испарении эфира при атмосферном давлении может произойти охлаждение ниже О °С. Это можно обнаружить так. В вогнутое очковое стекло надо налить немного эфира и поставить его на стол, смоченный водой. При быстром испарении эфира (испарение ускоряют продуванием воздуха над эфиром) стеклышко примерзает к поверхности стола. Охлаждением при испарении летучих жидкостей пользуются врачи, когда нужно заморозить кожу больного, чтобы сделать ее нечувствительной к боли.

В жарких странах для охлаждения воды ее обычно содержат в пористых глиняных сосудах. Вода, просачивающаяся через поры сосуда, испаряется, охлаждая воду в сосуде.

Если лишить жидкость возможности испаряться, то охлаждение ее будет происходить гораздо медленнее. Вспомните, как долго остывает жирный суп. Слой жира на его поверхности мешает выходу быстрых молекул воды. Жидкость почти не испаряется, и ее температура падает медленно (сам жир испаряется крайне медленно, так как его большие молекулы более прочно сцеплены друг с другом, чем молекулы воды).

Испарение твердых тел

Испаряются не только жидкости, но и твердые тела. Молекулы, которые расположены у поверхности твердого тела и имеют достаточную кинетическую энергию, способны покинуть тело. Процесс перехода вещества из твердого состояния непосредственно в газообразное называется сублимацией или возгонкой.

Например, нафталин или камфара испаряются при комнатной температуре и нормальном давлении, минуя жидкое состояние. Точно так же испаряются кристаллы брома или иода, особенно если их подогреть. Испаряется также лед. Если влажное белье развесить на морозе, то вода замерзает, а затем лед испаряется, и белье высыхает.

При испарении жидкостей они охлаждаются, так как жидкость покидают наиболее быстрые молекулы.

§ 6.2. Равновесие между жидкостью и паром

Самое интересное состояние газа - это насыщенный пар. Он находится в равновесии с жидкостью.

Насыщенный пар

Количество жидкости в открытом сосуде вследствие испарения непрерывно уменьшается. Но если сосуд плотно закрыт, то этого не происходит, что можно объяснить следующим образом.

В первый момент, после того как мы нальем жидкость в сосуд и закроем его, жидкость будет испаряться и плотность пара над жидкостью будет увеличиваться. Однако одновременно с этим будет расти и число молекул, возвращающихся в результате хаотического теплового движения обратно в жидкость. Чем больше плотность пара, тем большее число его молекул возвращается в жидкость. В открытом сосуде картина иная: покинувшие жидкость молекулы могут не возвращаться в жидкость.

В закрытом сосуде в конце концов устанавливается равновесное состояние: число молекул, покидающих поверхность жидкости, становится равным числу молекул пара, возвращающихся за то же время в жидкость. Такое равновесие называется динамическим или подвижным. При динамическом равновесии между жидкостью и ее паром одновременно происходит и испарение жидкости, и конденсация пара, и оба процесса в среднем компенсируют друг друга (рис. 6.2).

Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным паром. Это название подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара. Если воздух из сосуда с жидкостью откачан, то над поверхностью жидкости будет находиться только ее насыщенный пар.

Насыщенный пар имеет при данной температуре наибольшее количество молекул в единице объема (а значит, и наибольшую плотность) и оказывает наибольшее давление.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ