Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

ИТТРИЙ

1. Иттрий металлический

Физические и химические свойства

Иттрий — светло-серый металл. Температура плавления около 1500°С, плотность 4,47 г/см 3 , твердость по Бринеллю 628 МПа, модуль упругости 66 ГПа, модуль сдвига 264 ГПа, коэффициент Пуассона 0,265, коэффициент сжимаемости 26,8.10 -7 см 2 /кг. По своим механическим свойствам он напоминает алюминий. Легко поддается механической обработке.

Иттрий легко растворяется в минеральных кислотах. В кипящей воде он постепенно окисляется, на воздухе при температуре 400 °C окисление иттрия идет достаточно быстро. Но при этом образуется темная блестящая пленка окиси, плотно окутывающая металл и препятствующая окислению в массе. Лишь при 760°C эта пленка теряет защитные свойства, и тогда окисление превращает светло-серый металл в бесцветную или черную (от примесей) окись.

Хранение

В нормальной атмосфере иттрий весьма устойчив, он лишь слегка тускнеет, но никогда не теряет металлический блеск. Иттрий окисляется при более высокой температуре. С иттриевыми стружками следует обращаться осторожно, так как при нагревании они энергично сгорают. В атмосфере водяного пара при 750°C иттрий покрывается окисной пленкой, предохраняющей металл от дальнейшего окисления.

Производство

Как и многие лантаноиды, иттрий относится к числу довольно распространенных металлов. По данным геохимиков, содержание иттрия в земной коре 0,0028% - это значит, что элемент входит в число 30 наиболее распространенных элементов Земли.

Свыше ста минералов содержат иттрий. Среди них есть собственно иттриевые - ксенотим, фергюсонит, эвксенит, таленит и другие, промышленное значение имеют только ксенотим и эвксенит.

Главнейшие месторождения иттрия расположены в КНР, США, Канаде, Австралии, Индии, Малайзии, Бразилии. Китай является основным мировым поставщиком иттрия. Промышленное месторождение иттрия и иттриевых редких земель (тяжелых лантаноидов) имеется в Киргизии.

Извлечь чистый иттрий из руды чрезвычайно трудно. Мешает сходство с другими редкими землями.

Процесс переработки руд на иттрий и редкоземельные элементы, разработанный Спеллингом и Лоуэллом, заключается в следующем. Исходный ксенотим вскрывают путем обработки серной кислотой при высокой температуре. Полученный после такой обработки раствор подают на колонки с катионообменной смолой. Для их элюирования применяют раствор этилендиаминтетрауксусной кислоты. Иттрий и редкоземельные элементы содержатся в разных фракциях элюата. Их осаждают из этих фракций в виде оксалатов и прокаливают до окисей.

Универсальный способ получения совершенно чистых редко­земельных металлов и иттрия заключается в восстановлении безводных фторидов кальцием. Безводные фториды редкоземельных металлов получают либо фторированием окислов безводным фтористым водородом при 575°С, либо прокаливанием фтори­дов, осажденных из водных растворов плавиковой кислотой, либо же сплавлением окислов редкоземельных металлов с бифторидом аммония.

Безводный фторид смешивают с порошком металлического кальция, Танталовый тигель с загрузкой нагревают в атмосфере аргона, пока не начнется реакция. По завершении реакции и редкоземельный металл, и шлак (фторид кальция) должны на­ходиться в расплавленном состоянии.

Полученный таким способом иттрий кальциетермический по содержанию контролируемых примесей должен удовлетворять требованиям и нормам ТУ 48-4-208-72:

Марка

Сумма гадолиния, тербия, диспрозия, гольмия

железо

кальций

медь

Тантал, вольфрам (в зависимости от материала аппаратуры)

ИтМ-1

0,10

0,01

0,01

0,03

0,02

ИтМ-2

0,20

0,02

0,03

0,05

0,20

ИтМ-3

0,50

0,05

0,05

0,10

0,30

ИтМ-4

2,80

0,05

0,50

0,10

0,70

ИтМ-5

3,80

0,05

1,60

0,10

1,00

Применение металлического иттрия

Сплавы иттрия

Иттрий является металлом, обладающим рядом уникальных свойств, и эти свойства в значительной степени определяют очень широкое применение его в промышленности сегодня и, вероятно, ещё более широкое применение в будущем. Предел прочности на разрыв для нелегированного чистого иттрия около 300 МПа (30 кг/мм). Очень важным качеством, как металлического иттрия, так и ряда его сплавов является то обстоятельство, что, будучи активным химически, иттрий при нагревании на воздухе покрывается пленкой оксида и нитрида предохраняющих его от дальнейшего окисления до 1000 °C .

Перспективными областями применения сплавов иттрия являются авиакосмическая промышленность, атомная техника, автомобилестроение. Очень важно, что иттрий и некоторые его сплавы не взаимодействуют с расплавленным ураном и плутонием, и их использование позволяет применить их в ядерном газофазном ракетном двигателе.

Изучается перспективный магнитный сплав - неодим -иттрий-кобальт .

Легирование

Иттрий широко используется в черной и цветной металлургии.

Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов.

Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а, кроме того, у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов).

Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2-3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет громадное экономическое значение.

Введение незначительных количеств иттрия в сталь делает ее структуру мелкозернистой, улучшает механические, электрические и магнитные свойства. При добавлении небольших количеств иттрия (десятые, сотые доли процента) в чугун, твердость его возрастет почти вдвое, а износостойкость - в четыре раза. Такой чугун становится менее хрупким, по прочностным характеристикам он приближается к стали, легче переносит высокие температуры. И особенно важно, что иттриевый чугун можно переплавлять несколько раз, но прочностные характеристики при этом сохраняются.

Истинная, эмпирическая, или брутто-формула: Y

Молекулярная масса: 88,906

Иттрий - элемент побочной подгруппы третьей группы пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 39. Обозначается символом Y (лат. Yttrium). Простое вещество иттрий - металл светло-серого цвета. Существует в двух кристаллических модификациях: α-Y с гексагональной решёткой типа магния, β-Y с кубической объёмноцентрированной решёткой типа α-Fe, температура перехода α↔β 1482 °C.

История

В 1794 году финский химик Юхан (Иоганн) Гадолин (1760-1852) выделил из минерала иттербита оксид элемента, который он назвал иттрием - по названию шведского населённого пункта Иттербю, находящегося на острове Ресарё, входящем в Стокгольмский архипелаг (иттербит был найден здесь в заброшенном карьере). В 1843 году Карл Мосандер доказал, что этот оксид на самом деле является смесью оксидов иттрия, эрбия и тербия и выделил из этой смеси Y 2 O 3 . Металлический иттрий, содержащий примеси эрбия, тербия и других лантаноидов, был получен впервые в 1828 году Фридрихом Велером.

Нахождение в природе

Иттрий - химический аналог лантана. Кларк 26 г/т, содержание в морской воде 0,0003 мг/л. Иттрий почти всегда содержится вместе с лантаноидами в минеральном сырье. Несмотря на неограниченный изоморфизм, в группе редких земель в определённых геологических условиях возможна раздельная концентрация редких земель иттриевой и цериевой подгрупп. Например, с породами и связанными с ними постмагматическими продуктами преимущественное развитие получает цериевая подгруппа, а с постмагматическими продуктами гранитоидов с повышенной - иттриевая. Большинство фторкарбонатов обогащено элементами цериевой подгруппы. Многие тантало-ниобаты содержат иттриевую подгруппу, а титанаты и титано-тантало-ниобаты - цериевую. Главнейшие минералы иттрия - ксенотим YPO 4 , гадолинит Y 2 FeBe 2 Si 2 O 10 .

Месторождения

Главные месторождения иттрия расположены в Китае, Австралии, Канаде, США, Индии, Бразилии, Малайзии.

Получение

Соединения иттрия получают из смесей с другими редкоземельными металлами экстракцией и ионным обменом. Металлический иттрий получают восстановлением безводных галогенидов иттрия литием или кальцием c последующей отгонкой примесей.

Физические свойства

Иттрий - металл светло-серого цвета. Существует в двух кристаллических модификациях: α-Y с гексагональной решёткой типа магния (a=3,6474 Å; с=5,7306 Å; z=2; пространственная группа P63/mmc), β-Y с кубической объёмноцентрированной решёткой типа α-Fe (a=4,08 Å; z=2; пространственная группа Im3m), температура перехода α↔β 1482 °C, ΔH перехода - 4,98 кДж/моль. Температура плавления - 1528 °C, температура кипения - около 3320 °C. Иттрий легко поддается механической обработке.

Изотопы

Иттрий - моноизотопный элемент, в природе представлен одним стабильным нуклидом 89Y.

Химические свойства

На воздухе иттрий покрывается плотной защитной оксидной плёнкой. При 370-425 °C образуется плотная чёрная пленка оксида. Интенсивное окисление начинается при 750 °C. Компактный металл окисляется кислородом воздуха в кипящей воде , реагирует с минеральными кислотами, уксусной кислотой , не реагирует с фтороводородом. Иттрий при нагревании взаимодействует с галогенами, водородом, азотом, серой и фосфором. Оксид Y 2 О 3 обладает основными свойствами, ему отвечает основание Y(ОН) 3 .

Применение

Иттрий является металлом, обладающим рядом уникальных свойств, и эти свойства в значительной степени определяют очень широкое применение его в промышленности сегодня и, вероятно, ещё более широкое применение в будущем. Предел прочности на разрыв для нелегированного чистого иттрия - около 300 МПа (30 кг/мм²). Очень важным качеством как металлического иттрия, так и ряда его сплавов является то обстоятельство, что, будучи активным химически, иттрий при нагревании на воздухе покрывается плёнкой оксида и нитрида, предохраняющих его от дальнейшего окисления до 1000 °C.

Керамика для нагревательных элементов

Хромит иттрия - материал для лучших высокотемпературных нагревателей сопротивления, способных эксплуатироваться в окислительной среде (воздух, кислород).

ИК - керамика

«Иттралокс» (Yttralox) - твёрдый раствор диоксида тория в окиси иттрия. Для видимого света этот материал прозрачен, как стекло, но также он очень хорошо пропускает инфракрасное излучение, поэтому его используют для изготовления инфракрасных «окон» специальной аппаратуры и ракет, а также используют в качестве смотровых «глазков» высокотемпературных печей. Плавится «Иттралокс» лишь при температуре около 2207 °C.

Огнеупорные материалы

Оксид иттрия - чрезвычайно устойчивый к нагреву на воздухе огнеупор, упрочняется с ростом температуры (максимум при 900-1000 °C), пригоден для плавки ряда высокоактивных металлов (в том числе и самого иттрия). Особую роль оксид иттрия играет при литье урана. Одной из наиболее важных и ответственных областей применения оксида иттрия в качестве жаропрочного огнеупорного материала является производство наиболее долговечных и качественных сталеразливочных стаканов (устройство для дозированного выпуска жидкой стали), в условиях контакта с движущимся потоком жидкой стали оксид иттрия наименее размываем. Единственным известным и превосходящим по стойкости оксид иттрия в контакте с жидкой сталью является оксид скандия, но он чрезвычайно дорог.

Термоэлектрические материалы

Важным соединением иттрия является его теллурид. Имея малую плотность, высокую температуру плавления и прочность, теллурид иттрия имеет одну из самых больших термо-э.д.с среди всех теллуридов, а именно 921 мкВ/К (у теллурида висмута, например, 280 мкВ/К) и представляет интерес для производства термоэлектрогенераторов с повышенным КПД.

Сверхпроводники

Один из компонентов иттрий-медь-бариевой керамики с общей формулой YBa 2 Cu 3 O 7 -δ - высокотемпературный сверхпроводник с температурой перехода в сверхпроводящее состояние около 90 К.

Сплавы иттрия

Перспективными областями применения сплавов иттрия являются авиакосмическая промышленность, атомная техника, автомобилестроение. Очень важно то обстоятельство, что иттрий и его некоторые сплавы не взаимодействуют с расплавленным ураном и плутонием, что позволяет применить их в ядерном газофазном ракетном двигателе.

Легирование

Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов. Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а кроме того, у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов). Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2-3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет большое экономическое значение (использование вместо иттрия скандия ещё в несколько раз увеличивает срок службы сплавов).

Магнитные материалы

Изучается перспективный магнитный сплав - неодим-иттрий-кобальт.

Люминофоры

Оксид и ванадат иттрия, легированные европием, используются в производстве кинескопов цветных телевизоров. Оксосульфид иттрия, активированный европием, применяется для производства люминофоров в цветном телевидении (красная компонента), а активированный тербием - для чёрно-белого телевидения. Иттрий-алюминиевый гранат (ИАГ), легированный трёхвалентным церием с максимумом излучения в области жёлтого цвета используется в конструкции люминофорных белых светодиодов.

Дуговая сварка

Добавлением иттрия в вольфрам резко снижают работу выхода электрона (у чистого иттрия 3,3 эВ), что используется для производства иттрированных вольфрамовых электродов для аргонодуговой сварки и составляет значительную статью расхода металлического иттрия. Гексаборид иттрия имеет так же малую работу выхода электронов (2,22 эВ) и применяется для производства катодов мощных электронных пушек (электронно-лучевая сварка и резка в вакууме).

Другие сферы применения

Бериллид иттрия (равно как и бериллид скандия) является одним из лучших конструкционных материалов аэрокосмической техники и, плавясь при температуре около 1920 °C, начинает окисляться на воздухе при 1670 °C (!). Удельная прочность такого материала весьма высока, и при использовании его в качестве матрицы для наполнения нитевидными кристаллами (усами) можно создать материалы, имеющие фантастические прочностные и упругие характеристики. Тетраборид иттрия находит применение в качестве материала для управляющих стержней атомных реакторов (имеет малое газовыделение по гелию и водороду). Ортотанталат иттрия синтезируется и используется для производства рентгеноконтрастных покрытий. Синтезированы иттрий-алюминиевые гранаты (ИАГ), имеющие ценные физико-химические свойства, которые могут применяться и в ювелирном деле, и уже довольно давно применяемые в качестве технологичных и относительно дешёвых материалов для твердотельных лазеров. Важным лазерным материалом является ИСГГ - иттрий-скандий-галлиевый гранат. Гидрид иттрия-железа применяют как аккумулятор водорода с высокой ёмкостью и достаточно дешёвый.

Цены на иттрий

Иттрий чистотой 99-99,9 % стоит в среднем 115-185 долларов США за 1 кг.

СВОЙСТВА.

Иттрий — 39

Иттрий (Y) — редкоземельный металл , атомный номер 39, атомная масса 88,91, температура плавления 1509ОС, плотность 4,47 г/см3.
Y — второй по счёту, после , редкоземельный металл, не лантаноид.

Этот элемент получил название в честь шведской деревни Иттерби, вблизи которой был найден минерал, тяжёлый камень чёрного цвета, похожий на каменный уголь, который назвали иттербитом. После исследования этого минерала, в нём был обнаружен окисел нового элемента, похожий на окислы кальция и алюминия. Этот окисел был назван иттриевой землёй и, затем, после перевода этого окисла в хлористое соединение с помощью металлического натрия, был выделен новый металл, который был назван иттрием.
Y входит в состав сложных минералов, распылённых в земной коре и очень трудно выделяется из них. Значительно более концентрированы и изучены радиоактивные изотопы иттрия.
В природных и техногенных видах сырья, Y содержится в минералах эвделите, бастнезите, в хибинском апатите, а также, в фосфогипсе из хибинского апатита и в природном концентрате Томтора.

Легко растворяется в минеральных кислотах, окисляется в кипящей воде, а на воздухе-только при высокой температуре (400ОС). При окислении, на поверхности металла образуется плёнка, которая препятствует дальнейшему окислению металла в его массе. Иттрий достаточно хорошо распространён в земной коре (до 0,0028%), однако чрезвычайно рассеян, что серьёзно усложняет его добычу и выделение.

ПОЛУЧЕНИЕ.

Получение иттрия представляет собой сложный и многостадийный процесс.
Получение иттрия, например, из минерала ксенотима (фосфата иттрия),в котором, после обогащения содержится до 36% окисла иттрия и 24% окислов других РЗМ, состоит в следующем. Минерал ксенотим обрабатывают серной кислотой при высокой температуре. Затем, этот раствор загружают в ионообменную колонну, содержащую смолу. Здесь иттрий отделяется и вместе с другими лантаноидами,сохраняется в катионите. Для отделения от него иттрия, через колонну пропускают элюент-раствор уксусной кислоты. Полученные разные фракции элюента содержат разные элементы. После дополнительной и длительной очистки фракции, содержащей Y, получают окись иттрия Y2O3, из которой, затем, при необходимости, получают металлический Y.
Из других минералов содержащих иттрий, способы получения его окиси, как в лаборатории, так и в промышленности, значительно отличаются от вышеописанного.
Для получения металлического иттрия, его окись восстанавливают, превращая, при высокой температуре во фторид иттрия YF3. Это промежуточное соединение смешивают с кальцием и, в титановом тигле, нагревают в индукционной печи, в атмосфере инертного газа, при температуре 1600ОС и, таким образом, получают металлический иттрий. После отделения шлака, остаётся иттрий чистотой 99%. Доведение его до более высокой чистоты осуществляется сложными и дорогостоящими способами.

ПРИМЕНЕНИЕ.

Из всех редкоземельных металлов, иттрий, является одним из самых востребованных и широко используемых.

    Металлургия. Добавка иттрия, как легирующего металла, в нержавеющую сталь, содержащую 25% хрома, значительно повышает её жаропрочные свойства. Легирование иттрием сплавов алюминия и магния значительно добавляют им прочностных и жаростойких качеств. Металлический Y хорошо прокатывается, легко вытягивается в трубы, хорошо сваривается. Легирующие металлы-хром, ванадий, молибден, для придания им мелкозернистой структуры, сами легируются иттрием, что улучшает их возможности при легировании сталей. Иттрий применяется для производства долговечных выпускных стаканов в сталеразливочных ковшах, применяемых в чёрной металлургии.

    Атомная техника. Изготовление трубопроводов, по которым течёт расплав из ядерного горючего атомных реакторов-урана или плутония, из металлического иттрия, значительно повышает срок службы этих трубопроводов, т.к. иттрий не реагирует с этими расплавами. Сплав иттрия с бериллием применяется для изготовления замедлителей и отражателей нейтронов, в атомных реакторах при высоких температурах.

  • Люминофоры. Для качественного свечения экранов цветных телевизоров, применяется иттрий, который добавляют в состав люминофоров, для нанесения на электронно-лучевые трубки.

  • Керамика. Сохранение жаропрочных свойств керамическими изделиями при очень высоких температурах (до 2200ОС), обеспечивает материал цитрит (керамика из циркония с содержанием иттрия), у которого очень низкая теплопроводность.

  • Производство стекла. Иттрий-локс, замечательный материал, представляющий собой твёрдый раствор из двуокиси тория в окиси иттрия. Он пропускает видимый свет, а также и инфракрасное излучение. Его используют в качестве окон в специальной аппаратуре для космической техники, в смотровых глазках печей, с высокими температурами.

  • Сверхпроводники. Y используется для создания сверхпроводников на основе керамики иттрий-медь-барий, у которого переход в сверхпроводящее состояние происходит при температуре -183ОС.

  • Электротехника. Алюминий, легированный иттрием, увеличивает электропроводность изготовленных из него проводов. Нихромовый провод, легированный иттрием, применяется для нагрева промышленных агрегатов электрическим током и служит в два-три раза дольше чем обычный нихромовый.

  • Термоэлектрические материалы. Теллурид иттрия обладает очень высокой термоэдс и применяется для производства термоэлектрогенераторов с высоким КПД.

  • Аэрокосмическая техника. При высокой удельной прочности и высокой жаропрочности бериллид иттрия, является одним из лучших конструктивных материалов для создания изделий для космоса-корпусов ракет и спутников.

  • Автомобильные катализаторы. Для нейтрализации отработавших выхлопных газов автомобилей применяются автомобильные катализаторы, выполненные с добавкой иттрия.

  • Лазеры. Искусственные иттрий-алюминиевые гранаты применяются для производства твердотельных лазеров.

  • Экология. При ядерных взрывах образуется радиоактивный изотоп иттрий-91. Вместе со стронцием-90, это наиболее опасный продукт ядерного деления. Опасен также изотоп иттрий-90. Эти изотопы накапливаются в мировом океане в процессе экспериментальных ядерных взрывов и захоронений на дне океанов радиоактивных отходов, что серьёзно угрожает безопасности морской фауны и, соответственно, человека. Борьба с этими явлениями, становится одной из первоочередных задач по защите природы и человека.

Иттрий — химический аналог лантана. Кларк 26 г/т, содержание в морской воде 0,0003 мг/л. Иттрий почти всегда содержится вместе с лантаноидами в минеральном сырье. Несмотря на неограниченный изоморфизм, в группе редких земель в определённых геологических условиях возможна раздельная концентрация редких земель иттриевой и цериевой подгрупп. Например, с щелочными породами и связанными с ними постмагматическими продуктами преимущественное развитие получает цериевая подгруппа, а с постмагматическими продуктами гранитоидов с повышенной щёлочностью — иттриевая. Большинство фторкарбонатов обогащено элементами цериевой подгруппы. Многие тантало-ниобаты содержат иттриевую подгруппу, а титанаты и титано-тантало-ниобаты — цериевую. Главнейшие минералы иттрия — ксенотим YPO4, гадолинит Y2FeBe2Si2O10.

Месторождения иттрия

Получение иттрия

Соединения иттрия получают из смесей с другими редкоземельными металлами экстракцией и ионным обменом. Металлический иттрий получают восстановлением безводных галогенидов иттрия литием или кальцием c последующей отгонкой примесей.

Химические свойства

На воздухе иттрий покрывается плотной защитной оксидной пленкой. При 370—425 °C образуется плотная черная пленка оксида. Интенсивное окисление начинается при 750 °C. Компактный металл окисляется кислородом воздуха в кипящей воде, реагирует с минеральными кислотами, уксусной кислотой, не реагирует с фтороводородом. Иттрий при нагревании взаимодействует с галогенами, водородом, азотом, серой и фосфором. Оксид Y2О3 обладает основными свойствами, ему отвечает основание Y(ОН)3.

Применение иттрия

Иттрий является металлом, обладающим рядом уникальных свойств, и эти свойства в значительной степени определяют очень широкое применение его в промышленности сегодня и, вероятно, ещё более широкое применение в будущем. Предел прочности на разрыв для нелегированного чистого иттрия около 300 МПа (30 кг/мм²). Очень важным качеством как металлического иттрия, так и ряда его сплавов является то обстоятельство, что будучи активным химически, иттрий при нагревании на воздухе покрывается пленкой оксида и нитрида, предохраняющих его от дальнейшего окисления до 1000 °C.

Иттриевая керамика

Керамика для нагревательных элементов

Хромит иттрия — материал для лучших высокотемпературных нагревателей сопротивления, способных эксплуатироваться в окислительной среде (воздух, кислород).
ИК — керамика
«Иттралокс»(Yttralox) — твёрдый раствор двуокиси тория в окиси иттрия. Для видимого света этот материал прозрачен, как стекло, но также он очень хорошо пропускает инфракрасное излучение, поэтому его используют для изготовления инфракрасных «окон» специальной аппаратуры и ракет, а также используют в качестве смотровых «глазков» высокотемпературных печей. Плавится «Иттралокс» лишь при температуре около 2207 °C.

Огнеупорные материалы

Оксид иттрия — чрезвычайно устойчивый к нагреву на воздухе огнеупор, упрочняется с ростом температуры (максимум при 900—1000 °C), пригоден для плавки ряда высокоактивных металлов (в том числе и самого иттрия). Особую роль оксид иттрия играет при литье урана. Одной из наиболее важных и ответственных областей применения оксида иттрия в качестве жаропрочного огнеупорного материала является производство наиболее долговечных и качественных сталеразливочных стаканов (устройство для дозированного выпуска жидкой стали), в условиях контакта с движущимся потоком жидкой стали оксид иттрия наименее размываем. Единственным известным и превосходящим по стойкости оксид иттрия в контакте с жидкой сталью является оксид скандия, но он чрезвычайно дорог.

Термоэлектрические материалы

Важным соединением иттрия является его теллурид. Имея малую плотность, высокую температуру плавления и прочность, теллурид иттрия имеет одну из самых больших термо-э.д.с среди всех теллуридов, а именно 921 мкВ/К (у теллурида висмута например 280 мкВ/К) и представляет интерес для производства термоэлектрогенераторов с повышенным КПД.

Сверхпроводники

Один из компонентов иттрий-медь-бариевой керамики с общей формулой YBa2Cu3O7-δ — высокотемпературный сверхпроводник с температурой перехода в сверхпроводящее состояние около 90 К.

Сплавы иттрия

Перспективными областями применения сплавов иттрия являются авиакосмическая промышленность, атомная техника, автомобилестроение. Очень важно то обстоятельство, что иттрий и его некоторые сплавы не взаимодействуют с расплавленным ураном и плутонием, что позволяет применить их в ядерном газофазном ракетном двигателе.

Легирование

Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов.
Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а кроме того у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов).
Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2—3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет большое экономическое значение (использование вместо иттрия скандия ещё в несколько раз увеличивает срок службы сплавов).

Общие сведения и методы получения

Иттрий (Y) - редкоземельный металл светло-серого цвета. Свое назва­ние получил от шведского селения Иттербю. Открыт в 1794 г. финским химиком И. Гадолином. Металлический иприй получен в 1828 г. немец­ким химиком Ф. Велером.

Для отделения основной массы иттрия от других элементов лучшим способом считается его отделение на ионообменных колоннах в процессе разделения РЗМ иттриевой подгруппы.

Для получения иттрия высокой чистоты применяют метод металло-термического восстановления его фторида с использованием в качестве восстановителя стружки кальция. Затем путем переплавки в вакууме и дистилляции получается иттрий чистотой 99,8-99 % Для повышения чистоты его подвергают дву- и трехкратной дистилляции.

Физические свойства

Атомные характеристики. Атомный номер 39, атомная масса 88 ,905 а.е.м, атомный объем 19,886*10- 6 м 3 /моль, атомный радиус 0 ,181 нм, ионный радиус Y + 3 0 ,097 нм. Конфигурация внешних электронных оболочек ато­ма 4 d "5 s 2 .

Природный иттрий состоит из одного устойчивого изотопа 89 Y . Из­вестно 18 искусственных радиоактивных изотопов, важнейшими из ко­торых являются 90 Y и 91 Y , образующегося при делении урана и тория.

Химические свойства

Нормальный электродный потенциал реакции Y -3 e »± Y 3+ , (р 0 =-2,1 В. Электрохимический эквивалент 0,30715 мг/Кл.

В соединениях проявляет степень окисления +3. В атмосфере возду­ха при нормальных условиях иттрий весьма устойчив: он лишь слегка тускнеет, но не теряет металлического блеска. При 370-425 °С на по­верхности иттрия образуется черная и плотная пленка оксидов: интен­сивно* 1 окисление начинается выше 760 "С.

Компактный иттрий медленно окисляется в кипящей воде, легко раст­воряется в серной, соляной и азотной кислотах, медленно - в уксусной н почти инертен к плавиковой кислоте. В щелочных средах (1 н. раство­ры NaOH и NH

Иттрий легко взаимодействует с галогенами.

С водородом иттрий образует в интервале 314-1540"С устойчивые металлические гидриды различного состава. При 760 °С иттрий взаи­модействует с азотом, образуя YN.

Технологические свойства

Иттрий - металл достаточно пластичный. Поддается обработке давле­нием в горячем и холодном состояниях. Однако деформируемость его зависит от степени чистоты. Так, в холодном состоянии недостаточно чистый иттрий можно прокатать со степенью обжатия не более 10- 15 % за одни проход. Путем холодной прокатки с небольшими обжати­ями и промежуточными отжигами можно получить из иттрия ленту и фольгу толщиной 0,5-0,05 мм. Горячая прокатка, а также горячая ков­ка и прессование легко осуществляются при 800-850 °С. Однако выше 760 °С происходит интенсивное окисление иттрия, поэтому обработку его давлением прн высоких температурах следует проводить, принимая специальные меры против окисления и газонасыщения (вакуум, защит­ные оболочки, нейтральная атмосфера и др.).

Температура конца рекристаллизации технического иттрия 600°С, а дистиллированного 450-500 °С.

Иттрий легко обрабатывается резанием (обточка, фрезерование, сверление и др.), однако во избежание его возгорания скорости резания необходимо поддерживать минимальными, а также применять постоян­ное охлаждение эмульсией или маслом.

Иттрий легко сваривается дуговой сваркой с неплавящимся воль­фрамовым электродом в атмосфере инертного газа. При сварке иттрия с другими металлами оптимальные результаты достигаются при приме­нении присадочного материала (например, хрома для улучшения диффу­зии). Металлический иттрий, содержащий 0,1-0,3 % кислорода, отли­чается склонностью к растрескиванию в процессе сварки.

Области применения

В качестве основы сплавов иттрий применяют редко, но широко исполь­зуют для легирования и модифицирования.

В настоящее время наиболее широкие области применения иттрия, его соединений, сплавов и лигатур в промышленности следующие: производство легированной стали; модифицирование чугуна; производст­во сплавов на основе никеля, хрома, молибдена и других металлов - для повышения жаростойкости и жаропрочности; выплавка ванадия, тантала, вольфрама и молибдена и сплавов на их основе - для увеличения плас­тичности; производство медных, титановых, алюминиевых и магниевых сплавов; атомная энергетика; электроника - в качестве катодных ма­териалов (оксиды иттрия), а также для поглощения газов в электрова­куумных приборах; изготонление квантовых генераторов - лазеров; про­изводство тугоплавких и огнеупорных материалов; химия - в качестве катализаторов; производство стекла и керамики. Рафинирование метал­лов и сплавов от примесей (кислород, азот, водород и углерод), вызы­вающих хрупкость сплавов, что особенно важно для тугоплавких хлад­ноломких металлов с объемноцентрированной кубической решеткой, а также примесей, вызывающих хладноломкость (сера, фосфор, мышьяк в стали, хромоникелевых и никелевых сплавах; свинец и висмут в медных сплавах).

Имеются сведения об использовании изотопа 90 Y в медицине.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ