Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Выражения, преобразование выражений

Степенные выражения (выражения со степенями) и их преобразование

В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.

Навигация по странице.

Что такое степенные выражения?

Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, . После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

Определение.

Степенные выражения – это выражения, содержащие степени.

Приведем примеры степенных выражений . Причем будем их представлять согласно тому, как происходит развитие взглядов на от степени с натуральным показателем до степени с действительным показателем.

Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 3 2 , 7 5 +1 , (2+1) 5 , (−0,1) 4 , 3·a 2 −a+a 2 , x 3−1 , (a 2) 3 и т.п.

Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3 −2 , , a −2 +2·b −3 +c 2 .

В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2 x 2 +1 или . А после знакомства с , начинают встречаться выражения со степенями и логарифмами, к примеру, x 2·lgx −5·x lgx .

Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

Основные виды преобразований степенных выражений

Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений . Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий . Приведем примеры.

Пример.

Вычислите значение степенного выражения 2 3 ·(4 2 −12) .

Решение.

Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 4 2 ее значением 16 (при необходимости смотрите ), и во-вторых, вычисляем разность 16−12=4 . Имеем 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4 .

В полученном выражении заменяем степень 2 3 ее значением 8 , после чего вычисляем произведение 8·4=32 . Это и есть искомое значение.

Итак, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32 .

Ответ:

2 3 ·(4 2 −12)=32 .

Пример.

Упростить выражения со степенями 3·a 4 ·b −7 −1+2·a 4 ·b −7 .

Решение.

Очевидно, что данное выражение содержит подобные слагаемые 3·a 4 ·b −7 и 2·a 4 ·b −7 , и мы можем привести их: .

Ответ:

3·a 4 ·b −7 −1+2·a 4 ·b −7 =5·a 4 ·b −7 −1 .

Пример.

Представьте выражение со степенями в виде произведения.

Решение.

Справиться с поставленной задачей позволяет представление числа 9 в виде степени 3 2 и последующее использование формулы сокращенного умножения разность квадратов:

Ответ:

Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

Работа с основанием и показателем степени

Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7) 5−3,7 и (a·(a+1)−a 2) 2·(x+1) .

При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7) 5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,1 1,3 . А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a 2) 2·(x+1) мы получим степенное выражение более простого вида a 2·(x+1) .

Использование свойств степеней

Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие . Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

  • a r ·a s =a r+s ;
  • a r:a s =a r−s ;
  • (a·b) r =a r ·b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r·s .

Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство a m ·a n =a m+n верно не только для положительных a , но и для отрицательных, и для a=0 .

В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней . Здесь же мы ограничимся рассмотрением нескольких простых примеров.

Пример.

Представьте выражение a 2,5 ·(a 2) −3:a −5,5 в виде степени с основанием a .

Решение.

Сначала второй множитель (a 2) −3 преобразуем по свойству возведения степени в степень: (a 2) −3 =a 2·(−3) =a −6 . Исходное степенное выражение при этом примет вид a 2,5 ·a −6:a −5,5 . Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
a 2,5 ·a −6:a −5,5 =
a 2,5−6:a −5,5 =a −3,5:a −5,5 =
a −3,5−(−5,5) =a 2 .

Ответ:

a 2,5 ·(a 2) −3:a −5,5 =a 2 .

Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

Пример.

Найти значение степенного выражения .

Решение.

Равенство (a·b) r =a r ·b r , примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

Можно было выполнять преобразование исходного выражения и иначе:

Ответ:

.

Пример.

Дано степенное выражение a 1,5 −a 0,5 −6 , введите новую переменную t=a 0,5 .

Решение.

Степень a 1,5 можно представить как a 0,5·3 и дальше на базе свойства степени в степени (a r) s =a r·s , примененного справа налево, преобразовать ее к виду (a 0,5) 3 . Таким образом, a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6 . Теперь легко ввести новую переменную t=a 0,5 , получаем t 3 −t−6 .

Ответ:

t 3 −t−6 .

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей , которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a , б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a 0,3 , так как a 0,7 ·a 0,3 =a 0,7+0,3 =a . Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a 0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на чисел 30 и 45 , который равен 15 . Также, очевидно, можно выполнить сокращение на x 0,5 +1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)

б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x 1/2 , после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x 2,7 +1) 2 , это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

Преобразование выражений с корнями и степенями

Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция , которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств , и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 5 2·x+1 −3·5 x ·7 x −14·7 2·x−1 =0 .

Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
5 2·x ·5 1 −3·5 x ·7 x −14·7 2·x ·7 −1 =0 ,
5·5 2·x −3·5 x ·7 x −2·7 2·x =0 .

Дальше выполняется деление обеих частей равенства на выражение 7 2·x , которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

Теперь сокращаются дроби со степенями, что дает .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения

  • И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.
  • Глава первая. Целые показатели.



    Глава первая.

    Целые показатели.

    255. Свойства целых положительных показателей. Показатели степени до сего времени предполагались нами целыми и положительными, причем мы им придавали смысл, выражаемый в следующем определении:

    Возвысить число а в степень с целым и положительным показателем n - значит найти произведение n одинаковых сомножителей ааа...a .

    Перечислим свойства этих показателей, известные нам из предыдущих глав алгебры:

    1) при умножении степеней одного и того же числа показатели их складываются (Отдел 2 глава 3 § 53);

    2) при делении степеней одного и того же числа показатель делителя вычитается из показателя делимого, если показатель делителя не больше показателя делимого (Отдел 2 глава 4 § 64);

    3) всякое число, возвышенное в нулевую степень, дает 1 (Отдел 2 глава 4 § 65);

    4) от возвышения отрицательного числа в степень с четным показателем получается положительное число, а с нечетным показателем- отрицательное (Отдел 6 глава 1 § 153);

    5) чтобы возвысить в степень произведение, достаточно возвысить в эту степень каждый сомножитель отдельно (Отдел 6 глава 1 § 154, а);

    6) чтобы возвысить степень в степень, достаточно перемножить показатели этих степеней (Отдел 6 глава 1 § 154,6);

    7) чтобы возвысить в степепь дробь, достаточно возвысить в эту степень отдельно числитель и знаменатель (Отдел 6 глава 1 § 154, в);

    8) чтобы возвысить радикал в степень, достаточно возвысить в эту степень подкоренное число (Отдел 8 глава 4 § 205, г);

    9) чтобы извлечь корень из степени, достаточно разделить показатель степени на показатель корня, если такое деление выполняется нацело (Отдел 6 глава 4 § 168,6).

    Теперь мы расширим понятие о показателях, введя показатели отрицательные и дробные, которые до сего времени мы не употребляли. Мы увидим при этом, что все свойства целых положительных показателей сохраняются и для показателей отрицательных и дробных.

    256. Отрицательные целые показатели. Мы видели (Отдел 2 глава 4 § 64), что при делении степеней одного и того же числа показатель делителя вычитается из показателя делимого в том случае, если показатель делителя не больше показателя делимого. Теперь мы условимся производить вычитание показателей и в том случае, когда показатель делителя больше показателя делимого; тогда мы получим в частном букву с отрицательным показателем; например: а 2: а 5 = а -3 . Таким образом, число с отрицательным показателем мы условимся употреблять для обозначения частного от деления степеней этого числа в том случае, когда показатель делителя превосходит показатель делимого на столько единиц, сколько их находится в абсолютной величине отрицательного показателя. Так, а -2 означает частное а: а 3 , или а 2: а 4 , или а 3: а 5 , вообще частное а m: а m+2 .

    Понимаемое в этом смысле число с отрицательным показателем равно дроби, у которой числитель есть 1, а знаменатель - то же число, но с положительным показателем, равным по абсолютной величине отрицательному показателю.

    Действительно, согласно нашему условию, мы должны иметь:

    Сократив две первые дроби на а m и третью дробь на x m (т. е. в обоих случаях сократив дроби на числитель), получим:

    Заметим, что отрицательные показатели дают возможность представить всякое дробное алгебраическое выражение под видом целого; для этого стоит только все множители знаменателя перенести множителями в числитель, взяв их с отрицательными показателями. Например:

    Само собою разумеется, что такое преобразование данного выражения в целое есть только изменение одного внешнего вида выражения, а не содержания его.

    257. Действия над степенями с отрицательными показателями. Убедимся теперь, что все действия над степенями с отрицательными показателями можно производить по тем же правилам, какие были прежде выведены для показателей положительных. Достаточно обнаружить это только для умножения и возвышения в степень, так как правила обратных действий - деления и извлечения корня - составляют простое следствие правил прямых действий - умножения и возвышения.

    Умножение. Предстоит показать, что при умножении степеней показатели одинаковых букв складываются и в том случае, когда эти показатели отрицательные. Например, убедимся, что:

    a -2 a -3 = a -2 +(-3) = a -5

    Действительно, заменив степени с отрицательными показателями дробями и произведя действие умножения по правилам, относящимся к дробям, получим:

    Подобно этому:

    x -4 x 3 = x -4 + 3 = x -1

    Возвышение в степень. Надо показать, что при возвышении в степень показатели этих степеней перемножаются и в том случае, когда они отрицательные. Например, убедимся, чтo

    (a -3 ) - 4 = a (-3) (- 4) = a 12

    Действительно:

    Подобно этому:

    (x 3 ) - 4 = a -12

    потому что

    Глава вторая.

    Дробные показатели.

    258. В каком смысле употребляются дробные показатели.

    Результат получился тот самый, какой мы получили после сложения показателей; значит, правило о сложении показателей (при умножении) можно применять и для дробных показателей.

    Таким образом:

    Возвышение в степень. Докажем, что при возвышении степени в степень показатели этих степеней можно перемножить и тогда, когда эти показатели дробные. Напр., убедимся, что

    Действительно, заменив радикалами степени с дробными показателями, получим:

    Если показатели не только дробные числа, но и отрицательные, то и тогда к ним можно применять правила, доказанные раньше для положительных показателей. Напр.:

    261. Примеры на действия с дробными и отрицательными показателями.

    Глава третья.

    Некоторые свойства степени с рациональным показателем.

    262. Допустим, что в степени а х основание а есть какое-нибудь положительное число, большее или меньшее 1, а показатель х любое рациональное число, положительное или отрицательное, целое или дробное. Кроме того предположим, что когда х есть какая-нибудь дробь, напр., 3 / 2 , т. е. когда степень а х представляет собою радикал √a 3 , то из возможных значений этого радикала мы берем только одно арифметическое, т. е. положительное.

    При этих условиях степень а х обладает следующими свойствами:

    а) При всяком значении рационального показателя х степень а х есть число положительное.

    Действительно, если х есть целое положительное число, напр. 3 , то ах представляет собой произведение ааа положительных чисел, и потому оно положительно.

    Если х есть положительная дробь, напр. 3 / 2 , то а х означает √a 3 , а мы условились из всех значений радикала брать только положительное.

    Если х есть отрицательное число, напр.- 3 / 4 , то

    и потому а х > 0, так как .

    Наконец, если x = 0 , то а х =а 0 = 1 , т. е. тоже есть число положительное.

    б) Если a >1, то при положительных значениях х степень а х больше 1, а при отрицательных - меньше 1. Если же а < 1, то, наоборот, а х < 1 при х >0 и а х >1 при х< 0.

    Действительно, если х есть целое положительное число,напр. 3 , то тогда а х = а 3 = ааа . Очевидно, что если а >1 , то ааа > 1 , а если а < 1 , то ааа < 1 .

    в) При возрастании показателя х степень а х возрастает, если а > 1, и убывает, если а < 1.

    Пусть х имеет какое-нибудь определенное значение, напр. х = 3 . Тогда степень а х будет равна а 3 . Увеличим теперь х на какое-нибудь число, напр., вместо 3 возьмем 3,01 . Тогда вместо а 3 будем иметь а 3,01 . Чтобы узнать, какое из этих двух чисел больше, возьмем разность а 3,01 - а 3 и посмотрим, при каких условиях эта разность будет положительное число и при каких отрицательное. Разность эту можно представить так:

    а 3,01 - а 3 = а 3 (а 0,01 - 1 )

    Согласно свойству (а ) число а 3 > 0 ; согласно свойству (б ) число а 0,01 > 1 при а >1
    и а 0,01 < 1 при а < 1. Следовательно, правая часть написанного равенства (значит, и его левая часть) при а > 1 положительна, а при а < 1 отрицательна. Поэтому в первом случае а 3,01 > а 3 , а во втором а 3,01 < а 3 .

    г) Если х стремится к , то при а >1 степень а х стремится также к , а при а < 1 она стремится к 0 .

    Согласно свойству (в ) при увеличении х степень а х увеличивается, если а >1 , и уменьшается, если а <1 . Теперь мы покажем, что, увеличиваясь при а >1 , число а х может сделаться больше всякого числа, как бы велико оно ни было, а уменьшаясь при «<1, оно может сделаться меньше всякого положительного числа, как бы мало оно ни было. Для этого примем во внимание, что показатель х , увеличиваясь неограниченно, проходит, между прочим, через ряд целых значений: 1, 2, 3, 4,... Тогда степень а х будет проходить через ряд таких значений:

    а 1 , а 2 , а 3 , а 4 ,...

    Ряд этот есть бесконечная Г. П. со знаменателем а . Если a >1 , то эта прогрессия возрастающая, а если a < 1 , то она убывающая. Как мы видели (Отдел 10 глава 3 § 251,6), в первом случае член прогрессии, удаляясь от начала ряда, может превзойти всякое число, как бы велико оно ни было: а во втором случае член прогрессии может сделаться меньше всякого положительного числа, как бы мало оно ни было. Значит, когда х стремится к , то степень а х тоже стремится к , когда а > 1 , и степень а х стремится к 0 , когда а <1 .

    Таким образом, мы можем написать:

    а = , если а >1 ; а = 0 , если а <1 .

    1) При всяком основании функция а х положительна (все кривые расположены выше оси х - ов).

    2) При а > 1 функция а х > 1 , если х > 0 , и а х < 1 , если х < 0 ; при a < 1 заключения обратны.

    3) При возрастании х до + функция а х возрастает до а х , если a >1 , и убывает до 0 , если a < 1 (но никогда, однако, нуля, не достигает).

    4) При убывании х до - функция а х убывает, стремясь к 0 , если a >1 , и возрастает д+ , если a < 1 .

    5) Если х = 0 , то а х = 1 при всяком а (все кривые проходят через одну и ту же точку, лежащую на оси y -ов на расстоянии от точки 0 на +1 ).

    6) При a >1 функция при возрастании х возрастает тем быстрее, чем больше а (кривая при а = 10 поднимается вверх значительно больше, чем при а = 2 ).

    Начальный уровень

    Степень и ее свойства. Исчерпывающий гид (2019)

    Зачем нужны степени? Где они тебе пригодятся? Почему тебе нужно тратить время на их изучение?

    Чтобы узнать все о степенях, о том для чего они нужны, как использовать свои знания в повседневной жизни читай эту статью.

    И, конечно же, знание степеней приблизит тебя к успешной сдаче ОГЭ или ЕГЭ и к поступлению в ВУЗ твоей мечты.

    Let"s go... (Поехали!)

    Важное замечание! Если вместо формул ты видишь абракадабру, почисти кэш. Для этого нужно нажать CTRL+F5 (на Windows) или Cmd+R (на Mac).

    НАЧАЛЬНЫЙ УРОВЕНЬ

    Возведение в степень - это такая же математическая операция, как сложение, вычитание, умножение или деление.

    Сейчас объясню все человеческим языком на очень простых примерах. Будь внимателен. Примеры элементарные, но объясняющий важные вещи.

    Начнем со сложения.

    Объяснять тут нечего. Ты и так все знаешь: нас восемь человек. У каждого по две бутылки колы. Сколько всего колы? Правильно - 16 бутылок.

    Теперь умножение.

    Тот же самый пример с колой можно записать по-другому: . Математики - люди хитрые и ленивые. Они сначала замечают какие-то закономерности, а потом придумывают способ как быстрее их «считать». В нашем случае они заметили, что у каждого из восьми человек одинаковое количество бутылок колы и придумали прием, который называется умножением. Согласись, считается легче и быстрее, чем.


    Итак, чтобы считать быстрее, легче и без ошибок, нужно всего лишь запомнить таблицу умножения . Ты, конечно, можешь делать все медленнее, труднее и с ошибками! Но…

    Вот таблица умножения. Повторяй.

    И другой, красивее:

    А какие еще хитрые приемы счета придумали ленивые математики? Правильно -возведение числа в степень .

    Возведение числа в степень

    Если тебе нужно умножить число само на себя пять раз, то математики говорят, что тебе нужно возвести это число в пятую степень. Например, . Математики помнят, что два в пятой степени - это. И решают такие задачки в уме - быстрее, легче и без ошибок.

    Для этого нужно всего лишь запомнить то, что выделено цветом в таблице степеней чисел . Поверь, это сильно облегчит тебе жизнь.

    Кстати, почему вторую степень называют квадратом числа, а третью - кубом ? Что это значит? Очень хороший вопрос. Сейчас будут тебе и квадраты, и кубы.

    Пример из жизни №1

    Начнем с квадрата или со второй степени числа.

    Представь себе квадратный бассейн размером метра на метра. Бассейн стоит у тебя на даче. Жара и очень хочется купаться. Но… бассейн без дна! Нужно застелить дно бассейна плиткой. Сколько тебе надо плитки? Для того чтобы это определить, тебе нужно узнать площадь дна бассейна.

    Ты можешь просто посчитать, тыкая пальцем, что дно бассейна состоит из кубиков метр на метр. Если у тебя плитка метр на метр, тебе нужно будет кусков. Это легко… Но где ты видел такую плитку? Плитка скорее будет см на см. И тогда «пальцем считать» замучаешься. Тогда придется умножать. Итак, по одной стороне дна бассейна у нас поместится плиток (штук) и по другой тоже плиток. Умножив на, ты получишь плиток ().

    Ты заметил, что для определения площади дна бассейна мы умножили одно и то же число само на себя? Что это значит? Раз умножается одно и то же число, мы можем воспользоваться приемом «возведение в степень». (Конечно, когда у тебя всего два числа, все равно перемножить их или возвести в степень. Но если у тебя их много, то возводить в степень значительно проще и ошибок при расчетах получается тоже меньше. Для ЕГЭ это очень важно).
    Итак, тридцать во второй степени будет (). Или же можно сказать, что тридцать в квадрате будет. Иными словами, вторую степень числа всегда можно представить в виде квадрата. И наоборот, если ты видишь квадрат - это ВСЕГДА вторая степень какого-то числа. Квадрат - это изображение второй степени числа.

    Пример из жизни №2

    Вот тебе задание, посчитать, сколько квадратов на шахматной доске с помощью квадрата числа... По одной стороне клеток и по другой тоже. Чтобы посчитать их количество, нужно восемь умножить на восемь или… если заметить, что шахматная доска - это квадрат со стороной, то можно возвести восемь в квадрат. Получится клетки. () Так?

    Пример из жизни №3

    Теперь куб или третья степень числа. Тот же самый бассейн. Но теперь тебе нужно узнать, сколько воды придется залить в этот бассейн. Тебе нужно посчитать объем. (Объемы и жидкости, кстати, измеряются в кубических метрах. Неожиданно, правда?) Нарисуй бассейн: дно размером на метра и глубиной метра и попробуй посчитать, сколько всего кубов размером метр на метр войдет в твой бассейн.

    Прямо показывай пальцем и считай! Раз, два, три, четыре…двадцать два, двадцать три… Сколько получилось? Не сбился? Трудно пальцем считать? Так-то! Бери пример с математиков. Они ленивы, поэтому заметили, что чтобы посчитать объем бассейна, надо перемножить друг на друга его длину, ширину и высоту. В нашем случае объем бассейна будет равен кубов… Легче правда?

    А теперь представь, насколько математики ленивы и хитры, если они и это упростили. Свели все к одному действию. Они заметили, что длина, ширина и высота равна и что одно и то же число перемножается само на себя… А что это значит? Это значит, что можно воспользоваться степенью. Итак, то, что ты раз считал пальцем, они делают в одно действие: три в кубе равно. Записывается это так: .

    Остается только запомнить таблицу степеней . Если ты, конечно, такой же ленивый и хитрый как математики. Если любишь много работать и делать ошибки - можешь продолжать считать пальцем.

    Ну и чтобы окончательно убедить тебя, что степени придумали лодыри и хитрюги для решения своих жизненных проблем, а не для того чтобы создать тебе проблемы, вот тебе еще пара примеров из жизни.

    Пример из жизни №4

    У тебя есть миллиона рублей. В начале каждого года ты зарабатываешь на каждом миллионе еще один миллион. То есть каждый твой миллион в начале каждого года удваивается. Сколько денег у тебя будет через лет? Если ты сейчас сидишь и «считаешь пальцем», значит ты очень трудолюбивый человек и.. глупый. Но скорее всего ты дашь ответ через пару секунд, потому что ты - умный! Итак, в первый год - два умножить на два… во второй год - то, что получилось, еще на два, в третий год… Стоп! Ты заметил, что число перемножается само на себя раз. Значит, два в пятой степени - миллиона! А теперь представь, что у вас соревнование и эти миллиона получит тот, кто быстрее посчитает… Стоит запомнить степени чисел, как считаешь?

    Пример из жизни №5

    У тебя есть миллиона. В начале каждого года ты зарабатываешь на каждом миллионе еще два. Здорово правда? Каждый миллион утраивается. Сколько денег у тебя будет через года? Давай считать. Первый год - умножить на, потом результат еще на … Уже скучно, потому что ты уже все понял: три умножается само на себя раза. Значит в четвертой степени равно миллион. Надо просто помнить, что три в четвертой степени это или.

    Теперь ты знаешь, что с помощью возведения числа в степень ты здорово облегчишь себе жизнь. Давай дальше посмотрим на то, что можно делать со степенями и что тебе нужно знать о них.

    Термины и понятия... чтобы не запутаться

    Итак, для начала давай определим понятия. Как думаешь, что такое показатель степени ? Это очень просто - это то число, которое находится «вверху» степени числа. Не научно, зато понятно и легко запомнить…

    Ну и заодно, что такое основание степени ? Еще проще - это то число, которое находится внизу, в основании.

    Вот тебе рисунок для верности.

    Ну и в общем виде, чтобы обобщить и лучше запомнить… Степень с основанием « » и показателем « » читается как « в степени » и записывается следующим образом:

    Степень числа с натуральным показателем

    Ты уже наверное, догадался: потому что показатель степени - это натуральное число. Да, но что такое натуральное число ? Элементарно! Натуральные это те числа, которые используются в счете при перечислении предметов: один, два, три… Мы же когда считаем предметы не говорим: «минус пять», «минус шесть», «минус семь». Мы так же не говорим: «одна третья», или «ноль целых, пять десятых». Это не натуральные числа. А какие это числа как ты думаешь?

    Числа типа «минус пять», «минус шесть», «минус семь» относятся к целым числам. Вообще, к целым числам относятся все натуральные числа, числа противоположные натуральным (то есть взятые со знаком минус), и число. Ноль понять легко - это когда ничего нет. А что означают отрицательные («минусовые») числа? А вот их придумали в первую очередь для обозначения долгов: если у тебя баланс на телефоне рублей, это значит, что ты должен оператору рублей.

    Всякие дроби - это рациональные числа. Как они возникли, как думаешь? Очень просто. Несколько тысяч лет назад наши предки обнаружили, что им не хватает натуральных чисел для измерения длинны, веса, площади и т.п. И они придумали рациональные числа … Интересно, правда ведь?

    Есть еще иррациональные числа. Что это за числа? Если коротко, то бесконечная десятичная дробь. Например, если длину окружности разделить на ее диаметр, то в получится иррациональное число.

    Резюме:

    Определим понятие степени, показатель которой — натуральное число (т.е. целое и положительное).

    1. Любое число в первой степени равно самому себе:
    2. Возвести число в квадрат — значит умножить его само на себя:
    3. Возвести число в куб — значит умножить его само на себя три раза:

    Определение. Возвести число в натуральную степень — значит умножить число само на себя раз:
    .

    Свойства степеней

    Откуда эти свойства взялись? Сейчас покажу.

    Посмотрим: что такое и ?

    По определению:

    Сколько здесь множителей всего?

    Очень просто: к множителям мы дописали множителей, итого получилось множителей.

    Но по определению это степень числа с показателем, то есть: , что и требовалось доказать.

    Пример : Упростите выражение.

    Решение:

    Пример: Упростите выражение.

    Решение: Важно заметить, что в нашем правиле обязательно должны быть одинаковые основания!
    Поэтому степени с основанием мы объединяем, а остается отдельным множителем:

    только для произведения степеней!

    Ни в коем случае нельзя написать, что.

    2. то и есть -ая степень числа

    Так же, как и с предыдущим свойством, обратимся к определению степени:

    Получается, что выражение умножается само на себя раз, то есть, согласно определению, это и есть -ая степень числа:

    По сути это можно назвать «вынесением показателя за скобки». Но никогда нельзя этого делать в сумме:

    Вспомним формулы сокращенного умножения: сколько раз нам хотелось написать?

    Но это неверно, ведь.

    Степень с отрицательным основанием

    До этого момента мы обсуждали только то, каким должен быть показатель степени.

    Но каким должно быть основание?

    В степенях с натуральным показателем основание может быть любым числом . И правда, мы ведь можем умножать друг на друга любые числа, будь они положительные, отрицательные, или даже.

    Давайте подумаем, какие знаки (« » или « ») будут иметь степени положительных и отрицательных чисел?

    Например, положительным или отрицательным будет число? А? ? С первым все понятно: сколько бы положительных чисел мы друг на друга не умножали, результат будет положительным.

    Но с отрицательными немного интереснее. Мы ведь помним простое правило из 6 класса: «минус на минус дает плюс». То есть, или. Но если мы умножим на, получится.

    Определи самостоятельно, какой знак будут иметь следующие выражения:

    1) 2) 3)
    4) 5) 6)

    Справился?

    Вот ответы: В первых четырех примерах, надеюсь, все понятно? Просто смотрим на основание и показатель степени, и применяем соответствующее правило.

    1) ; 2) ; 3) ; 4) ; 5) ; 6) .

    В примере 5) все тоже не так страшно, как кажется: ведь неважно, чему равно основание - степень четная, а значит, результат всегда будет положительным.

    Ну, за исключением случая, когда основание равно нулю. Основание ведь не равно? Очевидно нет, так как (потому что).

    Пример 6) уже не так прост!

    6 примеров для тренировки

    Разбор решения 6 примеров

    Если не обращать внимание на восьмую степень, что мы здесь видим? Вспоминаем программу 7 класса. Итак, вспомнили? Это формула сокращенного умножения, а именно - разность квадратов! Получаем:

    Внимательно смотрим на знаменатель. Он очень похож на один из множителей числителя, но что не так? Не тот порядок слагаемых. Если бы их поменять местами, можно было бы применить правило.

    Но как это сделать? Оказывается, очень легко: здесь нам помогает четная степень знаменателя.

    Магическим образом слагаемые поменялись местами. Это «явление» применимо для любого выражения в четной степени: мы можем беспрепятственно менять знаки в скобках.

    Но важно запомнить: меняются все знаки одновременно !

    Вернемся к примеру:

    И снова формула:

    Целыми мы называем натуральные числа, противоположные им (то есть взятые со знаком « ») и число.

    целое положительное число , а оно ничем не отличается от натурального, то все выглядит в точности как в предыдущем разделе.

    А теперь давайте рассмотрим новые случаи. Начнем с показателя, равного.

    Любое число в нулевой степени равно единице :

    Как всегда, зададимся вопросом: почему это так?

    Рассмотрим какую-нибудь степень с основанием. Возьмем, например, и домножим на:

    Итак, мы умножили число на, и получили то же, что и было - . А на какое число надо умножить, чтобы ничего не изменилось? Правильно, на. Значит.

    Можем проделать то же самое уже с произвольным числом:

    Повторим правило:

    Любое число в нулевой степени равно единице.

    Но из многих правил есть исключения. И здесь оно тоже есть - это число (в качестве основания).

    С одной стороны, в любой степени должен равняться - сколько ноль сам на себя ни умножай, все-равно получишь ноль, это ясно. Но с другой стороны, как и любое число в нулевой степени, должен равняться. Так что из этого правда? Математики решили не связываться и отказались возводить ноль в нулевую степень. То есть теперь нам нельзя не только делить на ноль, но и возводить его в нулевую степень.

    Поехали дальше. Кроме натуральных чисел и числа к целым относятся отрицательные числа. Чтобы понять, что такое отрицательная степень, поступим как в прошлый раз: домножим какое-нибудь нормальное число на такое же в отрицательной степени:

    Отсюда уже несложно выразить искомое:

    Теперь распространим полученное правило на произвольную степень:

    Итак, сформулируем правило:

    Число в отрицательной степени обратно такому же числу в положительной степени. Но при этом основание не может быть нулевым: (т.к. на делить нельзя).

    Подведем итоги:

    I. Выражение не определено в случае. Если, то.

    II. Любое число в нулевой степени равно единице: .

    III. Число, не равное нулю, в отрицательной степени обратно такому же числу в положительной степени: .

    Задачи для самостоятельного решения:

    Ну и, как обычно, примеры для самостоятельного решения:

    Разбор задач для самостоятельного решения:

    Знаю-знаю, числа страшные, но на ЕГЭ надо быть готовым ко всему! Реши эти примеры или разбери их решение, если не смог решить и ты научишься легко справляться с ними на экзамене!

    Продолжим расширять круг чисел, «пригодных» в качестве показателя степени.

    Теперь рассмотрим рациональные числа. Какие числа называются рациональными?

    Ответ: все, которые можно представить в виде дроби, где и - целые числа, причем.

    Чтобы понять, что такое «дробная степень» , рассмотрим дробь:

    Возведем обе части уравнения в степень:

    Теперь вспомним правило про «степень в степени» :

    Какое число надо возвести в степень, чтобы получить?

    Эта формулировка - определение корня -ой степени.

    Напомню: корнем -ой степени числа () называется число, которое при возведении в степень равно.

    То есть, корень -ой степени - это операция, обратная возведению в степень: .

    Получается, что. Очевидно, этот частный случай можно расширить: .

    Теперь добавляем числитель: что такое? Ответ легко получить с помощью правила «степень в степени»:

    Но может ли основание быть любым числом? Ведь корень можно извлекать не из всех чисел.

    Никакое!

    Вспоминаем правило: любое число, возведенное в четную степень - число положительное. То есть, извлекать корни четной степени из отрицательных чисел нельзя!

    А это значит, что нельзя такие числа возводить в дробную степень с четным знаменателем, то есть выражение не имеет смысла.

    А что насчет выражения?

    Но тут возникает проблема.

    Число можно представить в виде дргих, сократимых дробей, например, или.

    И получается, что существует, но не существует, а ведь это просто две разные записи одного и того же числа.

    Или другой пример: раз, то можно записать. Но стоит нам по-другому записать показатель, и снова получим неприятность: (то есть, получили совсем другой результат!).

    Чтобы избежать подобных парадоксов, рассматриваем только положительное основание степени с дробным показателем .

    Итак, если:

    • — натуральное число;
    • — целое число;

    Примеры:

    Степени с рациональным показателем очень полезны для преобразования выражений с корнями, например:

    5 примеров для тренировки

    Разбор 5 примеров для тренировки

    Ну а теперь - самое сложное. Сейчас мы разберем степень с иррациональным показателем .

    Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением

    Ведь по определению иррациональные числа - это числа, которые невозможно представить в виде дроби, где и - целые числа (то есть, иррациональные числа - это все действительные числа кроме рациональных).

    При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах.

    Например, степень с натуральным показателем - это число, несколько раз умноженное само на себя;

    ...число в нулевой степени - это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось - поэтому результатом является только некая «заготовка числа», а именно число;

    ...степень с целым отрицательным показателем - это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

    Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель - это даже не действительное число.

    Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

    КУДА МЫ УВЕРЕНЫ ТЫ ПОСТУПИШЬ! (если научишься решать такие примеры:))

    Например:

    Реши самостоятельно:

    Разбор решений:

    1. Начнем с уже обычного для нас правила возведения степени в степень:

    Теперь посмотри на показатель. Ничего он тебе не напоминает? Вспоминаем формулу сокращенного умножения разность квадратов:

    В данном случае,

    Получается, что:

    Ответ: .

    2. Приводим дроби в показателях степеней к одинаковому виду: либо обе десятичные, либо обе обычные. Получим, например:

    Ответ: 16

    3. Ничего особенного, применяем обычные свойства степеней:

    ПРОДВИНУТЫЙ УРОВЕНЬ

    Определение степени

    Степенью называется выражение вида: , где:

    • основание степени;
    • — показатель степени.

    Степень с натуральным показателем {n = 1, 2, 3,...}

    Возвести число в натуральную степень n — значит умножить число само на себя раз:

    Степень с целым показателем {0, ±1, ±2,...}

    Если показателем степени является целое положительное число:

    Возведение в нулевую степень :

    Выражение неопределенное, т.к., с одной стороны, в любой степени - это, а с другой - любое число в -ой степени - это.

    Если показателем степени является целое отрицательное число:

    (т.к. на делить нельзя).

    Еще раз о нулях: выражение не определено в случае. Если, то.

    Примеры:

    Степень с рациональным показателем

    • — натуральное число;
    • — целое число;

    Примеры:

    Свойства степеней

    Чтобы проще было решать задачи, попробуем понять: откуда эти свойства взялись? Докажем их.

    Посмотрим: что такое и?

    По определению:

    Итак, в правой части этого выражения получается такое произведение:

    Но по определению это степень числа с показателем, то есть:

    Что и требовалось доказать.

    Пример : Упростите выражение.

    Решение : .

    Пример : Упростите выражение.

    Решение : Важно заметить, что в нашем правиле обязательно должны быть одинаковые основания. Поэтому степени с основанием мы объединяем, а остается отдельным множителем:

    Еще одно важное замечание: это правило - только для произведения степеней !

    Ни в коем случае нелья написать, что.

    Так же, как и с предыдущим свойством, обратимся к определению степени:

    Перегруппируем это произведение так:

    Получается, что выражение умножается само на себя раз, то есть, согласно определению, это и есть -я степень числа:

    По сути это можно назвать «вынесением показателя за скобки». Но никогда нельзя этого делать в сумме: !

    Вспомним формулы сокращенного умножения: сколько раз нам хотелось написать? Но это неверно, ведь.

    Степень с отрицательным основанием.

    До этого момента мы обсуждали только то, каким должен быть показатель степени. Но каким должно быть основание? В степенях с натуральным показателем основание может быть любым числом .

    И правда, мы ведь можем умножать друг на друга любые числа, будь они положительные, отрицательные, или даже. Давайте подумаем, какие знаки (« » или « ») будут иметь степени положительных и отрицательных чисел?

    Например, положительным или отрицательным будет число? А? ?

    С первым все понятно: сколько бы положительных чисел мы друг на друга не умножали, результат будет положительным.

    Но с отрицательными немного интереснее. Мы ведь помним простое правило из 6 класса: «минус на минус дает плюс». То есть, или. Но если мы умножим на (), получится - .

    И так до бесконечности: при каждом следующем умножении знак будет меняться. Можно сформулировать такие простые правила:

    1. четную степень, - число положительное .
    2. Отрицательное число, возведенное в нечетную степень, - число отрицательное .
    3. Положительное число в любой степени - число положительное.
    4. Ноль в любой степени равен нулю.

    Определи самостоятельно, какой знак будут иметь следующие выражения:

    1. 2. 3.
    4. 5. 6.

    Справился? Вот ответы:

    1) ; 2) ; 3) ; 4) ; 5) ; 6) .

    В первых четырех примерах, надеюсь, все понятно? Просто смотрим на основание и показатель степени, и применяем соответствующее правило.

    В примере 5) все тоже не так страшно, как кажется: ведь неважно, чему равно основание - степень четная, а значит, результат всегда будет положительным. Ну, за исключением случая, когда основание равно нулю. Основание ведь не равно? Очевидно нет, так как (потому что).

    Пример 6) уже не так прост. Тут нужно узнать, что меньше: или? Если вспомнить, что, становится ясно, что, а значит, основание меньше нуля. То есть, применяем правило 2: результат будет отрицательным.

    И снова используем определение степени:

    Все как обычно - записываем определение степеней и, делим их друг на друга, разбиваем на пары и получаем:

    Прежде чем разобрать последнее правило, решим несколько примеров.

    Вычисли значения выражений:

    Решения :

    Если не обращать внимание на восьмую степень, что мы здесь видим? Вспоминаем программу 7 класса. Итак, вспомнили? Это формула сокращенного умножения, а именно - разность квадратов!

    Получаем:

    Внимательно смотрим на знаменатель. Он очень похож на один из множителей числителя, но что не так? Не тот порядок слагаемых. Если бы их поменять местами, можно было бы применить правило 3. Но как это сделать? Оказывается, очень легко: здесь нам помогает четная степень знаменателя.

    Если домножить его на, ничего не поменяется, верно? Но теперь получается следующее:

    Магическим образом слагаемые поменялись местами. Это «явление» применимо для любого выражения в четной степени: мы можем беспрепятственно менять знаки в скобках. Но важно запомнить: меняются все знаки одновременно! Нельзя заменить на, изменив только один неугодный нам минус!

    Вернемся к примеру:

    И снова формула:

    Итак, теперь последнее правило:

    Как будем доказывать? Конечно, как обычно: раскроем понятие степени и упростим:

    Ну а теперь раскроем скобки. Сколько всего получится букв? раз по множителей - что это напоминает? Это не что иное, как определение операции умножения : всего там оказалось множителей. То есть, это, по определению, степень числа с показателем:

    Пример:

    Степень с иррациональным показателем

    В дополнение к информации о степенях для среднего уровня, разберем степень с иррациональным показателем. Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением - ведь по определению иррациональные числа - это числа, которые невозможно представить в виде дроби, где и - целые числа (то есть, иррациональные числа - это все действительные числа, кроме рациональных).

    При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах. Например, степень с натуральным показателем - это число, несколько раз умноженное само на себя; число в нулевой степени - это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось - поэтому результатом является только некая «заготовка числа», а именно число; степень с целым отрицательным показателем - это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

    Вообразить степень с иррациональным показателем крайне сложно (так же, как сложно представить 4-мерное пространство). Это, скорее, чисто математический объект, который математики создали, чтобы расширить понятие степени на все пространство чисел.

    Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель - это даже не действительное число. Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

    Итак, что мы делаем, если видим иррациональный показатель степени? Всеми силами пытаемся от него избавиться!:)

    Например:

    Реши самостоятельно:

    1) 2) 3)

    Ответы:

    1. Вспоминаем формулу разность квадратов. Ответ: .
    2. Приводим дроби к одинаковому виду: либо обе десятичные, либо обе обычные. Получим, например: .
    3. Ничего особенного, применяем обычные свойства степеней:

    КРАТКОЕ ИЗЛОЖЕНИЕ РАЗДЕЛА И ОСНОВНЫЕ ФОРМУЛЫ

    Степенью называется выражение вида: , где:

    Степень с целым показателем

    степень, показатель которой — натуральное число (т.е. целое и положительное).

    Степень с рациональным показателем

    степень, показатель которой — отрицательные и дробные числа.

    Степень с иррациональным показателем

    степень, показатель которой — бесконечная десятичная дробь или корень.

    Свойства степеней

    Особенности степеней.

    • Отрицательное число, возведенное в четную степень, - число положительное .
    • Отрицательное число, возведенное в нечетную степень, - число отрицательное .
    • Положительное число в любой степени - число положительное.
    • Ноль в любой степени равен.
    • Любое число в нулевой степени равно.

    ТЕПЕРЬ ТЕБЕ СЛОВО...

    Как тебе статья? Напиши внизу в комментариях понравилась или нет.

    Расскажи о своем опыте использования свойств степеней.

    Возможно у тебя есть вопросы. Или предложения.

    Напиши в комментариях.

    И удачи на экзаменах!

    1)Степени с натуральным показателем:

    В стране чисел возникли проблемы. Астрономы собрались посчитать размеры видимой части Вселенной. Они утверждали, что для этого необходимо умножить 25 раз число 10 само на себя. Поскольку для этого требовалось очень много места, они требовали снести Дворец алгоритма Евкида, выставку чисел-близнецов и многие другие объекты. Хотя всем хотелось узнать, какая же наша Вселенная, но никому не хотелось жертвовать столь прекласными и ценными сооружениями. Была создана комиссия, которая занялась поисками требуемой свободной площади, но вскоре зашла в тупик.

    Неожиданно положение Таблица умножения. Она рассказла свою историю: - Меня придумали для того, чтобы не складывать большое количество одинаковых слагаемых. Ведь теперь никто не пишет 3 + 3 + 3 + 3 + 3 + 3 + 3, теперь записывают 3 х 7. Это очень экономит место. Давайте придумаем что-нибудь похожее для умножения.

    И сразу придумали. Число множителей стали записываь маленькой цифрой сзади числа:

    Все выражение стали на зывать степенью, количество множителей (маленькую цифру сверху) – показателем степени, а сам множитель – основание степени.

    Не прошло и получаса, как торжественно ввели новое действие – возведение в степень, как по стране чисел стали бегать 5 6 , 17 4 и многие другие. Но только бегать неинтересно, хочется выполнять сложение, умножение, вычитание, то есть вести себя как все порядочные числа. и ту возникли следующие проблемы. После введения действий надо установить правила действий , так, чтобы никому не мешать и никакие законы не нарушать.

    Сначала попробовали выполнять сложение, открыли свод законов и ничего не нашли. О вычитании даже думать не стали, а умножение пошло очень легко, ведь всякая степень получается из множителей, значит, если взять одинаковые основания степени, то

    Сразу записали в свод законов новое правило:

    При умножении степеней с одинаковым основание основание остается неизменным, а показатели складывают



    С делением возникли проблемы. Всем казалось, что если деление действие обратное уиножению, то приделении надо показатели вычитать, но если , а если .Тогда постановили (под влиянием консервативного меньшинства), что

    , если m>n, и , если n>m.

    Провести проверку нового правил предложили 6 5 и 6 3: , а

    При делении степеней с одинаковыми основаниями показатели вычитаются . а полностью правило сформулировать трудно.

    Разобралися также со степенями с разными основаниями и одинаковыми показателями. На помощь пришли переместительный и сочетательный законы: , потому, что ;

    Чтобы умножить степени с одинаковыми показателями надо перемножить основания, а показатель оставить без изменения.

    Чтобы разделить степени содинаковыми основаниями надо разделит основания, а показатель оставить без изменения.

    Оказалось, что можно даже возводить степени в степень.

    Наступил всеобщий праздник. Особенно понравилось сокращать дроби, раскладывая их на множители:

    Подарок преподнес распределительный закон. Он предложил как складывать одинаковые степени , например, , ,т.е. можно складывать коэффициенты .

    А если степени с одинаковыми основаниями, но с разными коэффициентами, то можно общий множитель вынести за скобку:

    2)степени с отрицательным показателем:

    Все уже привыкли к действиям со степенями с натуральными показателями (их так называют, потомучто показатели – натуральные числа).

    И нашлись недовольные, те кто не принял участие в создании новых чисел.Революционно настроенные представители отрицательных чисел выступили с заявлением, что их притесняют, не дают развиваться науке,

    Всем известно, что при вычитании может получаться 0, а также отрицательные числа, - говорили они и организовали движение в поддержку степеней с отрицательным показателе.

    Как же может быть отрицательное количество сомножителей?- удивились натуральные числа.

    Надо определить , это как раз подходит под ваше правило: .

    А степени с отрицательным показателем определить, как (Z - - отрицательнын целые числа).

    Например,

    Тогда формула для деления степеней станет просто

    Хорошо, - сказали хранители Свода законов, - тогда докажите, что все правила действий со степенями сохранятся и при введении степеней с отрицательным показателями.

    Больше того, отрицательные числа предложили план доказательства всех теорем, о действиях со степенями.

    1.В выражении по определению заменить степень с отрицательным показателем на степень с натуральным показателем.

    2.Выполнить действия по правилам действий со степенями с натуральными показателями

    3.По определению перейти от степеней с натуральными показателя к степеням с отрицательными показателями.

    А также привели поясняющие примеры: , записывать можно короче:

    Итак, оказалось, что все правила действий сохранились для степеней с отрицательными показателями.

    3)степени с дробным показателем:

    при извлечении корня из степени делят показатель степени на показатель корня, если такое деление выполнется нацело; например: √a 4 = a 2 , 3 √x 9 = x 3 и т. п. Условимся теперь распространить это правило и на те случаи, когда показатель степени не делится нацело на показатель корня. Например, мы условимся принимать, что

    Вообще мы условимся, что выражение означает корень, показатель которого есть знаменатель, а показатель подкоренного числа - числитель дробного показателя (т. е. n a m ).

    Условимся еще допускать и отрицательные дробные показатели в том же смысле, в каком мы допустили отрицательные целые показатели; например, условимся, что

    Замечание. Дробные показатели были введены в алгебру главным образом голландским инженером Симоном Стевином в начале XVII столетия Позднее, в конце XVII столетия, Оксфордский профессор Джон Валлис ввел в употребление отрицательные показатели.

    259. Основное свойство дробного показателя. Величина степени с дробным показателем не изменится, если мы умножим или разделим на одно и то же число (отличное от нуля) числитель и знаменатель дробного показателя. Так:

    Действительно, знаменатель дробного показателя означает показатель корня, а числитель его означает показатель подкоренного выражения, а такие показатели, как мы видели можно умножать и делить на одно и то же число.

    Основываясь на этом свойстве, мы можем преобразовывать дробный показатель совершенно так же, как и обыкновенную дробь : например, мы можем сокращать дробный показатель, или приводить несколько дробных показателей к одному знаменателю.

    Степень используется для упрощения записи операции умножения числа само на себя. Например, вместо записи можно написать 4 5 {\displaystyle 4^{5}} (объяснение такому переходу дано в первом разделе этой статьи). Степени позволяют упростить написание длинных или сложных выражений или уравнений; также степени легко складываются и вычитаются, что приводит к упрощению выражения или уравнения (например, 4 2 ∗ 4 3 = 4 5 {\displaystyle 4^{2}*4^{3}=4^{5}} ).


    Примечание: если вам необходимо решить показательное уравнение (в таком уравнении неизвестное находится в показателе степени), прочитайте .

    Шаги

    Решение простейших задач со степенями

      Умножьте основание степени само на себя числом раз, равным показателю степени. Если вам нужно решить задачу со степенями вручную, перепишите степень в виде операции умножения, где основание степени умножается само на себя. Например, дана степень 3 4 {\displaystyle 3^{4}} . В этом случае основание степени 3 нужно умножить само на себя 4 раза: 3 ∗ 3 ∗ 3 ∗ 3 {\displaystyle 3*3*3*3} . Вот другие примеры:

      Для начала перемножьте первые два числа. Например, 4 5 {\displaystyle 4^{5}} = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4*4*4*4*4} . Не волнуйтесь - процесс вычисления не такой сложный, каким кажется на первый взгляд. Сначала перемножьте первые две четверки, а затем замените их полученным результатом. Вот так:

      • 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4^{5}=4*4*4*4*4}
        • 4 ∗ 4 = 16 {\displaystyle 4*4=16}
    1. Умножьте полученный результат (в нашем примере 16) на следующее число. Каждый последующий результат будет пропорционально увеличиваться. В нашем примере умножьте 16 на 4. Вот так:

      • 4 5 = 16 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4^{5}=16*4*4*4}
        • 16 ∗ 4 = 64 {\displaystyle 16*4=64}
      • 4 5 = 64 ∗ 4 ∗ 4 {\displaystyle 4^{5}=64*4*4}
        • 64 ∗ 4 = 256 {\displaystyle 64*4=256}
      • 4 5 = 256 ∗ 4 {\displaystyle 4^{5}=256*4}
        • 256 ∗ 4 = 1024 {\displaystyle 256*4=1024}
      • Продолжайте умножать результат перемножения первых двух чисел на следующее число до тех пор, пока не получите окончательный ответ. Для этого перемножайте первые два числа, а затем полученный результат умножайте на следующее число в последовательности. Этот метод справедлив для любой степени. В нашем примере вы должны получить: 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 = 1024 {\displaystyle 4^{5}=4*4*4*4*4=1024} .
    2. Решите следующие задачи. Ответ проверьте при помощи калькулятора.

      • 8 2 {\displaystyle 8^{2}}
      • 3 4 {\displaystyle 3^{4}}
      • 10 7 {\displaystyle 10^{7}}
    3. На калькуляторе найдите клавишу, обозначенную как «exp», или « x n {\displaystyle x^{n}} », или «^». При помощи этой клавиши вы будете возводить число в степень. Вычислить степень с большим показателем вручную практически невозможно (например, степень 9 15 {\displaystyle 9^{15}} ), но калькулятор с легкостью справится с этой задачей. В Windows 7 стандартный калькулятор можно переключить в инженерный режим; для этого нажмите «Вид» –> «Инженерный». Для переключения в обычный режим нажмите «Вид» –> «Обычный».

      • Проверьте полученный ответ при помощи поисковой системы (Google или Яндекс) . Воспользовавшись клавишей «^» на клавиатуре компьютера, введите выражение в поисковик, который моментально отобразит правильный ответ (и, возможно, предложит аналогичные выражения для изучения).

      Сложение, вычитание, перемножение степеней

      1. Складывать и вычитать степени можно только в том случае, если у них одинаковые основания. Если нужно сложить степени с одинаковыми основаниями и показателями, то вы можете заменить операцию сложения операцией умножения. Например, дано выражение 4 5 + 4 5 {\displaystyle 4^{5}+4^{5}} . Помните, что степень 4 5 {\displaystyle 4^{5}} можно представить в виде 1 ∗ 4 5 {\displaystyle 1*4^{5}} ; таким образом, 4 5 + 4 5 = 1 ∗ 4 5 + 1 ∗ 4 5 = 2 ∗ 4 5 {\displaystyle 4^{5}+4^{5}=1*4^{5}+1*4^{5}=2*4^{5}} (где 1 +1 =2). То есть посчитайте число подобных степеней, а затем перемножьте такую степень и это число. В нашем примере возведите 4 в пятую степень, а затем полученный результат умножьте на 2. Помните, что операцию сложения можно заменить операцией умножения, например, 3 + 3 = 2 ∗ 3 {\displaystyle 3+3=2*3} . Вот другие примеры:

        • 3 2 + 3 2 = 2 ∗ 3 2 {\displaystyle 3^{2}+3^{2}=2*3^{2}}
        • 4 5 + 4 5 + 4 5 = 3 ∗ 4 5 {\displaystyle 4^{5}+4^{5}+4^{5}=3*4^{5}}
        • 4 5 − 4 5 + 2 = 2 {\displaystyle 4^{5}-4^{5}+2=2}
        • 4 x 2 − 2 x 2 = 2 x 2 {\displaystyle 4x^{2}-2x^{2}=2x^{2}}
      2. При перемножении степеней с одинаковым основанием их показатели складываются (основание не меняется). Например, дано выражение x 2 ∗ x 5 {\displaystyle x^{2}*x^{5}} . В этом случае нужно просто сложить показатели, оставив основание без изменений. Таким образом, x 2 ∗ x 5 = x 7 {\displaystyle x^{2}*x^{5}=x^{7}} . Вот наглядное объяснение этого правила:

        При возведении степени в степень показатели перемножаются. Например, дана степень . Так как показатели степени перемножаются, то (x 2) 5 = x 2 ∗ 5 = x 10 {\displaystyle (x^{2})^{5}=x^{2*5}=x^{10}} . Смысл этого правила в том, что вы умножаете степень (x 2) {\displaystyle (x^{2})} саму на себя пять раз. Вот так:

        • (x 2) 5 {\displaystyle (x^{2})^{5}}
        • (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 {\displaystyle (x^{2})^{5}=x^{2}*x^{2}*x^{2}*x^{2}*x^{2}}
        • Так как основание одно и то же, показатели степени просто складываются: (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 = x 10 {\displaystyle (x^{2})^{5}=x^{2}*x^{2}*x^{2}*x^{2}*x^{2}=x^{10}}
      3. Степень с отрицательным показателем следует преобразовать в дробь (в обратную степень). Не беда, если вы не знаете, что такое обратная степень. Если вам дана степень с отрицательным показателем, например, 3 − 2 {\displaystyle 3^{-2}} , запишите эту степень в знаменатель дроби (в числителе поставьте 1), а показатель сделайте положительным. В нашем примере: 1 3 2 {\displaystyle {\frac {1}{3^{2}}}} . Вот другие примеры:

        При делении степеней с одинаковым основанием их показатели вычитаются (основание при этом не меняется). Операция деления противоположна операции умножения. Например, дано выражение 4 4 4 2 {\displaystyle {\frac {4^{4}}{4^{2}}}} . Вычтите показатель степени, стоящей в знаменателе, из показателя степени, стоящей в числителе (основание не меняйте). Таким образом, 4 4 4 2 = 4 4 − 2 = 4 2 {\displaystyle {\frac {4^{4}}{4^{2}}}=4^{4-2}=4^{2}} = 16 .

        • Степень, стоящую в знаменателе, можно записать в таком виде: 1 4 2 {\displaystyle {\frac {1}{4^{2}}}} = 4 − 2 {\displaystyle 4^{-2}} . Помните, что дробь - это число (степень, выражение) с отрицательным показателем степени.
      4. Ниже приведены некоторые выражения, которые помогут вам научиться решать задачи со степенями. Приведенные выражения охватывают материал, изложенный в этом разделе. Для того, чтобы увидеть ответ, просто выделите пустое пространство после знака равенства.

      Решение задач с дробными показателями степени

        Степень с дробным показателем (например, ) преобразуется в операцию извлечения корня. В нашем примере: x 1 2 {\displaystyle x^{\frac {1}{2}}} = x {\displaystyle {\sqrt {x}}} . Здесь неважно, какое число стоит в знаменателе дробного показателя степени. Например, x 1 4 {\displaystyle x^{\frac {1}{4}}} - это корень четвертой степени из «х», то есть x 4 {\displaystyle {\sqrt[{4}]{x}}} .

      1. Если показатель степени представляет собой неправильную дробь, то такую степень можно разложить на две степени, чтобы упростить решение задачи. В этом нет ничего сложного - просто вспомните правило перемножения степеней. Например, дана степень . Превратите такую степень в корень, степень которого будет равна знаменателю дробного показателя, а затем возведите этот корень в степень, равную числителю дробного показателя. Чтобы сделать это, вспомните, что 5 3 {\displaystyle {\frac {5}{3}}} = (1 3) ∗ 5 {\displaystyle ({\frac {1}{3}})*5} . В нашем примере:

        • x 5 3 {\displaystyle x^{\frac {5}{3}}}
        • x 1 3 = x 3 {\displaystyle x^{\frac {1}{3}}={\sqrt[{3}]{x}}}
        • x 5 3 = x 5 ∗ x 1 3 {\displaystyle x^{\frac {5}{3}}=x^{5}*x^{\frac {1}{3}}} = (x 3) 5 {\displaystyle ({\sqrt[{3}]{x}})^{5}}
      2. На некоторых калькуляторах есть кнопка для вычисления степеней (сначала нужно ввести основание, затем нажать кнопку, а затем ввести показатель). Она обозначается как ^ или x^y.
      3. Помните, что любое число в первой степени равно самому себе, например, 4 1 = 4. {\displaystyle 4^{1}=4.} Более того, любое число, умноженное или разделенное на единицу, равно самому себе, например, 5 ∗ 1 = 5 {\displaystyle 5*1=5} и 5 / 1 = 5 {\displaystyle 5/1=5} .
      4. Знайте, что степени 0 0 не существует (такая степень не имеет решения). При попытке решить такую степень на калькуляторе или на компьютере вы получите ошибку. Но помните, что любое число в нулевой степени равно 1, например, 4 0 = 1. {\displaystyle 4^{0}=1.}
      5. В высшей математике, которая оперирует мнимыми числами: e a i x = c o s a x + i s i n a x {\displaystyle e^{a}ix=cosax+isinax} , где i = (− 1) {\displaystyle i={\sqrt {(}}-1)} ; е - константа, примерно равная 2,7; а - произвольная постоянная. Доказательство этого равенства можно найти в любом учебнике по высшей математике.
      6. Предупреждения

      • При увеличении показателя степени ее значение сильно возрастает. Поэтому если ответ кажется вам неправильным, на самом деле он может оказаться верным. Вы можете проверить это, построив график любой показательной функции, например, 2 x .


    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ