Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Научиться решать уравнения — это одна из главных задач, которые ставит алгебра перед учениками. Начиная с простейшего, когда оно состоит из одной неизвестной, и переходя ко все более сложным. Если не усвоены действия, которые нужно выполнить с уравнениями из первой группы, будет трудно разобраться с другими.

Для продолжения разговора нужно договориться об обозначениях.

Общий вид линейного уравнения с одной неизвестной и принцип его решения

Любое уравнение, которое можно привести к записи такого вида:

а * х = в ,

называется линейным . Это общая формула. Но часто в заданиях линейные уравнения записаны в неявном виде. Тогда требуется выполнить тождественные преобразования, чтобы получить общепринятую запись. К этим действиям относятся:

  • раскрытие скобок;
  • перемещение всех слагаемых с переменной величиной в левую часть равенства, а остальных — в правую;
  • приведение подобных слагаемых.

В случае когда неизвестная величина стоит в знаменателе дроби, нужно определить ее значения, при которых выражение не будет иметь смысла. Другими словами, полагается узнать область определения уравнения.

Принцип, по которому решаются все линейные уравнения, сводится к тому, чтобы разделить значение в правой части равенства на коэффициент перед переменной. То есть «х» будет равен в/а.

Частные случаи линейного уравнения и их решения

Во время рассуждений могут возникать такие моменты, когда линейные уравнения принимают один из особых видов. Каждый из них имеет конкретное решение.

В первой ситуации:

а * х = 0 , причем а ≠ 0.

Решением такого уравнения всегда будет х = 0.

Во втором случае «а» принимает значение равное нулю:

0 * х = 0 .

Ответом такого уравнения будет любое число. То есть у него бесконечное количество корней.

Третья ситуация выглядит так:

0 * х = в , где в ≠ 0.

Это уравнение не имеет смысла. Потому что корней, удовлетворяющих ему, не существует.

Общий вид линейного уравнения с двумя переменными

Из его названия становится ясно, что неизвестных величин в нем уже две. Линейные уравнения с двумя переменными выглядят так:

а * х + в * у = с .

Поскольку в записи встречаются две неизвестные, то ответ будет выглядеть как пара чисел. То есть недостаточно указать только одно значение. Это будет неполный ответ. Пара величин, при которых уравнение превращается в тождество, является решением уравнения. Причем в ответе всегда первой записывают ту переменную, которая идет раньше по алфавиту. Иногда говорят, что эти числа ему удовлетворяют. Причем таких пар может быть бесконечное количество.

Как решить линейное уравнение с двумя неизвестными?

Для этого нужно просто подобрать любую пару чисел, которая окажется верной. Для простоты можно принять одну из неизвестных равной какому-либо простому числу, а потом найти вторую.

При решении часто приходится выполнять действия для упрощения уравнения. Они называются тождественными преобразованиями. Причем для уравнений всегда справедливы такие свойства:

  • каждое слагаемое можно перенести в противоположную часть равенства, заменив у него знак на противоположный;
  • левую и правую части любого уравнения разрешено делить на одно и то же число, если оно не равно нулю.

Примеры заданий с линейными уравнениями

Первое задание. Решить линейные уравнения: 4х = 20, 8(х — 1) + 2х = 2(4 — 2х); (5х + 15) / (х + 4) = 4; (5х + 15) / (х + 3) = 4.

В уравнении, которое идет в этом списке первым, достаточно просто выполнить деление 20 на 4. Результат будет равен 5. Это и есть ответ: х=5.

Третье уравнение требует того, чтобы было выполнено тождественное преобразование. Оно будет заключаться в раскрытии скобок и приведении подобных слагаемых. После первого действия уравнение примет вид: 8х — 8 + 2х = 8 — 4х. Потом нужно перенести все неизвестные в левую часть равенства, а остальные — в правую. Уравнение станет выглядеть так: 8х + 2х + 4х = 8 + 8. После приведения подобных слагаемых: 14х = 16. Теперь оно выглядит так же, как и первое, и решение его находится легко. Ответом будет х=8/7. Но в математике полагается выделять целую часть из неправильной дроби. Тогда результат преобразится, и «х» будет равен одной целой и одной седьмой.

В остальных примерах переменные находятся в знаменателе. Это значит, что сначала нужно узнать, при каких значениях уравнения определены. Для этого нужно исключить числа, при которых знаменатели обращаются в ноль. В первом из примеров это «-4», во втором оно «-3». То есть эти значения нужно исключить из ответа. После этого нужно умножить обе части равенства на выражения в знаменателе.

Раскрыв скобки и приведя подобные слагаемые, в первом из этих уравнений получится: 5х + 15 = 4х + 16, а во втором 5х + 15 = 4х + 12. После преобразований решением первого уравнения будет х = -1. Второе оказывается равным «-3», это значит, что последнее решений не имеет.

Второе задание. Решить уравнение: -7х + 2у = 5.

Предположим, что первая неизвестная х = 1, тогда уравнение примет вид -7 * 1 + 2у = 5. Перенеся в правую часть равенства множитель «-7» и поменяв у него знак на плюс, получится, что 2у = 12. Значит, у=6. Ответ: одно из решений уравнения х = 1, у = 6.

Общий вид неравенства с одной переменной

Все возможные ситуации для неравенств представлены здесь:

  • а * х > в;
  • а * х < в;
  • а * х ≥в;
  • а * х ≤в.

В общем, оно выглядит как простейшее линейное уравнение, только знак равенства заменен на неравенство.

Правила тождественных преобразований неравенства

Так же как линейные уравнения, и неравенства можно видоизменять по определенным законам. Они сводятся к следующему:

  1. к левой и правой частям неравенства можно прибавить любое буквенное или числовое выражение, причем знак неравенства останется прежним;
  2. также можно и умножить или разделить на одно и то же положительное число, от этого опять знак не изменяется;
  3. при умножении или делении на одно и то же отрицательное число равенство останется верным при условии смены знака неравенства на противоположный.

Общий вид двойных неравенств

В задачах могут быть представлены такие варианты неравенств:

  • в < а * х < с;
  • в ≤ а * х < с;
  • в < а * х ≤ с;
  • в ≤ а * х ≤ с.

Двойными оно называется, потому что ограничено знаками неравенства с двух сторон. Оно решается с помощью тех же правил, что и обычные неравенства. И нахождение ответа сводится к ряду тождественных преобразований. Пока не будет получено простейшее.

Особенности решения двойных неравенств

Первой из них является его изображение на координатной оси. Использовать этот способ для простых неравенств нет необходимости. А вот в сложных случаях он может быть просто необходимым.

Для изображения неравенства нужно отметить на оси все точки, которые получились во время рассуждений. Это и недопустимые значения, которые обозначаются выколотыми точками, и значения из неравенств, получившиеся после преобразований. Здесь тоже важно правильно нарисовать точки. Если неравенство строгое, то есть < или >, то эти значения выколотые. В нестрогих неравенствах точки нужно закрашивать.

Потом полагается обозначить смысл неравенств. Это можно сделать с помощью штриховки или дуг. Их пересечение укажет ответ.

Вторая особенность связана с его записью. Здесь предлагается два варианта. Первый — это окончательное неравенство. Второй — в виде промежутков. Вот с ним бывает, что возникают трудности. Ответ промежутками всегда выглядит как переменная со знаком принадлежности и скобок с числами. Иногда промежутков получается несколько, тогда между скобками нужно написать символ «и». Эти знаки выглядят так: ∈ и ∩. Скобки промежутков тоже играют свою роль. Круглая ставится тогда, когда точка исключена из ответа, а прямоугольная включает это значение. Знак бесконечности всегда стоит в круглой скобке.

Примеры решения неравенств

1. Решить неравенство 7 - 5х ≥ 37.

После несложных преобразований получается: -5х ≥ 30. Разделив на «-5» можно получить такое выражение: х ≤ -6. Это уже ответ, но его можно записать и по-другому: х ∈ (-∞; -6].

2. Решите двойное неравенство -4 < 2x + 6 ≤ 8.

Сначала нужно везде вычесть 6. Получится: -10 < 2x ≤ 2. Теперь нужно разделить на 2. Неравенство примет вид: -5 < x ≤ 1. Изобразив ответ на числовой оси, сразу можно понять, что результатом будет промежуток от -5 до 1. Причем первая точка исключена, а вторая включена. То есть ответ у неравенства такой: х ∈ (-5; 1].

В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

Под простейшим уравнением подразумевается конструкция:

Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  1. Раскрыть скобки, если они есть;
  2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
  3. Привести подобные слагаемые слева и справа от знака равенства;
  4. Разделить полученное уравнение на коэффициент при переменной $x$ .

Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

А теперь давайте посмотрим, как всё это работает на примере реальных задач.

Примеры решения уравнений

Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

Решаются такие конструкции примерно одинаково:

  1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
  2. Затем свести подобные
  3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

Схема решения простейших линейных уравнений

Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

  1. Раскрываем скобки, если они есть.
  2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
  3. Приводим подобные слагаемые.
  4. Разделяем все на коэффициент при «иксе».

Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

Решаем реальные примеры простых линейных уравнений

Задача №1

На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

\[\frac{6x}{6}=-\frac{72}{6}\]

Вот мы и получили ответ.

Задача №2

В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

Приведем подобные:

При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

Задача №3

Третье линейное уравнение уже интересней:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

Выполняем второй уже известный нам шаг:

\[-x+x+2x=15-6-12+3\]

Посчитаем:

Выполняем последний шаг — делим все на коэффициент при «икс»:

\[\frac{2x}{x}=\frac{0}{2}\]

Что необходимо помнить при решении линейных уравнений

Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

  • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
  • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

Решение сложных линейных уравнений

Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

Пример №1

Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

Теперь займемся уединением:

\[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

Приводим подобные:

Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

\[\varnothing \]

или корней нет.

Пример №2

Выполняем те же действия. Первый шаг:

Перенесем все, что с переменной, влево, а без нее — вправо:

Приводим подобные:

Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

\[\varnothing \],

либо корней нет.

Нюансы решения

Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

Точно также мы поступаем и со вторым уравнением:

Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\[\frac{-4x}{4}=\frac{4}{-4}\]

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Об алгебраической сумме

На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

Решение уравнений с дробью

Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

  1. Раскрыть скобки.
  2. Уединить переменные.
  3. Привести подобные.
  4. Разделить на коэффициент.

Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

  1. Избавиться от дробей.
  2. Раскрыть скобки.
  3. Уединить переменные.
  4. Привести подобные.
  5. Разделить на коэффициент.

Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

Пример №1

\[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

Давайте избавимся от дробей в этом уравнении:

\[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

Теперь раскроем:

Выполняем уединение переменной:

Выполняем приведение подобных слагаемых:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac{-4x}{-4}=\frac{-1}{-4}\]

Мы получили окончательное решение, переходим ко второму уравнению.

Пример №2

\[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

Здесь выполняем все те же действия:

\[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

\[\frac{4x}{4}=\frac{4}{4}\]

Задача решена.

Вот, собственно, и всё, что я хотел сегодня рассказать.

Ключевые моменты

Ключевые выводы следующие:

  • Знать алгоритм решения линейных уравнений.
  • Умение раскрывать скобки.
  • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!

Система линейных уравнений - это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Решение системы уравнений - это последовательность чисел (k 1 , k 2 , ..., k n ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1 , x 2 , ..., x n дает верное числовое равенство.

Соответственно, решить систему уравнений - значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

  1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.
  2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.
  3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» - надо описать, как устроено это множество.

Переменная x i называется разрешенной, если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной x i должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1 , x 3 и x 4 . Впрочем, с тем же успехом можно утверждать, что вторая система - разрешенная относительно x 1 , x 3 и x 5 . Достаточно переписать самое последнее уравнение в виде x 5 = x 4 .

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

  1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1 , x 2 = b 2 , ..., x k = b k ;
  2. Число разрешенных переменных r меньше общего числа переменных k : r < k . Остальные (k − r ) переменных называются свободными - они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2 , x 5 , x 6 (для первой системы) и x 2 , x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1 , x 2 , ..., x r - разрешенные, а x r + 1 , x r + 2 , ..., x k - свободные, то:

  1. Если задать значения свободным переменным (x r + 1 = t r + 1 , x r + 2 = t r + 2 , ..., x k = t k ), а затем найти значения x 1 , x 2 , ..., x r , получим одно из решений.
  2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все - таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше - неопределенной.

И все бы хорошо, но возникает вопрос: как из исходной системы уравнений получить разрешенную? Для этого существует

Линейное уравнение - это алгебраическое уравнение, полная степень многочленов которого равна единице. Решение линейных уравнений - часть школьной программы, причем не самая сложная. Однако некоторые все же испытывают затруднения при прохождении данной темы. Надеемся, прочитав данный материал, все трудности для вас останутся в прошлом. Итак, давайте разбираться. как решать линейные уравнения.

Общий вид

Линейное уравнение представляется в виде:

  • ax + b = 0, где a и b - любые числа.

Несмотря на то, что a и b могут быть любыми числами, их значения влияют на количество решений уравнение. Выделяют несколько частных случаев решения:

  • Если a=b=0, уравнение имеет бесконечное множество решений;
  • Если a=0, b≠0, уравнение не имеет решения;
  • Если a≠0, b=0, уравнение имеет решение: x = 0.

В том случае, если оба числа имеют не нулевые значения, уравнение предстоит решить, чтобы вывести конечное выражения для переменной.

Как решать?

Решить линейное уравнение - значит, найти, чему равна переменная. Как же это сделать? Да очень просто - используя простые алгебраические операции и следуя правилам переноса. Если уравнение предстало перед вами в общем виде, вам повезло, все, что необходимо сделать:

  1. Перенести b в правую сторону уравнения, не забыв изменить знак (правило переноса!), таким образом, из выражения вида ax + b = 0 должно получиться выражение вида: ax = -b.
  2. Применить правило: чтобы найти один из множителей (x - в нашем случае), нужно произведение (-b в нашем случае) поделить на другой множитель (a - в нашем случае). Таким образом, должно получиться выражение вида: x = -b/а.

Вот и все - решение найдено!

Теперь давайте разберем на конкретном примере:

  1. 2x + 4 = 0 - переносим b, равное в данном случае 4, в правую сторону
  2. 2x = -4 - делим b на a (не забываем о знаке минус)
  3. x = -4/2 = -2

Вот и все! Наше решение: x = -2.

Как видите, решение линейного уравнения с одной переменной найти довольно просто, однако так просто все, если нам повезло встретить уравнение в общем виде. В большинстве случаев, прежде чем решать уравнение в описанные выше две ступени, нужно еще привести имеющееся выражение к общему виду. Впрочем, это тоже не архисложная задача. Давайте разберем некоторые частные случаи на примерах.

Решение частных случаев

Во-первых, давайте разберем случаи, которые мы описали в начале статьи, и объясним, что же значит бесконечное множество решений и отсутствие решения.

  • Если a=b=0, уравнение будет иметь вид: 0x + 0 = 0. Выполняя первый шаг, получаем: 0x = 0. Что значит эта бессмыслица, воскликните вы! Ведь какое число на ноль ни умножай, всегда получится ноль! Верно! Поэтому и говорят, что уравнение имеет бесконечное множество решений - какое число ни возьми, равенство будет верным, 0x = 0 или 0=0.
  • Если a=0, b≠0, уравнение будет иметь вид: 0x + 3 = 0. Выполняем первый шаг, получаем 0x = -3. Снова бессмыслица! Очевидно же, что данное равенство никогда не будет верным! Потому и говорят - уравнение не имеет решений.
  • Если a≠0, b=0, уравнение будет иметь вид: 3x + 0 = 0. Выполняя первый шаг, получаем: 3x = 0. Какое решение? Это легко, x = 0.

Трудности перевода

Описанные частные случаи - это не все, чем нас могут удивить линейный уравнения. Иногда уравнение вообще с первого взгляда трудно идентифицировать. Разберем пример:

  • 12x - 14 = 2x + 6

Разве это линейное уравнение? А как же ноль в правой части? Торопиться с выводами не будем, будем действовать - перенесем все составляющие нашего уравнения в левую сторону. Получим:

  • 12x - 2x - 14 - 6 = 0

Теперь вычтем подобное из подобного, получим:

  • 10x - 20 = 0

Узнали? Самое что ни на есть линейное уравнение! Решение которого: x = 20/10 = 2.

А что если перед нами такой пример:

  • 12((x + 2)/3) + x) = 12 (1 - 3x/4)

Да, это тоже линейное уравнение, только преобразований нужно провести побольше. Сначала раскроем скобки:

  1. (12(x+2)/3) + 12x = 12 - 36x/4
  2. 4(x+2) + 12x = 12 - 36x/4
  3. 4x + 8 + 12x = 12 - 9x - теперь выполняем перенос:
  4. 25x - 4 = 0 - осталось найти решение по уже известной схеме:
  5. 25x = 4,
  6. x = 4/25 = 0.16

Как видите, все решаемо, главное - не переживать, а действовать. Запомните, если в вашем уравнении только переменные первой степени и числа, перед вами линейное уравнение, которое, как бы оно ни выглядело изначально, можно привести к общему виду и решить. Надеемся, у вас все получится! Удачи!

В данной статье рассмотрим принцип решения таких уравнений как линейные уравнения. Запишем определение этих уравнений, зададим общий вид. Разберем все условия нахождения решений линейных уравнений, используя, в том числе, практические примеры.

Обратим внимание, что материал ниже содержит информацию по линейным уравнениям с одной переменной. Линейные уравнения с двумя переменными рассматриваются в отдельной статье.

Yandex.RTB R-A-339285-1

Что такое линейное уравнение

Определение 1

Линейное уравнение – это уравнение, запись которого такова:
a · x = b , где x – переменная, a и b – некоторые числа.

Такая формулировка использована в учебнике алгебры (7 класс) Ю.Н.Макарычева.

Пример 1

Примерами линейных уравнений будут:

3 · x = 11 (уравнение с одной переменной x при а = 5 и b = 10 );

− 3 , 1 · y = 0 (линейное уравнение с переменной y , где а = - 3 , 1 и b = 0);

x = − 4 и − x = 5 , 37 (линейные уравнения, где число a записано в явном виде и равно 1 и - 1 соответственно. Для первого уравнения b = - 4 ; для второго - b = 5 , 37 ) и т.п.

В различных учебных материалах могут встречаться разные определения. К примеру, Виленкин Н.Я. к линейным относит также те уравнения, которые возможно преобразовать в вид a · x = b при помощи переноса слагаемых из одной части в другую со сменой знака и приведения подобных слагаемых. Если следовать такой трактовке, уравнение 5 · x = 2 · x + 6 – также линейное.

А вот учебник алгебры (7 класс) Мордковича А.Г. задает такое описание:

Определение 2

Линейное уравнение с одной переменной x – это уравнение вида a · x + b = 0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

Пример 2

Примером линейных уравнений подобного вида могут быть:

3 · x − 7 = 0 (a = 3 , b = − 7) ;

1 , 8 · y + 7 , 9 = 0 (a = 1 , 8 , b = 7 , 9) .

Но также там приведены примеры линейных уравнений, которые мы уже использовали выше: вида a · x = b , например, 6 · x = 35 .

Мы сразу условимся, что в данной статье под линейным уравнением с одной переменной мы будем понимать уравнение записи a · x + b = 0 , где x – переменная; a , b – коэффициенты. Подобная форма линейного уравнения нам видится наиболее оправданной, поскольку линейные уравнения – это алгебраические уравнения первой степени. А прочие уравнения, указанные выше, и уравнения, приведенные равносильными преобразованиями в вид a · x + b = 0 , определим, как уравнения, сводящиеся к линейным уравнениям.

При таком подходе уравнение 5 · x + 8 = 0 – линейное, а 5 · x = − 8 - уравнение, сводящееся к линейному.

Принцип решения линейных уравнений

Рассмотрим, как определить, будет ли заданное линейное уравнение иметь корни и, если да, то сколько и как их определить.

Определение 3

Факт наличия корней линейного уравнения определятся значениями коэффициентов a и b . Запишем эти условия:

  • при a ≠ 0 линейное уравнение имеет единственный корень x = - b a ;
  • при a = 0 и b ≠ 0 линейное уравнение не имеет корней;
  • при a = 0 и b = 0 линейное уравнение имеет бесконечно много корней. По сути в данном случае любое число может стать корнем линейного уравнения.

Дадим пояснение. Нам известно, что в процессе решения уравнения возможно осуществлять преобразование заданного уравнения в равносильное ему, а значит имеющее те же корни, что исходное уравнение, или также не имеющее корней. Мы можем производить следующие равносильные преобразования:

  • перенести слагаемое из одной части в другую, сменив знак на противоположный;
  • умножить или разделить обе части уравнения на одно и то же число, не равное нулю.

Таким образом, преобразуем линейное уравнение a · x + b = 0 , перенеся слагаемое b из левой части в правую часть со сменой знака. Получим: a · x = − b .

Итак, производим деление обеих частей уравнения на не равное нулю число а, получив в итоге равенство вида x = - b a . Т.е., когда a ≠ 0 , исходное уравнение a · x + b = 0 равносильно равенству x = - b a , в котором очевиден корень - b a .

Методом от противного возможно продемонстрировать, что найденный корень – единственный. Зададим обозначение найденного корня - b a как x 1 . Выскажем предположение, что имеется еще один корень линейного уравнения с обозначением x 2 . И конечно: x 2 ≠ x 1 , а это, в свою очередь, опираясь на определение равных чисел через разность, равносильно условию x 1 − x 2 ≠ 0 . С учетом вышесказанного мы можем составить следующие равенства, подставив корни:
a · x 1 + b = 0 и a · x 2 + b = 0 .
Свойство числовых равенств дает возможность произвести почленное вычитание частей равенств:

a · x 1 + b − (a · x 2 + b) = 0 − 0 , отсюда: a · (x 1 − x 2) + (b − b) = 0 и далее a · (x 1 − x 2) = 0 . Равенство a · (x 1 − x 2) = 0 является неверным, поскольку ранее условием было задано, что a ≠ 0 и x 1 − x 2 ≠ 0 . Полученное противоречие и служит доказательством того, что при a ≠ 0 линейное уравнение a · x + b = 0 имеет лишь один корень.

Обоснуем еще два пункта условий, содержащие a = 0 .

Когда a = 0 линейное уравнение a · x + b = 0 запишется как 0 · x + b = 0 . Свойство умножения числа на нуль дает нам право утверждать, что какое бы число не было взято в качестве x , подставив его в равенство 0 · x + b = 0 , получим b = 0 . Равенство справедливо при b = 0 ; в прочих случаях, когда b ≠ 0 , равенство становится неверным.

Таким образом, когда a = 0 и b = 0 , любое число может стать корнем линейного уравнения a · x + b = 0 , поскольку при выполнении этих условий, подставляя вместо x любое число, получаем верное числовое равенство 0 = 0 . Когда же a = 0 и b ≠ 0 линейное уравнение a · x + b = 0 вовсе не будет иметь корней, поскольку при выполнении указанных условий, подставляя вместо x любое число, получаем неверное числовое равенство b = 0 .

Все приведенные рассуждения дают нам возможность записать алгоритм, дающий возможность найти решение любого линейного уравнения:

  • по виду записи определяем значения коэффициентов a и b и анализируем их;
  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число станет корнем заданного уравнения;
  • при a = 0 и b ≠ 0
  • при a , отличном от нуля, начинаем поиск единственного корня исходного линейного уравнения:
  1. перенесем коэффициент b в правую часть со сменой знака на противоположный, приводя линейное уравнение к виду a · x = − b ;
  2. обе части полученного равенства делим на число a , что даст нам искомый корень заданного уравнения: x = - b a .

Собственно, описанная последовательность действий и есть ответ на вопрос, как находить решение линейного уравнения.

Напоследок уточним, что уравнения вида a · x = b решаются по похожему алгоритму с единственным отличием, что число b в такой записи уже перенесено в нужную часть уравнения, и при a ≠ 0 можно сразу выполнять деление частей уравнения на число a .

Таким образом, чтобы найти решение уравнения a · x = b , используем такой алгоритм:

  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число может стать его корнем;
  • при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
  • при a , не равном нулю, обе части уравнения делятся на число a , что дает возможность найти единственный корень, который равен b a .

Примеры решения линейных уравнений

Пример 3

Необходимо решить линейное уравнение 0 · x − 0 = 0 .

Решение

По записи заданного уравнения мы видим, что a = 0 и b = − 0 (или b = 0 , что то же самое). Таким образом, заданное уравнение может иметь бесконечно много корней или любое число.

Ответ: x – любое число.

Пример 4

Необходимо определить, имеет ли корни уравнение 0 · x + 2 , 7 = 0 .

Решение

По записи определяем, что а = 0 , b = 2 , 7 . Таким образом, заданное уравнение не будет иметь корней.

Ответ: исходное линейное уравнение не имеет корней.

Пример 5

Задано линейное уравнение 0 , 3 · x − 0 , 027 = 0 . Необходимо решить его.

Решение

По записи уравнения определяем, что а = 0 , 3 ; b = - 0 , 027 , что позволяет нам утверждать наличие единственного корня у заданного уравнения.

Следуя алгоритму, переносим b в правую часть уравнения, сменив знак, получаем: 0 , 3 · x = 0 , 027 . Далее разделим обе части полученного равенства на а = 0 , 3 , тогда: x = 0 , 027 0 , 3 .

Осуществим деление десятичных дробей:

0 , 027 0 , 3 = 27 300 = 3 · 9 3 · 100 = 9 100 = 0 , 09

Полученный результат есть корень заданного уравнения.

Кратко решение запишем так:

0 , 3 · x - 0 , 027 = 0 , 0 , 3 · x = 0 , 027 , x = 0 , 027 0 , 3 , x = 0 , 09 .

Ответ: x = 0 , 09 .

Для наглядности приведем решение уравнения записи a · x = b .

Пример N

Заданы уравнения: 1) 0 · x = 0 ; 2) 0 · x = − 9 ; 3) - 3 8 · x = - 3 3 4 . Необходимо решить их.

Решение

Все заданные уравнения отвечают записи a · x = b . Рассмотрим по очереди.

В уравнении 0 · x = 0 , a = 0 и b = 0 , что означает: любое число может быть корнем этого уравнения.

Во втором уравнении 0 · x = − 9: a = 0 и b = − 9 , таким образом, это уравнение не будет иметь корней.

По виду последнего уравнения - 3 8 · x = - 3 3 4 запишем коэффициенты: a = - 3 8 , b = - 3 3 4 , т.е. уравнение имеет единственный корень. Найдем его. Поделим обе части уравнения на a , получим в результате: x = - 3 3 4 - 3 8 . Упростим дробь, применив правило деления отрицательных чисел с последующим переводом смешанного числа в обыкновенную дробь и делением обыкновенных дробей:

3 3 4 - 3 8 = 3 3 4 3 8 = 15 4 3 8 = 15 4 · 8 3 = 15 · 8 4 · 3 = 10

Кратко решение запишем так:

3 8 · x = - 3 3 4 , x = - 3 3 4 - 3 8 , x = 10 .

Ответ: 1) x – любое число, 2) уравнение не имеет корней, 3) x = 10 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ