Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО Сыктывкарский Государственный Университет

Факультет управления

Теория информации Клода Шеннона

Руководитель: Болотов С.П

Исполнитель: Панева Я.В,

411 группа

Сыктывкар 2010

Введение

Теория информации

Заключение

Список литературы

Введение

Клод Элвуд Шеннон (Shannon) (1916 -- 2001) -- американский инженер и математик. Человек, которого называют отцом современных теорий информации и связи.

Осенним днем 1989 года корреспондент журнала "Scientific American" вошел в старинный дом с видом на озеро к северу от Бостона. Но встретивший его хозяин, 73-летний стройный старик с пышной седой гривой и озорной улыбкой, совсем не желал вспоминать "дела давно минувших дней" и обсуждать свои научные открытия 30-50-летней давности. Быть может, гость лучше посмотрит его игрушки?

Не дожидаясь ответа и не слушая увещеваний жены Бетти, хозяин увлек изумленного журналиста в соседнюю комнату, где с гордостью 10-летнего мальчишки продемонстрировал свои сокровища: семь шахматных машин, цирковой шест с пружиной и бензиновым двигателем, складной нож с сотней лезвий, двухместный одноколесный велосипед, жонглирующий манекен, а также компьютер, вычисляющий в римской системе счисления. И не беда, что многие из этих творений хозяина давно сломаны и порядком запылены, -- он счастлив. Кто этот старик? Неужели это он, будучи еще молодым инженером Bell Laboratories, написал в 1948 году "Великую хартию" информационной эры -- "Математическую теорию связи"? Его ли труд назвали "величайшей работой в анналах технической мысли"? Его ли интуицию первооткрывателя сравнивали с гением Эйнштейна? Да, это все о нем. И он же в тех же 40-х годах конструировал летающий диск на ракетном двигателе и катался, одновременно жонглируя, на одноколесном велосипеде по коридорам Bell Labs. Это Клод Элвуд Шеннон, отец кибернетики и теории информации, гордо заявивший: "Я всегда следовал своим интересам, не думая ни о том, во что они мне обойдутся, ни об их ценности для мира. Я потратил уйму времени на совершенно бесполезные вещи."

Теория информации

В 1941 году 25-летний Клод Шеннон поступил на работу в Bell Laboratories. В годы войны он занимался разработкой криптографических систем, и позже это помогло ему открыть методы кодирования с коррекцией ошибок. А в свободное время он начал развивать идеи, которые потом вылились в теорию информации. Исходная цель Шеннона заключалась в улучшении передачи информации по телеграфному или телефонному каналу, находящемуся под воздействием электрических шумов. Он быстро пришел к выводу, что наилучшее решение проблемы заключается в более эффективной упаковке информации.

Но что же такое информация? Чем измерять ее количество? Шеннону пришлось ответить на эти вопросы еще до того, как он приступил к исследованиям пропускной способности каналов связи. В своих работах 1948-49 годов он определил количество информации через энтропию -- величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу информации принял то, что впоследствии окрестили "битом", то есть выбор одного из двух равновероятных вариантов. Позже Шеннон любил рассказывать, что использовать энтропию ему посоветовал знаменитый математик Джон фон Нейман, который мотивировал свой совет тем, что мало кто из математиков и инженеров знает об энтропии, и это обеспечит Шеннону большое преимущество в неизбежных спорах. Шутка это или нет, но как трудно нам теперь представить, что всего полвека назад понятие "количество информации" еще нуждалось в строгом определении и что это определение могло вызвать какие-то споры.

На прочном фундаменте своего определения количества информации Клод Шеннон доказал удивительную теорему о пропускной способности зашумленных каналов связи. Во всей полноте эта теорема была опубликована в его работах 1957-61 годов и теперь носит его имя. В чем суть теоремы Шеннона? Всякий зашумленный канал связи характеризуется своей предельной скоростью передачи информации, называемой пределом Шеннона. При скоростях передачи выше этого предела неизбежны ошибки в передаваемой информации. Зато снизу к этому пределу можно подойти сколь угодно близко, обеспечивая соответствующим кодированием информации сколь угодно малую вероятность ошибки при любой зашумленности канала.

Эти идеи Шеннона оказались слишком провидческими и не смогли найти себе применения в годы медленной ламповой электроники. Но в наше время высокоскоростных микросхем они работают повсюду, где хранится, обрабатывается и передается информация: в компьютере и лазерном диске, в факсимильном аппарате и межпланетной станции. Мы не замечаем теорему Шеннона, как не замечаем воздух.

В основу теории информации положен предложенный К.Шенноном метод исчислений количества новой (непредсказуемой) и избыточной (предсказуемой) информации, содержащейся в сообщениях, передаваемых по каналам технической связи.

Предложенный Шенноном метод измерения количества информации оказался настолько универсальным, что его применение не ограничивается теперь узкими рамками чисто технических приложений.

Вопреки мнению самого К.Шеннона, предостерегавшего ученых против поспешного распространения предложенного им метода за пределы прикладных задач техники связи, этот метод стал находить все более широкое примение в исследованиях и физических, и биологических, и социальных систем.

Ключом к новому пониманию сущности феномена информации и механизма информационных процессов послужила установленная Л.Бриллюэном взаимосвязь информации и физической энтропии. Эта взаимосвязь была первоначально заложена в самый фундамент теории информации, поскольку для исчисления количества информации Шеннон предложил использовать заимствованную из статистической термодинамики вероятную функцию энтропии.

Многие ученые (начиная с самого К.Шеннона) склонны были рассматривать такое заимствование как чисто формальный прием. Л.Бриллюэн показал, что между вычисленным согласно Шеннону количеством информации и физической энтропии существует не формальная, а содержательная связь.

В статистической физике с помощью вероятностной функции энтропии исследуются процессы, приводящие к термодинамическому равновесию, при котором все состояния молекул (их энергии, скорости) приближаются к равновероятным, а энтропия при этом стремится к максимальной величине.

Благодаря теории информации стало очевидно, что с помощью той же самой функции можно исследовать и такие далекие от состояния максимальной энтропии системы, как, например, письменный текст.

Еще один важный вывод заключается в том, что с помощью вероятностной функции энтропии можно анализировать все стадии перехода системы от состояния полного хаоса, которому соответствуют равные значения вероятностей и максимальное значение энтропии, к состоянию предельной упорядоченности (жесткой детерминации), которому соответствует единственно возможное состояние ее элементов.

Данный вывод оказывается в равной мере справедливым для таких несходных по своей природе систем, как газы, кристаллы, письменные тексты, биологические организмы или сообщества и др.

При этом, если для газа или кристалла при вычислении энтропии сравнивается только микросостояние (т.е. состояние атомов и молекул) и макросостояние этих систем (т.е. газа или кристалла как целого), то для систем иной природы (биологических, интеллектуальных, социальных) вычисление энтропии может производится на том или ином произвольно выбранном уровне. При этом вычисляемое значение энтропии рассматриваемой системы и количество информации, характеризующей степень упорядоченности данной системы и равное разности между максимальным и реальным значением энтропии, будет зависеть от распределения вероятности состояний элементов нижележащего уровня, т.е. тех элементов, которые в своей совокупности образуют эти системы.

Количество сохраняемой в структуре системы информации пропорционально степени отклонения системы от состояния равновесия, обусловленного сохраняемым в структуре системы порядком.

Сам того не подозревая, Шеннон вооружил науку универсальной мерой, пригодной в принципе (при условии выявления значенй всех вероятностей) для оценки степени упорядоченности всех существующих в мире систем.

Определив введенную Шеноном информационную меру как меру упорядоченности движения, можно установить взаимосвязь информации и энергии, считая энергию мерой интенсивности движения. При этом количество сохраняемой в структуре систем информации пропорционально суммарной энергии внутренних связей этих систем.

Одновременно с выявлением общих свойств информации как феномена обнаруживаются и принципиальные различия относящихся к различным уровням сложности информационных систем.

Так, например, все физические объекты, в отличие от биологических, не обладают специальными органами памяти, перекодировки поступающих из внешнего мира сигналов, информационными каналами связи. Хранимая в них информация как бы "размазана" по всей их структуре. Вместе с тем, если бы кристаллы не способны были сохранять информацию в определяющих их упорядоченность внутренних связях, не было бы возможности создавать искусственную память и предназначенные для обработки информации технические устройства на основе кристаллических структур.

Вместе с тем необходимо учитывать, что создание подобных устройств стало возможным лишь благодаря разуму человека, сумевшего использовать элементарные информационные свойства кристаллов для построения сложных информационных систем.

Простейшая биологическая система превосходит по своей сложности самую совершенную из созданных человеком информационных систем. Уже на уровне простейших одноклеточных организмов задействован необходимый для их размножения сложнейший информационный генетический механизм. В многоклеточных организмах помимо информационной системы наследственности действуют специализированные органы хранения информации и ее обработки (например, системы, осуществляющие перекодирование поступающих из внешнего мира зрительных и слуховых сигналов перед отправкой их в головной мозг, системы обработки этих сигналов в головном мозге). Сложнейшая сеть информационных коммуникаций (нервная система) пронизывает и превращает в целое весь многоклеточный организм.

Уже на уровне биологических систем возникают проблемы учета ценности и смысла используемой этими системами информации. Еще в большей мере такой учет необходим для анализа функционирования интеллектуальных информационных систем.

Глубокое осознание специфики биологических и интеллектуальных систем позволяет выявить те границы, за пределами которых утрачивает свою компетентность разработанный современной наукой информационно-энтропийный подход.

Определить эти границы Шеннону пришлось на самом начальном этапе создания теории информации, поскольку без этого нельзя было использовать количественную меру информации для оценки письменных текстов и других созданных разумом человека информационных систем. Именно с этой целью Шеннон делает оговорку о том, что предложенный им метод исчисления информации письменных текстов игнорирует такие же их неотъемлемые свойства, как смысл и ценность содержащихся в них сообщений.

Так, например, при подсчете количества информации, содержащейся в таких двух сообщениях, как "очередную партию Каспаров играет белыми" и "у гражданина Белова родился сын" получится одна и та же величина - 1 бит. Нет сомнения, что два этих сообщения несут разный смысл и имеют далеко не равнозначную ценность для гражданина Белова. Однако, как было отмечено выше, оценка смысла и ценности информации находится за пределами компетенции теории информации и поэтому не влияет на подсчитываемое с помощью формулы Шеннона количество бит.

Игнорирование смысла и ценности информации не помешало Шеннону решать прикладные задачи, для которых предназначалась первоначально его теория: инженеру по технике связи вовсе не обязательно вникать в суть сообщений, передаваемых по линии связи. Его задача заключается в том, чтобы любое подобное сообщение передавать как можно скорее, с наименьшими затратами средств (энергии, диапазона используемых частот) и, по возможности, безо всяких потерь. И пусть тот, кому предназначена данная информация (получатель сообщений), вникает в смысл, определяет ценность, решает, как использовать ту информацию, которую он получил.

Такой сугубо прагматичный подход позволил Шеннону ввести единую, не зависящую от смысла и ценности, меру количества информации, которая оказалась пригодной для анализа всех обладающих той или иной степенью упорядоченности систем.

После основополагающих работ Шеннона начали разрабатываться основы смысловой (семантической) и ценностной (прагматической, аксиологической) информационных теорий.

Однако ни одной из этих теорий и предлагаемых их авторами единиц измерения ценности или смысла не суждено было приобрести такую же степень универсальности, какой обладает мера, которую ввел в науку Шеннон.

Дело в том, что количественные оценки смысла и ценности информации могут производится только после предварительного соглашения о том, что же именно в каждом конкретном случае имеет для рассматриваемых явлений ценность и смысл. Нельзя одними и теми же единицами измерить ценность информации, содержащейся, скажем, в законе Ома и в признании любви. Иными словами, критерии смысла и ценности всегда субъективны, а потому применимость их ограничена, в то время как мера, предложенная Шенноном, полностью исключает субъективизм при оценке степени упорядоченности структуры исследуемых систем.

Так что же характеризует подсчитанная по формуле Шеннона величина энтропии текста, выражаемая количеством бит? Только лишь одно свойство этого текста - степень его упорядоченности или, иными словами, степень его отклонения от состояния полного хаоса, при котором все буквы имели бы равную вероятность, а текст превратился бы в бессмысленный набор букв.

Упорядоченность текста (или любой другой исследуемой системы) будет тем больше, чем больше различие вероятностей и чем больше вероятность последующего события будет зависеть от вероятностей предыдущих событий.

Согласно негэнтропийному принципу информации количество информации, выражающее этот порядок, будет равно уменьшению энтропии системы по сравнению с максимально возможной величиной энтропии, соответствующей отсутствию упорядоченности и наиболее хаотичному состоянию систем.

Методы исчисления информации, предложенные Шенноном, позволяют выявить соотношение количества предсказуемой (то есть формируемой по определенным правилам) информации и количества той неожиданной информации, которую нельзя заранее предсказать.

Таким способом удается в той или иной степени "разгрузить" предназначенный для передачи сообщений канал. Проведенный Шенноном анализ английских текстов показал, что содержащаяся в них избыточная информация составляет около 80% от общего количества информации, которое заключает в себе письменный текст. Остальные 20% - это та самая энтропия, благодаря которой текст может служить источником непредсказуемой энергии .

Если бы текстовые, устные или зрительные (в частности телевизионные) сообщения были полностью лишены энтропии, они не приносили бы получателям сообщений никаких новостей.

Если бы письменный текст строился только на основании заранее сформулированных правил, то, установив эти правила по тексту первой страницы, можно было бы заранее предсказать, что будет написано на страницах 50, 265, 521 и т.д.

Заключение

шеннон информация канал связь

Но с начала 60-х годов Шеннон не сделал в теории информации практически больше ничего. Это выглядело так, как будто ему всего за 20 лет надоела созданная им же теория. В 1985 году Клод Шеннон и его жена Бетти неожиданно посетили Международный симпозиум по теории информации в английском городе Брайтоне. Почти целое поколение Шеннон не появлялся на конференциях, и поначалу его никто не узнал. Затем участники симпозиума начали перешептываться: вон тот скромный седой джентльмен -- это Клод Элвуд Шеннон, тот самый! На банкете Шеннон сказал несколько слов, немного пожонглировал тремя (увы, только тремя) мячиками, а затем подписал сотни автографов ошеломленным инженерам и ученым, выстроившимся в длиннейшую очередь. Стоящие в очереди говорили, что испытывают такие же чувства, какие испытали бы физики, явись на их конференцию сам сэр Исаак Ньютон.

Клод Шеннон скончался в 2001 году в массачусетском доме для престарелых от болезни Альцгеймера на 84 году жизни.

Список литературы

1. Интернет

2. Шеннон К.Е. Математическая теория связи. Работы по теории информации и кибернетике., М, 1963.

3. Шеннон К. Е. Бандвагон. /Работы по теории информации и кибернетике/М.1963.

Размещено на Allbest.ru

Подобные документы

    Общее число неповторяющихся сообщений. Вычисление скорости передачи информации и пропускной способности каналов связи. Определение избыточности сообщений и оптимальное кодирование. Процедура построения оптимального кода по методике Шеннона-Фано.

    курсовая работа , добавлен 17.04.2009

    Общая схема действия каналов связи, их классификация и характеристика. Дискретный, бинарный канал связи и определение их пропускной способности, особенности действия с помехами и без них по теореме Шеннона. Пропускная способность непрерывного канала.

    реферат , добавлен 14.07.2009

    Предмет и задачи теории информации, ее функции при создании АСУ. Определение пропускной способности дискретных (цифровых) каналов при отсутствии шумов. Расчет скорости передачи информации. Вычисление значения энтропии - среднего количества информации.

    контрольная работа , добавлен 18.01.2015

    Вычисление количества информации, приходящейся на один символ по формуле Шеннона. Изменения информационной энтропии в текстах экономического, естественнонаучного и литературного содержания. Максимальное количество информации на знак по формуле Хартли.

    лабораторная работа , добавлен 06.12.2013

    презентация , добавлен 19.10.2014

    Обработка информации, анализ каналов ее возможной утечки. Построение системы технической защиты информации: блокирование каналов несанкционированного доступа, нормативное регулирование. Защита конфиденциальной информации на АРМ на базе автономных ПЭВМ.

    дипломная работа , добавлен 05.06.2011

    Изучение алгоритмов допускового контроля достоверности исходной информации, с помощью которых выявляются полные и частичные отказы информационно-измерительных каналов. Определение погрешности выполнения уравнения связи между количествами информации.

    лабораторная работа , добавлен 14.04.2012

    Определение среднего количества информации. Зависимость между символами матрицы условных вероятностей. Кодирование методом Шеннона–Фано. Пропускная способность канала связи. Эффективность кодирования сообщений методом Д. Хаффмана, характеристика кода.

    контрольная работа , добавлен 04.05.2015

    Анализ источников опасных сигналов и определение потенциальных технических каналов утечки информации и несанкционированного доступа. Организационные и технические методы защиты информации в выделенном помещении, применяемое инженерное оборудование.

    курсовая работа , добавлен 18.11.2015

    Количество информации и ее мера. Определение количества информации, содержащегося в сообщении из ансамбля сообщений источника. Свойства количества информации и энтропии сообщений. Избыточность, информационная характеристика источника дискретных сообщений.

Клод Элвуд Шеннон (англ. Claude Elwood Shannon; 30 апреля 1916, Петоцки, Мичиган, США - 24 февраля 2001, Медфорд, Массачусетс, США) - американский инженер, криптоаналитик и математик. Cчитается «отцом информационного века».

Является основателем теории информации, нашедшей применение в современных высокотехнологических системах связи. Предоставил фундаментальные понятия, идеи и их математические формулировки, которые в настоящее время формируют основу для современных коммуникационных технологий. В 1948 году предложил использовать слово «бит» для обозначения наименьшей единицы информации (в статье «Математическая теория связи»). Кроме того, понятие энтропии было важной особенностью теории Шеннона. Он продемонстрировал, что введенная им энтропия эквивалентна мере неопределённости информации в передаваемом сообщении. Статьи Шеннона «Математическая теория связи» и «Теория связи в секретных системах» считаются основополагающими для теории информации и криптографии. Клод Шеннон был одним из первых, кто подошел к криптографии с научной точки зрения, он первым сформулировал ее теоретические основы и ввел в рассмотрение многие основные понятия. Шеннон внес ключевой вклад в теорию вероятностных схем; теорию игр; теорию автоматов и теорию систем управления - области наук, входящие в понятие «кибернетика».

Биография

Детство и юность

Клод Шеннон родился 30 апреля 1916 года в городе Петоцки (штат Мичиган, США). Отец его, Клод-старший (1862-1934), был бизнесменом, добившимся успеха своими собственными силами, адвокатом и в течение некоторого времени судьей. Мать Шеннона, Мейбел Вулф Шеннон (1890-1945), была преподавателем иностранных языков и впоследствии стала директором Гэйлордской средней школы. Отец Шеннона обладал математическим складом ума и давал себе отчёт в своих словах. Любовь к науке была привита Шеннону его дедушкой. Дед Шеннона был изобретателем и фермером. Он изобрел стиральную машину вместе с многой другой полезной в сельском хозяйстве техникой. Томас Эдисон был дальним родственником Шеннонов.

Первые шестнадцать лет своей жизни Клод провел в Гэйлорде (Мичиган), где в 1932 году закончил Гэйлордскую общеобразовательную среднюю школу. В юности он работал курьером службы Western Union. Молодой Клод увлекался конструированием механических и автоматических устройств. Он собирал модели самолетов и радиотехнические цепи, создал радиоуправляемую лодку и телеграфную систему между домом друга и своим домом. Временами ему приходилось ремонтировать радиостанции для местного универмага.

Шеннон, по собственным словам, был аполитичным человеком и атеистом.

Университетские годы

В 1932 году Шеннон был зачислен в Мичиганский университет, где на одном из курсов познакомился с работами Джорджа Буля. В 1936 году Клод окончил Мичиганский университет, получив степень бакалавра по двум специальностям (математик и электротехник), и устроился в Массачусетский технологический институт (MIT), где работал ассистентом-исследователем. Он выполнял обязанности оператора на механическом вычислительном устройстве, аналоговом компьютере, называемом «дифференциальный анализатор», разработанным его научным руководителем Вэниваром Бушем. Изучая сложные, узкоспециализированные электросхемы дифференциального анализатора, Шеннон увидел, что концепции Буля могут получить достойное применение. После того, как он проработал лето 1937 года в Bell Telephone Laboratories, он написал основанную на своей магистерской работе того же года статью «Символический анализ релейных и переключательных схем». Необходимо отметить, что Фрэнк Лорен Хичкок контролировал магистерскую диссертацию, давал полезную критику и советы. Сама статья была опубликована в 1938 году в издании Американского института инженеров-электриков (AIEE). В этой работе он показал, что переключающиеся схемы могут быть использованы для замены схем с электромеханическими реле, которые использовались тогда для маршрутизации телефонных вызовов. Затем он расширил эту концепцию, показав, что эти схемы могут решить все проблемы, которые позволяет решить Булева алгебра. Также, в последней главе он представляет заготовки нескольких схем, например, 4-разрядного сумматора. За эту статью Шеннон был награждён Премией имени Альфреда Нобеля Американского института инженеров-электриков в 1940 году. Доказанная возможность реализовывать любые логические вычисления в электрических цепях легла в основу проектирования цифровых схем. А цифровые цепи - это, как известно, основа современной вычислительной техники, таким образом, результаты его работ являются одними из наиболее важных научных результатов ХХ столетия. Говард Гарднер из Гарвардского университета отозвался о работе Шеннона, как о «возможно, самой важной, а также самой известной магистерской работе столетия».

Клод Элвуд Шеннон (Shannon) ( - ) - американский инженер и математик. Человек, которого называют отцом современных теорий информации и связи.

Биография

Клод Шеннон родился в 1916 году и вырос в городе Гэйлорде штата Мичиган. Еще в детские годы Клод познакомился как с детальностью технических конструкций, так и с общностью математических принципов. Он постоянно возился с детекторными приемниками и радиоконструкторами, которые приносил ему отец, помощник судьи, и решал математические задачки и головоломки, которыми снабжала его старшая сестра Кэтрин, ставшая впоследствии профессором математики.

Будучи студентом Мичиганского университета, который он окончил в году, Клод специализировался одновременно и в математике, и в электротехнике. Эта двусторонность интересов и образования определила первый крупный успех, которого Клод Шеннон достиг в свои аспирантские годы в Массачусетском технологическом институте. В своей диссертации, защищенной в году, он доказал, что работу переключателей и реле в электрических схемах можно представить посредством алгебры, изобретенной в середине XIX века английским математиком Джорджем Булем. "Просто случилось так, что никто другой не был знаком с этими обеими областями одновременно!" - так скромно Шеннон объяснил причину своего открытия.

Клод Шеннон краткая биография и интересные факты из жизни американского инженера, криптоаналитика и математика, отца информационного века, изложены в этой статье.

Клод Шеннон краткая биография

Клод Элвуд Шеннон появился на свет 30 апреля 1916 года в городке Петоцки, штат Мичиган. Его отец был юристом, а мать преподавала иностранные языки. В 1932 году юноша окончил среднюю школу и параллельно обучался на дому. Отец Клода постоянно покупал сыну радиолюбительские наборы и конструкторы, содействуя его техническому творчеству. А старшая сестра проводила ему углубленные занятия математикой. Поэтому любовь к технике и математике была очевидной.

В 1932 году будущий ученый поступает в университет Мичигана. Окончил учебное заведение в 1936 году со степенью бакалавра по математике и электротехнике. В университете он прочитал работы «Логическое исчисление» и «Математический анализ логики» автора Джорджа Буля, которые во многом определили его будущие научные интересы.

Вскоре его пригласили на работу в Массачусетский технологический институт на должность ассистента-исследователя в лаборатории электротехники. Шеннон работал над модернизацией аналогового компьютера, дифференциального анализатора Ванневара Буша.

В 1936 году Клод решил поступать в магистратуру, и годом позже написал диссертацию. На ее основе выдает статью под названием «Символьный анализ реле и переключательных схем», опубликовал ее 1938 году в журнале Американского института инженеров-электриков. Его статья заинтересовала научное электротехническое сообщество и в 1939 году ему присудили Премию им. Альфреда Нобеля. Не окончив магистерскую диссертацию, Шеннон начал работу над докторской работой по математике, затрагивая задачи генетики. Она называлась «Алгебра для теоретической генетики».

В 1941 году, в возрасте 25 лет, он стал работать в математическом отделении научно-исследовательского центра «Bell Laboratories». В Европе в это время начались военные действия. Америка финансировала исследования Шеннона в области криптографии. Он являлся автором анализа зашифрованных текстов при помощи информационно-теоретических методов. Ученый в 1945 году завершает большой секретный отчет «Математическая теория криптографии».

Какой вклад внес Клод Шеннон в информатику?

В своих исследованиях ученый подготовил концепции по теории информации. В 1948 году Шеннон опубликовал труд «Математическая теория связи», в которой математическая теория предстала как приемник информации и канал связи для ее передачи. Осталось только все перевести на более простой язык и донести свои наработки человечеству. Клод Шеннон ввел такое понятие информационной энтропии, которое обозначает величину, единицу информации. Ученый рассказывал, что данный термин ему посоветовал использовать математик . Клод Шеннон создал 6 концептуальных теорем, которые являются фундаментом его теории информации:

  • Теорема количественной оценки информации.
  • Теорема рациональной упаковки символов при первичном кодировании.
  • Теорема согласования потока информации с пропускной способностью канала связи без помех.
  • Теорема согласования потока информации с пропускной способностью двоичного канала связи с помехами.
  • Теорема оценки пропускной способности непрерывного канала связи.
  • Теорема безошибочного восстановления непрерывного сигнал.

В 1956 году ученый прекращает работу в «Bell Laboratories» и занимает должность профессора сразу на двух факультетах технологического института в Массачусетсе: электротехническом и математическом.

Когда ему исполнилось 50 лет, он перестает заниматься преподавательской деятельностью и всего себя посвящает любимым хобби. Он создал одноколесный велосипед с 2-мя седлами, роботов, которые собирают кубик Рубик и жонглируют шарами, складной нож с большим количеством лезвий. В 1965 году он посетил СССР. А в последнее время Клод Шеннон сильно болел и умер в феврале 2001 году от недуга Альцгеймера в массачусетском доме престарелых.

Клод Шеннон интересные факты

Любовь к науке была привита Шеннону его дедушкой. Дед Шеннона был изобретателем и фермером. Он изобрёл стиральную машину вместе с многой другой полезной в сельском хозяйстве техникой

Подростком он работал посыльным в Western Union.

Он увлекался игрой на кларнете , слушал музыку и читал поэзию.

Шеннон женился 27 марта 1949 года, на Мэри Элизабет Мур Шеннон, с которой познакомился в «Bell Labs». Она работала там аналитиком. У супругов родилось трое детей: Андрю Мур, Роберт Джеймс и Маргарита Катерина.

Клод Шеннон на выходных любил сгонять в Лас-Вегас вместе со своей женой Бетти и коллегой, дабы поиграть в блэкджек. Шеннон со своим другом даже спроектировали первый в мире wearable-компьютер, занимающийся «подсчетом карт».

Занимался разработкой устройств, которые обнаруживали самолеты противника и наводили на них зенитные установки. Также он создал криптографическую систему для правительства США, обеспечивающею тайность переговоров Рузвельта и Черчилля.

Любил играть в шахматы и жонглировать. Свидетели его молодости в Bell Laboratories вспоминали, как он разъезжал по коридорам фирмы на одноколесном велосипеде, при этом жонглируя мячами.

Он создал одноколесный велосипед с двумя седлами, складной нож с сотней лезвий, роботов, собирающих кубик Рубика, и робота, жонглирующего шарами.

Шеннон, по собственным словам, был аполитичным человеком и атеистом.

Клод Элвуд Шеннон — известный американский инженер и математик. Его работы совмещают связь математических идей с анализом весьма сложного процесса их технической реализации. Клод Шеннон знаменит в первую очередь благодаря разработке теории информации, которая служит основой современных высокотехнологических систем связи. Шеннон внес огромный вклад в ряд наук, которые входят в понятие «кибернетики» — он создал теорию вероятности схем, теорию автоматов и систем управления.

Клод Шеннон — становление инженерного гения

Клод Шеннон родился в 1916 году в городе Гейлорд, штат Мичиган, США. Технические конструкции, как и общность математических процессов, интересовали его с ранних лет. Все свое свободное время он решал математические задачи и возился с радиоконструкторами и детекторными приемниками.

Неудивительно, что будучи студентом Мичиганского университета, Шеннон одновременно специализировался в математике и электротехнике. Благодаря высокой образованности и разнообразию интересов, первый огромный успех к Шеннону пришел уже во время учебы в аспирантуре Массачусетского технологического университета. Тогда ему удалось доказать, что работу электрических схем реле и переключателей можно представить посредством алгебры. За это величайшее открытие Клод Шеннон был удостоен Нобелевской премии. Причину своего ошеломляющего успеха он объяснил достаточно скромно: «Просто до меня никто не изучал математику и электротехнику одновременно.»

Шеннон и криптография

В 1941 году Шеннон стал сотрудником Bell Laboratories, где его основной задачей была разработка сложных криптографических систем. Эта работа позволила ему создать методы кодирования с возможностью коррекции ошибок.

Клод Шеннон стал первым, кто подошел к изучению криптографии с научной точки зрения, опубликовав в 1949 году статью под названием «Теория связи в секретных системах». Эта статья состояла из трех разделов. Первый раздел содержал основные математические структуры секретных систем, второй — раскрывал проблемы «теоретической секретности», третий — освещал понятие «практической секретности». Так, главной заслугой Шеннона в криптографии стало подробное исследование понятия абсолютной секретности систем, в котором он доказал факт существования и необходимые условия для существования абсолютно стойких не раскрываемых шифров.

Клод Шеннон стал первым, кто сформулировал теоретические основы криптографии и раскрыл суть многих понятий, без которых криптография, как наука не существовала бы.

Основоположник информатики

В какой-то момент своей деятельности, Клод Шеннон поставил перед собой задачу улучшить передачу информации по телефонным и телеграфным каналам, которые находятся под воздействием электрических шумов. Тогда ученый выяснил, что наилучшим решением данной проблемы станет более эффективная «упаковка» информации. Однако прежде, чем приступить к исследованиям ему пришлось ответить на вопрос, что же такое информация и чем измерить ее количество. В 1948 году в статье «Математическая теория связи» он описал определение количества информации через энтропию, величину, которая известна в термодинамике как мера разупорядоченности системы, а наименьшую единицу информации назвал «битом».

Позже, основываясь на своих определениях количества информации, Шеннону удалось доказать гениальную теорему о пропускной способности зашумленных каналов связи. В годы ее разработки, теорема не нашла практического применения, зато в современном мире высокоскоростных микросхем она находит применение везде, где хранится, обрабатывается или передается информация.

Почти современник

Вклад Клода Шеннона в науку и его результаты трудно переоценить, ведь без его открытий стало бы невозможным существование компьютерной техники, Интернета и всего цифрового пространства. Кроме теорий, которые положили начало развития информационных технологий, гениальный инженер и математик так же сделал вклад в развитие многих других областей. Он одним из первых доказал то, что машины не только способны выполнять интеллектуальную работу, но и обучаться. В 1950 году, он изобрел механическую радиоуправляемую мышку, которая благодаря сложной электронной схеме могла найти дорогу в лабораторию самостоятельно. Также он стал автором устройства, которое было способно складывать кубик Рубика, а так же изобрел Гекс – электронное устройство для настольных игр, которое всегда побеждало соперников.

Гениальный ученый и изобретатель умер на 84 году жизни в 2001 году от болезни Альцгеймера в массачусетском доме престарелых.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ