Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Динамические и статические законы.

2. Динамические закономерности

Физические явления в механике, электромагнетизме и теории относительности в основном подчиняются, так называемым динамическим закономерностям. Динамические законы отражают однозначные причинно-следственные связи, подчиняющиеся детерминизму Лапласа.

Динамические законы - это законы Ньютона, уравнения Максвелла, уравнения теории относительности.

Классическая механика Ньютона

Основу механики Ньютона составляют закон инерции Галилея, два закона открытые Ньютоном, и закон Всемирного тяготения, открытый также Исааком Ньютоном.

1. Согласно сформулированному Галилеем закону инерции, тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет его из этого состояния.

Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.

2. Этот закон устанавливает связь между массой тела, силой и ускорением.

Второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе и обратно пропорционально массе материальной точки (тела)

Второй закон справедлив только в инерциальных системах отсчета. Первый закон можно получить из второго.

3. Устанавливает связь между силой действия и силой противодействия.

Третий закон Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки.

4. В качестве IV закона выступает закон всемирного тяготения.



Два любых тела притягиваются друг к другу с силой пропорциональной массе сил и обратно пропорциональной квадрату расстояния между центрами тел.

Уравнения Максвелла.

Уравнения Максвелла - наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. В учении об электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

Из уравнений Максвелла следует, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами

(электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

Уравнения теории относительности.

Специальная теория относительности, принципы которой сформулировал в 1905 г. А.Эйнштейн, представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория часто называется релятивистской теорией, а специфические явления, описываемые этой теорией - релятивистским эффектом (эффект замедления времени).

В основе специальной теории относительности лежат постулаты Эйнштейна:

принцип относительности: никакие опыты (механические, электрические, оптические), проведенные в данной инерциальной системе отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы к другой;

принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает таким образом, что физические законы инвариантны

по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления механические, электродинамические, оптические и др. во всех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату, постоянство скорости света в вакууме - фундаментальное свойство природы.

Общая теория относительности, называемая иногда теорией тяготения - результат развития специальной теории относительности. Из нее вытекает, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени может изменятся от одной области к другой в зависимости от концентрации масс в этих областях и их движения.

МЕХАНИЧЕСКИЙ ДЕТЕРМИНИЗМ

Детерминисты считают, что все происходящее в мире рассматривается как следствие действия объективных однозначных законов, а случайность является выражением непознанной необходимости. Возникло философское учение механический детерминизм, классическим представителем которого был Пьер Симон Лаплас (1749-1827) - французский математик, физик и философ. Лапласовский детерминизм выражает идею абсолютного детерминизма - уверенность в том, что всё происходящее имеет причину в человеческом понятии и есть непознанная разумом необходимость. Концепция детерминизма по Лапласу, предполагает однозначность и предопределенность будущего, это вытекает из признания жесткой причинно-следственной связи между событиями и явлениями и отрицает объективность случайности. В мире все объективно предопределено и детерминировано. Не может быть никаких "либо, либо". Будущее также однозначно, как и прошлое. Механический детерминизм объединяет в единое целое такие понятия, как "материя", "информация", "пространство" и "время". Все эти понятия должны рассматриваться как разные проявления единого нечто, которое условно может быть названо абсолютом.

1. Ввиду однозначности динамических законов природы, будущее также однозначно как и прошлое. Не существует никаких случайных событий, случайность - это непознанная необходимость.

2. Время - это средство реализации причинно-следственных связей, а так как причина всегда предшествует следствию, то течение времени всегда однозначно и однонаправлено.

3. Перемещение во времени возможно только от причины к следствию. Поэтому перемещение в прошлое из будущего возможно только в том случае, если это перемещение исключает возможность какого-либо активного вмешательства в течение прошлого.

4. Вместе с тем возможно пассивное перемещение, как в прошлое, так и в будущее, при условии только наблюдения за

происходящим и невозможности активного воздействия на него. Возможно только пассивное созерцание картин происходившего и будущего.

5. Течение времени может происходить в разных координатных системах, не совпадающих друг с другом, однако переход из одной - в другую, не может привести к нарушению причинно-временных связей и однозначности будущего.

Детерминизм - учение о причинной материальной обусловленности природных, социальных и психических явлений. Сущностью детерминизма является идея о том, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин.
Индетерминизм - учение, отрицающее объективную причинную обусловленность явлений природы, общества и человеческой психики.
В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей и находит свое более полное и общее отражение в фундаментальных физических теориях.
Фундаментальные физические теории (законы) представляют собой совокупность наиболее существенных знаний о физических закономерностях. Эти знания не являются исчерпывающими, но на сегодняшний день они наиболее полно отражают физические процессы в природе. В свою очередь, на основе тех или иных фундаментальных теорий формулируются частные физические законы типа закона Архимеда, закона Ома, закона электромагнитной индукции и т.д.
Ученые-науковеды едины во мнении, что основу любой физической теории составляют три главных элемента:
1) совокупность физических величин, с помощью которых описываются объекты данной теории (например, в механике Ньютона - координаты, импульсы, энергия, силы); 2) понятие состояния; 3) уравнения движения, то есть уравнения, описывающие эволюцию состояния рассматриваемой системы.
Кроме того, для решения проблемы причинности важное значение имеет подразделение физических законов и теорий на динамические и статистические (вероятностные).

Главной областью реального применения современной математики было и остается математическое моделирование. А то, что пытается моделировать математика в рамках развития физики, химии и инженерии, становится все более сложным и многоплановым. В частности, одним из самых важных моментов в становлении моделирования сложных процессов и система стало появления понятия и теории динамической системы.

Динамические системы в целом называют математическими абстракциями, которые предназначены для того, чтобы описывать эволюции определенных процессов во времени. Это модель некоторых объектов, явлений, процессов, которые разворачиваются во времени.

Часто динамические системы, изучаемые этой теорией, представляют как системы, которые обладают состоянием. В таком случае можно рассматривать динамическую систему как такую, которая описывает динамику какого-то процесса перехода системы от одного состояния к другому. Отсюда логически возникает определение фазового пространства системы, т.е. совокупности всех состояний, которые для нее являются допустимыми. В общем динамические системы в математической теории характеризуются двумя главными факторами: начальным состоянием системы и тем законом, по которому она переходит из этого состояния в следующие. Многие математические материалы сейчас находятся в электронном виде, они были переведы при помощи услуги сканирования и распознания текста.

Дальнейшее развитие теории привело к созданию различения систем, которые описываются так называемым дискретным временем и систем с непрерывным течением времени. Те, которые связаны с дискретным временем, получили названием каскадов, у них поведение систем может быть описано через последовательность состояний. Для систем непрерывного времени, которые еще называют потоками, их состояние может быть определено для каждого отдельного момента на комплексной или вещественной оси.

Таким образом, постепенно вследствие развития теория появились символическая и топологическая динамики, которые и изучают вышеописанные явления более подробно. С практической точки зрения динамические системы с любым типом времени чаще всего могут быть адекватно описаны с помощью автономных систем дифференциальных уравнений, которые задаются в некоторой области, и которые должны удовлетворять условиям теоремы существования и единственности для решения дифференциальных уравнений.

Теория динамических систем в целом занимается, фактически, исследованием кривых, которые образуются подобными дифференциальными уравнениями. В рамках таких исследований проводится разбиение фазового пространства системы на траектории и дальнейшее исследование возможного поведения этих траекторий, а также классификация возможных положений равновесия и выделения так называемых притягивающих и отталкивающих множеств, которые ими управляют (аттракторов и репеллеров).

Современные физические представления базируются на анализе всего предыдущего теоретического и экспериментального опыта физических исследований, единстве физических знаний, дифференциации и интеграции естественных наук и т.п., что позволяет подразделять законы физики на динамические и статистические. Соотношение этих законов дает возможность исследовать природу причинности и причинных отношений в физике.

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин, что все природные, социальные и психические явления обладают причинно-следственными связями, беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерминизму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей - существенных, повторяющихся связей между предметами и явлениями - задача науки, так же как и формулирование их в виде законов науки. Но никакое научное знание, никакая научная теория не могут отразить окружающий мир, его отдельные фрагменты полностью, без упрощений и огрублений действительности. То же касается и законов науки. Они могут лишь в большей или меньшей степени приближаться к адекватному отображению объективных закономерностей, но искажения в ходе этого процесса неизбежны. Поэтому для науки очень важно, какую форму имеют ее законы, насколько они соответствуют природным закономерностям.

В этом отношении динамическая теория, представляющая собой совокупность динамических законов, отражает физические процессы без учета случайных взаимодействий. Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Примерами динамических теорий являются классическая (ньютоновская) механика, релятивистская механика и классическая теория излучения.

Долгое время считалось, что никаких других законов, кроме динамических, не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики И. Ньютона. Если какие-то объективные процессы и закономерности не вписывались в предусмотренные динамическими законами рамки, считалось, что мы просто не знаем их причин, но с течением времени это знание будет получено.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и законов, называется механическим детерминизмом. Разработку этого требования обычно связывают с именем П. Лапласа. Он заявлял, что если бы нашелся достаточно обширный ум, которому были бы известны все силы, действующие на все тела Вселенной (от самых больших тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным. Такому уму открылись бы как прошлое, так и будущее Вселенной.

В середине XIX в. в физике были сформулированы законы, предсказания которых являются не определенными, а только вероятными. Они получили название статистических законов. Так, в 1859 г. была доказана несостоятельность позиции механического детерминизма: Д. Максвелл при построении статистической механики использовал законы нового типа и ввел в физику понятие вероятности. Это понятие было выработано ранее математикой при анализе случайных явлений.

При броске игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при очередном броске, нельзя. Мы можем подсчитать лишь вероятность выпадения числа очков. В данном случае она будет равна "Д. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая- то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что отражается динамическими законами, но она имеет другую форму, поскольку показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл таких событий; в таком случае мы можем получить статистические средние значения. Если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 х *Д = 50 раз. При этом безразлично, бросать одну и ту же кость 300 раз или одновременно бросить 300 одинаковых костей.

Несомненно, что поведение газовых молекул в сосуде гораздо сложнее брошенной кости. Но и здесь можно обнаружить определенные количественные закономерности, позволяющие вычислить статистические средние значения. Д. Максвеллу удалось решить эту задачу и показать, что случайное поведение отдельных молекул подчинено определенному статистическому (вероятностному) закону. Статистический закон - закон, управляющий поведением большой совокупности объектов и их элементов, позволяющий давать вероятностные выводы об их поведении. Примерами статистических законов являются квантовая механика, квантовая электродинамика и релятивистская квантовая механика.

Статистические законы в отличие от динамических отражают однозначную связь не физических величин, а статистических распределений этих величин. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма; в отличие от жесткого классического детерминизма он может быть назван вероятностным (современным) детерминизмом. «Вероятностные» законы меньше огрубляют действительность, способны учитывать и отражать те случайности, которые происходят в мире.

К началу XX в. стало очевидно, что нельзя отрицать роль статистических законов в описании физических явлений. Появлялось все больше статистических теорий, а все теоретические расчеты, проведенные в рамках этих теорий, полностью подтверждались экспериментальными данными. Результатом стало выдвижение теории равноправия динамических и статистических законов. Те и другие законы рассматривались как равноправные, но относящиеся к различным явлениям. Считалось, что каждый тип закона имеет свою сферу применения и они дополняют друг друга, что индивидуальные объекты, простейшие формы движения должны описываться с помощью динамических законов, а большая совокупность этих же объектов, высшие, более сложные формы движения - статистическими законами. Соотношение теорий термодинамики и статистической механики, электродинамика Д. Максвелла и электронная теория X. Лоренца, казалось, подтверждали это.

Ситуация в науке кардинально изменилась после возникновения и развития квантовой теории. Она привела к пересмотру всех представлений о роли динамических и статистических законов в отображении закономерностей природы. Был обнаружен статистический характер поведения отдельных элементарных частиц, никаких динамических законов в квантовой механике открыть не удалось. Таким образом, сегодня большинство ученых рассматривают статистические законы как наиболее глубокую и общую форму описания всех физических закономерностей.

Создание квантовой механики дает полное основание утверждать, что динамические законы представляют собой первый, низший этап в познании окружающего нас мира. Статистические законы более полно отражают объективные связи в природе, являются более высокой ступенью познания. На протяжении всей истории развития науки мы видим, как первоначально возникшие динамические теории, охватывающие определенный круг явлений, сменяются по мере развития науки статистическими теориями, описывающими тот же круг вопросов, но с новой, более глубокой точки зрения. Только они способны отразить случайность, вероятность, играющую огромную роль в окружающем нас мире. Только они соответствуют современному (вероятностному) детерминизму.

История развития науки показывает, как первоначально возникшие динамические теории сменяются статистическими, описывающими тот же круг явлений в макроскопических системах, в которых не рассматривают поведение отдельных элементов этой системы (например, единичной молекулы в газе) и изменения их характеристик, а оперируют величинами, характеризующими систему в целом, т.е. макропараметрами (например, давление в газе, плотность газа и т.д.). таким образом, можно сказать, что динамические теории строятся на основании усреднения законов поведения громадного числа частиц в равновесных (или слаборавновесных) условиях, и не учитывают вариации, полученных на основании этих теорий, результатов, которые бы изменялись под влиянием на систему окружающей ее среды. В реальных процессах всегда происходят неизбежные отклонения – флуктуации .Флуктуации – это случайные отклонения параметров системы (или всей системы) от средних значений параметров (или среднего, т.е. наиболее вероятного состояния системы).

Когда флуктуации значительны, в сложных системах с большим числом элементов, которые к тому же зависят от постоянно меняющихся внешних условий, статистические законы глубже и точнее описывают исследуемые процессы.

Главное отличие статистических законов от динамических – в учете случайного (флуктуаций).

В современном естествознании законы динамического типа сочетаются с законами статистического типа. Законы динамического типа используются для систем и процессов, в которых допустимо пренебречь влиянием реально существующих случайных факторов. Если же этого сделать нельзя, то применяют статистические теории, которые дают более глубокое, детальное и точное описание реальности.

Резюмируем все вышесказанное.

Состояние системы в естественных науках может задаваться :

Значениями измеряемых величин, характеризующих эту систему, на данный момент времени

Вероятностями, с которыми та или иная величина, характеризующая систему, принимает заданные значения.

Динамические научные теории :

Описывают состояние системы значениями измеряемых величин, характеризующих систему

Не учитывают и не позволяют описывать флуктуации – случайные отклонения системы от наивероятнейшего состояния

Не используют аппарат теории вероятности.

Статистические научные теории :

Позволяют рассчитывать и предсказывать лишь вероятность того, что величина, характеризующая систему, примет то или иное значение

Описывают состояние системы на языке вероятностей, с которыми та или иная величина, характеризующая систему, принимает заданные значения

Учитывают случайные отклонения от нормы

Описывают вероятное поведение систем, состоящих из огромного числа элементов.

Соответствие между динамическими и статистическими законами :

Динамической теории соответствует более точный статистический аналог, который полнее и глубже описывает реальность

Статистическая теория всегда описывает более широкий класс явлений, чем ее динамический аналог

Статистические законы более полно и глубоко отражают объективные связи в природе, т.к они учитывают реально существующую в мире случайность

Классическая механика Ньютона (динамическая теория) является приближением квантовой механики (статистической теории) при описании движения макрообъектов

Все фундаментальные статистические теории содержат в качестве своего приближения соответствующие динамические теории при условии, что можно пренебречь случайностью.

Динамическими теориями являются :

Механика

Электродинамика

Термодинамика

Теория относительности

Статистическими теориями являются :

Молекулярно-кинетическая теория газов

Квантовая механика, другие квантовые теории

Эволюционная теория Дарвина

Основные понятия статистических теорий :

Случайность (непредсказуемость)

Вероятность (числовая мера случайности)

Среднее значение величины

Флуктуация – случайное отклонение системы от среднего (наиболее вероятного состояния).

Страница 42 из 42

Динамические и статистические законы

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин, что все природные, социальные и психические явления связаны между собой причинно-следственными связями, а беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерми­низму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей – существенных, повторяющихся связей между предметами и явлениями – задача науки, так же, как и формулирование их в виде законов науки, которые являются нашим знанием о природных закономерностях.

Однако, как показывает история науки, никакое научное знание, никакая научная теория не могут отразить окружающий мир, его отдельные фрагменты полностью, без упрощений и огрублений действительности. То же самое касается и законов науки. Они могут лишь в большей или меньшей степени приближаться к адекватному отображению объективных закономерностей, но искажения в ходе этого процесса неизбежны. Поэтому для науки очень важно, какую форму имеют ее законы, насколько они соответствуют природным закономерностям.

Физика знает два типа физических законов (теорий) – динамические и статистические законы.

Динамический закон – это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно.

Динамическая теория - физическая теория, представляющая совокупность динамических законов.

Исторически первой и наиболее простой теорией такого рода явилась классическая механика Ньютона. Она претендовала на описание механического движения, т.е. перемещения в пространстве с течением времени любых тел или частей тел друг относительно друга с какой угодно точностью. О механике Ньютона, как и об электродинамике Максвелла, являющейся еще одной динамической теорией, мы говорили выше. Другими динамическими теориями являются механика сплошных сред, термодинамика и общая теория относительности (теория гравитации).

Долгое время считалось, что никаких других законов, кроме динамических, просто не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики Ньютона. Представление о том, что все объективные закономерности должны выражать однозначную связь физических объектов, оставалось незыблемым.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и законов, называется механическим детерминизмом. Формулирование этого требования в жесткой форме обычно связывают с именем Пьера Лапласа. Согласно провозглашенному Лапласом принципу, все явления в природе предопределены с «железной» необходимостью. Случайному как объективной категории нет места в нарисованной Лапласом картине мира. Только ограниченность наших познавательных способностей заставляет рассматривать отдельные события в мире как случайные. В силу этих причин, а также отмечая роль Лапласа, классический механический детерминизм называют еще жестким, или лапласовским, детерминизмом.

Необходимость отказа от классического детерминизма в физике стала очевидной после того, как выяснилось, что динамические законы не универсальны и не единственны. Более того, оказалось, что при описании движения отдельных макроскопических тел, которое всегда считалось сферой действия динамических законов, осуществление идеального классического детерминизма практически невозможно.

Кроме того, начальные параметры любых механических систем невозможно фиксировать с абсолютной точностью, поэтому точность предсказания со временем уменьшается. Для каждой механической системы существует некоторое критическое время, начиная с которого невозможно точно предсказать ее поведение.

Несомненно, что лапласовский детерминизм с определенной степенью точности отражает реальное движение тел, и в этом отношении его нельзя считать ложным. Но мы должны признать, что жесткий механический детерминизм очень сильно огрубляет реальные природные процессы. Реальная действительность намного разнообразнее, а жесткий детерминизм отражает лишь отдельные ее стороны. Мы должны постоянно помнить об этом и не допускать абсолютизации классического детерминизма.

В середине XIX в. в физике были сформулированы законы, предсказания которых не являются определенными, а только вероятными. Они получили название статистических законов.

Представление о законах и закономерностях особого типа, в которых связи между величинами, входящими в теорию, неоднозначны, впервые ввел Максвелл в 1859 г. при построении статистической механики – первой фундаментальной теории нового типа. Он первым понял, что при рассмотрении систем, состоящих из огромного числа частиц (в данном случае – молекулы газа в сосуде), нужно ставить задачу иначе, чем в механике Ньютона. Для этого Максвелл ввел в физику понятие вероятности, выработанное ранее математиками при анализе случайных явлений, в частности азартных игр.

При бросании игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при данном броске кости, нельзя. Мы можем подсчитать лишь вероятность выпадения любого числа очков. В данном случае она будет равна 1/6. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая-то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что отражается динамическими законами, но она имеет другую форму, так как показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл подобных событий. В данном случае мы можем получить статистические средние значения. Так, если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 ? 1/6 = 50 раз. При этом совершенно безразлично, бросать одну и ту же кость или одновременно бросить 300 одинаковых костей.

Статистические законы, в отличие от динамических законов, отражают однозначную связь не физических величин, а статистическое распределение этих величин. Результат, изменение состояния, которое определяется на основе соответствующих уравнений, также выражается не значениями физических величин, а вероятностями этих значений внутри заданных интервалов. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические теории, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма. В отличие от жесткого классического детерминизма, он может быть назван вероятностным (современным) детерминизмом. Эти законы меньше огрубляют действительность, имеют менее сильные гносеологические предпосылки, поэтому они способны учитывать и отражать те случайности, которые происходят в мире.

Сегодня любой известный в природе процесс более точно описывается статистическими законами. Но окончательно это стало ясно после создания квантовой механики – статистической теории, описывающей явления атомарного масштаба, то есть движение элементарных частиц и состоящих из них систем. Тогда была выяснена принципиальная невозможность динамического описания этих процессов.



Оглавление
Система наук о природе и естественно-научная картина мира.
Дидактический план
Предисловие
Тематический обзор
Основные науки о природе
Научный метод познания природы
Элементы научного метода познания
Псевдонаука
Фундаментальные и прикладные науки. Технология
Научные знания на Древнем Востоке
Появление науки в Древней Греции
Античная наука
Математическая программа Пифагора – Платона
Атомистическая программа Левкиппа и Демокрита
Континуальная программа Аристотеля
Развитие науки в эпоху эллинизма
Научные знания в Средние века
Основные черты средневекового мировоззрения и науки
Эпоха Возрождения: революция в мировоззрении и науке
Открытия Коперника и Бруно – фундамент первой научной революции


Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ