Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

В межзвездном пространстве существует множество облаков, состоящих в основном из водорода плотностью ок. 1000 ат/см 3 , размером от 10 до 100 св. лет. Их структура и, в частности, плотность непрерывно изменяются под действием взаимных столкновений, нагрева звездным излучением, давления магнитных полей и т.д. Когда плотность облака или его части становится настолько большой, что гравитация превосходит газовое давление, облако начинает неудержимо сжиматься – оно коллапсирует. Небольшие начальные неоднородности плотности в процессе коллапса усиливаются; в результате облако фрагментирует, т.е. распадается на части, каждая из которых продолжает сжиматься.

Вообще говоря, при сжатии газа возрастают его температура и давление, что может препятствовать дальнейшему сжатию. Но пока облако прозрачно для инфракрасного излучения, оно легко остывает, и сжатие не прекращается. Однако по мере нарастания плотности отдельных фрагментов их остывание затрудняется и возрастающее давление останавливает коллапс – так образуется звезда, а вся совокупность превратившихся в звезды фрагментов облака образует звездное скопление.

Коллапс облака в звезду или в звездное скопление продолжается около миллиона лет – сравнительно быстро по космическим масштабам. После этого термоядерные реакции, происходящие в недрах звезды, поддерживают температуру и давление, что препятствует сжатию. В ходе этих реакций легкие химические элементы превращаются в более тяжелые с выделением огромной энергии (подобное происходит при взрыве водородной бомбы). Выделившаяся энергия покидает звезду в виде излучения. Массивные звезды излучают очень интенсивно и сжигают свое «горючее» всего за несколько десятков миллионов лет. Звездам малой массы хватает их запаса топлива на многие миллиарды лет медленного горения. Рано или поздно у любой звезды топливо заканчивается, термоядерные реакции в ядре прекращаются и, лишенная источника тепла, она остается в полной власти собственной гравитации, неумолимо ведущей звезду к гибели.

Коллапс звезд малой массы.

Если после потери оболочки остаток звезды имеет массу менее 1,2 солнечной, то его гравитационный коллапс не заходит слишком далеко: даже лишенная источников тепла сжимающаяся звезда получает новую возможность сопротивляться гравитации. При высокой плотности вещества электроны начинают интенсивно отталкиваться друг от друга; это связано не с их электрическим зарядом, а с их квантово-механическими свойствами. Возникающее при этом давление зависит только от плотности вещества и не зависит от его температуры. Такое свойство электронов физики называют вырождением. У звезд малой массы давление вырожденного вещества способно сопротивляться гравитации. Сжатие звезды останавливается, когда она становится размером приблизительно с Землю. Такие звезды называют белыми карликами, поскольку светят они слабо, но имеют сразу после сжатия довольно горячую (белую) поверхность. Однако температура белого карлика постепенно снижается, и через несколько миллиардов лет такую звезду уже трудно заметить: она становится холодным невидимым телом.

Коллапс массивных звезд.

Если масса звезды более 1,2 солнечной, то давление вырожденных электронов не в состоянии сопротивляться гравитации, и звезда не может стать белым карликом. Ее неудержимый коллапс продолжается, пока вещество не достигнет плотности, сравнимой с плотностью атомных ядер (примерно 3Ч 10 14 г/см 3). При этом большая часть вещества превращается в нейтроны, которые, подобно электронам в белом карлике, становятся вырожденными. Давление вырожденного нейтронного вещества может остановить сжатие звезды, если ее масса не превышает приблизительно 2 солнечные. Образовавшаяся нейтронная звезда имеет диаметр всего ок. 20 км. Когда стремительное сжатие нейтронной звезды резко останавливается, вся кинетическая энергия переходит в тепло и температура поднимается до сотен миллиардов кельвинов. В результате происходит гигантская вспышка звезды, ее внешние слои с большой скоростью выбрасываются наружу, а светимость возрастает в несколько миллиардов раз. Астрономы называют это «взрывом сверхновой». Примерно через год яркость продуктов взрыва уменьшается, выброшенный газ постепенно охлаждается, перемешивается с межзвездным газом и в следующие эпохи входит в состав звезд новых поколений. Возникшая в ходе коллапса нейтронная звезда в первые миллионы лет быстро вращается и наблюдается как переменный излучатель – пульсар.

Если же масса коллапсирующей звезды значительно превышает 2 солнечные, то сжатие не останавливается на стадии нейтронной звезды, а продолжается до тех пор, пока ее радиус не уменьшится до нескольких километров. Тогда сила притяжения на поверхности возрастает настолько, что даже луч света не может покинуть звезду. Сжавшуюся до такой степени звезду называют черной дырой. Такой астрономический объект можно изучать только теоретически, используя общую теорию относительности Эйнштейна. Расчеты показывают, что сжатие невидимой черной дыры продолжается, пока вещество не достигнет бесконечно большой плотности.

ГРАВИТАЦИОННЫЙ КОЛЛАПС

Процесс гидродинамич. сжатия тела под действием собств. сил тяготения. Этот процесс в природе возможен только у достаточно массивных тел, в частности у звёзд. Необходимое условие Г. к.- понижение упругости в-ва внутри звезды, к-рое приводит к более быстрому нарастанию при сжатии сил тяготения по сравнению с силами внутр. давления. Это связано с расходом энергии на расщепление ядер и рождение ч-ц, в т. ч. нейтрино (см. НЕЙТРОНИЗАЦИЯ ВЕЩЕСТВА), и потерями энергии с нейтрино, уходящими из звезды. В течение эволюции звезды условия, ведущие к Г. к., осуществляются дважды: 1) при образовании звезды из межзвёздной пыли и газа, 2) при исчерпании термояд. горючего и достижении в центре звезды высоких значений плотности (r=107 - 1010 г/см3) и темп-ры (Т = 109- 1010 К). В первом случае Г. к. останавливается после начала в звезде термояд. реакций водородного цикла, ведущих к интенсивному выделению энергии. Второй случай возможен только у достаточно массивных звёзд с М > МЧ »1,2 Mсолн (MЧ - т. н. предел Чандрасекара, Mсолн - масса Солнца). Как показывает гидродинамич. теория, Г. к. развивается катастрофич. образом - скорости сжатия близки к скоростям свободного падения. Г. к. или заканчивается остановкой в состоянии горячей нейтронной звезды (r = 1014 г/см3, Т = 1011 К), если масса М?2-3 Mсолн, или переходит безостановочно в релятивистский Г. к. (при М>2-3 Mсолн), приводящий к образованию чёрной дыры. Очень важную роль при Г. к. играет мощное нейтринное излучение, порождаемое гл. обр. обычными бета-проессами (см. БЕТА-РАСПАД, НЕЙТРИННАЯ АСТРОФИЗИКА). Фактически нейтринное излучение определяет всю динамику Г. к., в частности скорости сжатия, время коллапса, темп-ру и плотность в-ва в случае остановки коллапса. Св-ва чёрной дыры описываются общей теорией относительности, поскольку около коллапсирующей звезды изменяются св-ва пространства-времени. За исключением ранних стадий развития Вселенной, Г. к.- единств. путь рождения чёрных дыр. Г. к. звёзд может сопровождаться сбросом внеш. оболочки, что связывается со вспышками сверхновых звёзд. Теория предсказывает сброс оболочки у коллапсирующих звёзд сравнительно небольших масс (М = MЧ). Хар-р сброса зависит от структуры оболочки, наличия в ней вращения и магн. поля. При сбросе оболочки, сопровождающем Г. к. центр. части звезды, образуются в большом кол-ве разл. хим. элементы (происходит нуклеосинтез).

  • - острая сосудистая недостаточность, характеризующаяся угнетением ц. н. с., резким снижением кровяного давления, уменьшением массы циркулирующей крови и нарушением обмена веществ...

    Ветеринарный энциклопедический словарь

  • - катастрофически быстрое сжатие звезды на последних стадиях эволюции под действием собственных сил тяготения, превосходящих ослабевающие силы давления нагретого газа звезды...

    Начала современного Естествознания

  • - катастрофически быстрое сжатие массивных тел под действием гравитационных сил. Гравитационным коллапсом может заканчиваться эволюция звезд с массой свыше двух солнечных масс. После исчерпания в таких звездах...

    Астрономический словарь

  • - I Колла́пс острая сосудистая недостаточность, характеризующаяся в первую очередь падением сосудистого тонуса, а также объема циркулирующей крови...

    Медицинская энциклопедия

  • - Патологическое состояние, характеризующееся угнетением ЦНС с резким снижением артериального и венозного давления, уменьшением массы циркулирующей крови...

    Толковый словарь психиатрических терминов

  • - в медицине остро развивающаяся сосудистая недостаточность в организме человека, характеризующаяся падением сосудистого тонуса и уменьшением массы циркулирующей крови...

    Словарь терминов черезвычайных ситуаций

  • - острая сосудистая недостаточность, развивающаяся в результате падения сосудистого тонуса и уменьшения объёма циркулирующей крови...

    Энциклопедия техники

  • - угрожающее жизни состояние, характеризующееся падением кровяного давления и ухудшением кровоснабжения жизненно важных органов...
  • Естествознание. Энциклопедический словарь

  • - остро развивающаяся сосудистая недостаточность, характеризующаяся падением сосудистого тонуса и уменьшением массы циркулирующей крови...

    Большой медицинский словарь

  • - угрожающее жизни состояние, характеризующееся падением кровяного давления и ухудшением кровообращения жизненно важных органов. В практике страхования К. - рисковое обстоятельство...

    Словарь бизнес терминов

  • - внезапный упадок сердечной деятельности, может перейти в паралич сердца, т. е. окончиться смертью...

    Энциклопедический словарь Брокгауза и Евфрона

  • - см. Коллапс гравитационный...
  • - острая сосудистая недостаточность, сопровождающаяся падением кровяного давления в артериях и венах...

    Большая Советская энциклопедия

  • - катастрофически быстрое сжатие звезды под действием сил тяготения. Согласно существующим астрономическим представлениям, К. г. играет определяющую роль на поздних стадиях эволюции массивных звезд...

    Большая Советская энциклопедия

  • - см. Гравитационный коллапс...

    Большой энциклопедический словарь

"ГРАВИТАЦИОННЫЙ КОЛЛАПС" в книгах

автора

Что такое гравитационный коллапс звезды?

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Что такое гравитационный коллапс звезды? Гравитационный коллапс звезды – катастрофически быстрое сжатие массивной звезды под действием гравитационных сил. Гравитационным коллапсом может заканчиваться эволюция звезд с массой свыше 1,5 солнечной массы. После исчерпания

Гравитационный коллапс

Из книги Крайон. Откровения: что мы знаем о Вселенной автора Тихоплав Виталий Юрьевич

Гравитационный коллапс Представим себе, что большая звезда имеет массу, превышающую в 5–10 раз массу нашего Солнца. Предположим, что ее способность взрываться полностью иссякла, и в данный момент она вращается вокруг своей оси со скоростью, равной скорости света.

Гравитационный сепаратор

Из книги 100 великих рекордов стихий автора

Гравитационный сепаратор Контракционная гипотеза до поры до времени устраивала большинство учёных, исследующих земные недра. Один-единственный процесс - контракция (сжатие) - объяснял, как был сформирован многообразный лик Земли и её недра, как образовались полезные

Что такое гравитационный коллапс звезды?

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора Кондрашов Анатолий Павлович

Что такое гравитационный коллапс звезды? Гравитационный коллапс звезды – катастрофически быстрое сжатие массивной звезды под действием гравитационных сил. Гравитационным коллапсом может заканчиваться эволюция звезд с массой свыше 1,5 солнечной массы. После исчерпания

Гравитационный сепаратор

Из книги 100 великих рекордов стихий [с иллюстрациями] автора Непомнящий Николай Николаевич БСЭ

Гравитационный парадокс

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационный потенциал

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Коллапс гравитационный

Из книги Большая Советская Энциклопедия (КО) автора БСЭ

автора Комаров Виктор

Гравитационный коллапс и «черные дыры»

Из книги Атеизм и научная картина мира автора Комаров Виктор

Гравитационный коллапс и «черные дыры» Вернемся к вопросу о геометрических свойствах Вселенной. Как мы уже знаем, они тесно связаны с характером распределения материи.Представим себе, что Вселенная однородна и изотропна. Что это значит? Разобьем мысленно Вселенную на

В космосе происходит много удивительных вещей, в результате которых появляются новые звезды, исчезают старые и формируются черные дыры. Одним из великолепных и загадочных явлений выступает гравитационный коллапс, который заканчивает эволюцию звезд.

Звездная эволюция - это цикл изменений, проходимый звездой за период ее существования (миллионы или миллиард лет). Когда водород в ней заканчивается и превращается в гелий, формируется гелиевое ядро, а сам начинает превращаться в красного гиганта - звезду поздних спектральных классов, которая обладает высокой светимостью. Их масса может в 70 раз превышать массу Солнца. Очень яркие сверхгиганты называются гипергигантами. Помимо высокой яркости они отличаются коротким периодом существования.

Сущность коллапса

Это явление считается конечной точкой эволюции звезд, вес которых составляет более трех солнечных масс (вес Солнца). Эта величина используется в астрономии и физике с целью определения веса других космических тел. Коллапс случается в том случае, когда гравитационные силы заставляют огромные космические тела с большой массой очень быстро сжиматься.

В звездах весом более трех масс Солнца есть достаточно материала для продолжительных термоядерных реакций. Когда субстанция заканчивается, прекращается и термоядерная реакция, а звезды перестают быть механически устойчивыми. Это приводит к тому, что они со сверхзвуковой скоростью начинают сжиматься к центру.

Нейтронные звезды

Когда звезды сжимаются, это приводит к возникновению внутреннего давления. Если оно растет с достаточной силой для того, чтобы остановить гравитационное сжатие, то появляется нейтронная звезда.

Такое космическое тело обладает простой структурой. Звезда состоит из сердцевины, которую покрывает кора, а она, в свою очередь, формируется из электронов и ядер атомов. Ее толщина равна примерно 1 км и является относительно тонкой, если сравнивать с другими телами, встречающимися в космосе.

Вес нейтронных звезд равен весу Солнца. Отличие между ними заключается в том, что радиус у них небольшой - не более 20 км. Внутри них взаимодействуют друг с другом атомные ядра, формируя, таким образом, ядерную материю. Именно давление со ее стороны не дает нейтронной звезде сжиматься дальше. Этот тип звезд отличается очень высокой скоростью вращения. Они способны совершать сотни оборотов в течение одной секунды. Процесс рождения начинается из вспышки сверхновой, которая возникает во время гравитационного коллапса звезды.

Сверхновые

Вспышка сверхновой представляет собой явление резкого изменения яркости звезды. Далее звезда начинает медленно и постепенно угасать. Так заканчивается последняя стадия гравитационного коллапса. Весь катаклизм сопровождается выделением большого количества энергии.

Следует заметить, что жители Земли могут увидеть этот феномен лишь постфактум. Свет достигает нашей планеты спустя долгий период после того, как произошла вспышка. Это стало причиной возникновения сложностей при определении природы сверхновых.

Остывание нейтронной звезды

После окончания гравитационного сжатия, в результате которого сформировалась нейтронная звезда, ее температура очень высока (намного выше, чем температура Солнца). Остывает звезда благодаря нейтринному охлаждению.

В течение пары минут их температура может опуститься в 100 раз. На протяжение последующих ста лет - еще в 10 раз. После того, как снижается, процесс ее охлаждения существенно замедляется.

Предел Оппенгеймера-Волкова

С одной стороны, этот показатель отображает максимально возможный вес нейтронной звезды, при котором гравитация компенсируется нейтронным газом. Это не дает возможность гравитационному коллапсу закончиться появлением черной дыры. С другой стороны, так называемый предел Оппенгеймера-Волкова является одновременно и нижним порогом веса черной дыры, которые были образованы в ходе звездной эволюции.

Из-за ряда неточностей сложно определить точное значение данного параметра. Однако предполагается, что оно находится в диапазоне от 2,5 до 3 масс Солнца. На данный момент, ученые утверждают, что самой тяжелой нейтронной звездой является J0348+0432. Ее вес составляет более двух масс Солнца. Вес самой легкой черный дыры составляет 5-10 солнечных масс. Астрофизики заявляют о том, что эти данные являются экспериментальными и касаются только на данный момент известных нейтронных звезд и черных дыр и предполагают возможность существования более массивных.

Черные дыры

Черная дыра - это один из самых удивительных феноменов, которые встречаются в космосе. Она представляет собой область пространства-времени, где гравитационное притяжение не позволяет никаким объектам выйти из нее. Покинуть ее не способны даже тела, которые могут двигаться со скоростью света (в том числе и кванты самого света). До 1967 года черные дыры назывались «застывшими звездами», «коллапсарами» и «сколлапсировавшими звездами».

У черной дыры есть противоположность. Она называется белой дырой. Как известно, из черной дыры невозможно выбраться. Что касается белых, то в них нельзя проникнуть.

Помимо гравитационного коллапса, причиной образования черной дыры может быть коллапс в центре галактики или протогалактического глаза. Также существует теория, что черные дыры появились в результате Большого Взрыва, как и наша планета. Ученые называют их первичными.

В нашей Галактике есть одна черная дыра, которая, по мнениям астрофизиков, образовалась из-за гравитационного коллапса сверхмассивных объектов. Ученые утверждают, что подобные дыры формируют ядра множества галактик.

Астрономы Соединенных Штатов Америки предполагают, что размер больших черных дыр может быть существенно недооценен. Их предположения основываются на том, что для достижения звездами той скорости, с какой они двигаются по галактике М87, находящейся в 50 миллионах световых лет от нашей планеты, масса черный дыры в центре галактики М87 должна быть не менее 6,5 миллиардов масс Солнца. На данный момент же принято считать, что вес самой большой черный дыры составляет 3 миллиарда солнечных масс, то есть более чем в два раза меньше.

Синтез черных дыр

Существует теория, что эти объекты могут появляться в результате ядерных реакций. Ученые дали им название квантовые черные дары. Их минимальный диаметр составляет 10 -18 м, а наименьшая масса - 10 -5 г.

Для синтеза микроскопических черных дыр был построен Большой адронный коллайдер. Предполагалось, что с его помощью удастся не только синтезировать черную дыру, но и смоделировать Большой Взрыв, что позволило бы воссоздать процесс образования множества космических объектов, в том числе и планеты Земля. Однако эксперимент провалился, поскольку энергии для создания черных дыр не хватило.

5.4.1. Звёздообразование: гравитационное сжатие, фрагментация газового облака, гравитационный коллапс

Звёзды рождаются в газопылевых туманностях в результате сложных физических процессов и в течение своей «жизни» проходят несколько стадий эволюции: звёздообразование, фазу нормальной звезды, стадию красного гиганта, превращение в «мёртвую» звезду (белый карлик, нейтронную звезду, чёрную дыру) или взрыв сверхновой.

Звёздообразование – это процесс превращения облаков разреженного газа в плотные самосветящиеся газовые шары – звёзды. Звёздообразование заключается в постепенном сжатии под действием собственной гравитационной силы определённого объёма межзвёздного газа до значений температуры и плотности, достаточных для возникновения термоядерных реакций в центре образовавшегося сгустка и прекращения дальнейшего сжатия.

Процесс звёздообразования можно разделить на несколько стадий: гравитационное сжатие, фрагментация газового облака и гравитационный коллапс.

Первоначально однородное достаточно протяжённое облако межзвёздного газа распадается на фрагменты вследствие гравитационной неустойчивости. Английский астроном Джеймс Джинс показал, что бесконечная однородная среда неустойчива, и сжатие, начавшееся в достаточно больших масштабах, будет продолжаться за счёт гравитации.

Минимальный критический размер области, начиная с которого возможно самопроизвольное гравитационное сжатие , называется длиной волны Джинса. Облако под действием собственной гравитации начнёт сжиматься при условии, что его полная энергия отрицательна. Полная энергия состоит из отрицательной энергии взаимодействия всех частиц, образующих облако, и положительной тепловой энергии этих частиц. Поэтому из критерия Джинса

Е полн = Е грав + Е тепл
можно получить выражения для длины волны Джинса (в пк) и соответствующего критического значения массы вещества (в ℳ ☉):

λ J = 10(T/n) ½

ℳ J = 40(T 3 /n) ½ ,

Где Т ~ 10 – 30 К, n ~ 10 2 см –3 .

Таким образом, оказывается, что сжиматься (коллапсировать) могут лишь области с массами, превышающими 1000ℳ ☉ . Однако стационарных звёзд с такими массами нет, поскольку как только начинается гравитационное сжатие, то давление и концентрация частиц увеличиваются, а температура почти не изменяется. Разреженная и пока прозрачная среда высвечивает гравитационную энергию в виде ИК-излучения. Изотермическое сжатие приводит к уменьшению длины волны Джинса, т.е. к возникновению гравитационной неустойчивости в более мелких масштабах в самом сжимающемся облаке – происходит фрагментация газопылевого облака .

Итак, становится ясным, почему звёзды возникают преимущественно группами, в виде звёздных скоплений. Число звёзд в скоплениях обычно составляет порядка 1000, что соответствует полученной оценке, и если полагать, что в конечном счёте образуются звёзды с массами, близкими к солнечной. Кроме того, становится понятным, почему массы звёзд заключены в сравнительно узких пределах.

Типичным примером газопылевой туманности, в которой в будущем возможно звёздообразование, является Конская Голова - тёмная туманность в созвездии Ориона. Туманность приблизительно 3,5 световых года в диаметре и является частью Облака Ориона, огромного газопылевого комплекса звездообразования, который окружает расположенную на расстоянии около 1500 св. лет Туманность Ориона.

Конская Голова – одна из наиболее известных туманностей, видна как тёмное пятно в форме конской головы на фоне красного свечения, которое объясняется ионизацией водородного газа, находящегося за туманностью, под действием излучения от ближайшей яркой звезды ζ Ориона. Тёмный фон туманности возникает в основном за счет поглощения света плотным слоем пыли.

Глобулами называют небольшие изолированные плотные тёмные газопылевые туманности, в которых возможен или уже начался процесс гравитационного сжатия. От других тёмных туманностей глобулу отличают резко очерченные границы и более высокая плотность составляющего её вещества, из-за чего глобула практически непрозрачна. Масса глобул находится в диапазоне 1–100 солнечных масс, при этом концентрация вещества оценивается в 10 4 –10 6 см –3 , размеры глобул порядка 1 пк.

В сферически-симметричном однородном газовом облаке должен происходить т. н. гомологический гравитационный коллапс , когда все слои облака сжимаются к его центру одновременно. Однако за счёт градиента давления внешние слои будут отставать от внутренних, которые по истечении определённого времени образуют плотное внутреннее ядро с массой около 0.01ℳ ☉ . Внешние слои, образующие протяжённую оболочку, будут продолжать падать на ядро, увеличивая его массу. Эту стадию называют также стадией аккреции вещества ядром. С ростом массы быстро растёт светимость ядра.

Протозвезда

Ядро, находящееся в гидростатическом равновесии, медленно сжимается и разогревается до тех пор, пока не начнутся термоядерные реакции. Выделяющаяся в термоядерных реакциях энергия нагревает вещество ядра, давление увеличивается, и сжатие ядра прекращается. Образовавшаяся звезда начинает спокойную эволюцию на стадии Главной последовательности.

При сжатии ядра протозвезды увеличивается его скорость вращения, в конце концов наступит момент, когда сжатие на экваторе остановится. Но при наличии магнитного поля, выходящего из ядра в оболочку, угловой момент ядра посредством магнитного поля может передаваться оболочке, благодаря чему сжатие ядра не прекращается. При этом оболочка из-за вращения принимает форму диска. При достаточно быстром вращении газового облака ядро не образуется, а всё вещество собирается в диске. Диск может распасться на две или большее число частей, из которых впоследствии образуются двойные или кратные звёзды.

5.4.2. Звёзды-коконы

При достаточно большой начальной массе фрагмента превращение в звезду может произойти и до окончания стадии аккреции. В этом случае ядро наберёт достаточную для начала термоядерных реакций массу, хотя ещё значительная часть вещества находится в оболочке. Возросшее излучение звезды (давление света) остановит дальнейшую аккрецию, и вокруг звезды останется плотная оболочка – кокон. Звёзды-коконы перерабатывают горячее излучение находящейся внутри них протозвезды в мощное ИК-излучение.

Примером звезды-кокона служит объект Беклина – Нейгебауэра (Becklin – Neugebauer Object) в туманности Ориона. Он находится в центре компактного и очень плотного скопления протозвёзд. Из них он наиболее массивный: звезда внутри кокона имеет массу около восьми солнечных. Её светимость близка к 2 тыс. солнечных, а температура излучения кокона около 600 К. Объект Беклина – Нейгебауэра открыт двумя астрономами, имена которых он носит, в 1966 г. как мощный ИК источник.

Сейчас известно уже более 250 объектов такого типа. Температура их пылевых коконов 300–600 К. Некоторые из них своим излучением уже почти разрушили коконы: наблюдения показывают, что их вещество расширяется со скоростью 10–15 км/с.

5.4.3. Эруптивные переменные звёзды

Характеристики звёзд типа Т Тельца (Т Tauri stars, TTS), или эруптивных переменных звёзд, являются отражением переходных нестационарных процессов, происходящих на стадии сжатия звезды к стадии Главной последовательности. TTS – это молодые переменные звёзды с массой

Звёзда Т Тельца

Звёзды типа Т Тельца выделены в отдельный класс астрофизических объектов по характерным эмиссионным спектрам, напоминающим спектр солнечной хромосферы. В спектрах таких звёзд присутствуют линии лития. Поскольку этот элемент выгорает при сравнительно низких температурах (1–2 млн. К), то можно полагать, что в звёздах типа Т Тельца термоядерные реакции ещё не начались, поскольку температура в их недрах недостаточно высока. Переменность такой звёзды проявляется в виде повторяющихся вспышек, которые могут быть объяснены различного рода выбросами вещества - эрупциями. На диаграмме Герцшпрунга – Рассела звёзды типа Т Тельца располагаются справа над главной последовательностью, обычно в области поздних спектральных классов G – M.

Звёзды типа Т Тельца чаще всего встречаются группами, особенно в пределах больших газопылевых туманностей. Небольшие яркие туманности наблюдаются и непосредственно вокруг самих этих звёзд, что говорит о существовании у них обширных газовых оболочек. Движение вещества в этих оболочках, связанное с процессом гравитационного сжатия звезды, по-видимому, является причиной хаотической её переменности. Отсюда следует, что звёзды типа Т Тельца - самые молодые образования, которые уже можно считать звёздами.

Кроме переменных типа Т Тельца принято выделять вспыхивающие звёзды типа UV Кита и фуоры (звёзды типа FU Ориона), которые находятся на заключительных стадиях гравитационного сжатия.

5.4.4. Стадия Главной последовательности

Звезда, излучающая за счёт выделения ядерной энергии, медленно эволюционирует по мере изменения её химического состава. Наибольшее время (более 90% своей жизни) звезда проводит на стадии, когда в её центральной области горит водород. Эта стадия называется Главной последовательностью на диаграмме Герцшпрунга – Рассела.

Время пребывания на Главной последовательности зависит от скорости термоядерных реакций, а скорость реакций - от температуры. Чем больше масса звезды, тем выше должна быть температура в её недрах, чтобы газовое давление могло уравновесить вес вышележащих слоев. Поэтому ядерные реакции в более массивных звездах идут быстрее и время пребывания на Главной последовательности для них меньше, так как быстрее расходуется энергия.

В начале стадии Главной последовательности звёзда по своему химическому составу однородна. В дальнейшем, на протяжении всей стадии Главной последовательности в результате выгорания водорода в центральных областях и образования гелия возникает неоднородность, особенно по мере приближения к центру звезды. Быстрее всего содержание гелия растёт в самом центре звезды. Когда водород в центре полностью выгорает, звезда уходит от Главной последовательности в область гигантов или при больших массах – сверхгигантов.

Представление о физических условиях в недрах звёзд можно получить, проведя некоторую аналогию с тем, что известно о Солнце. Если применить к веществу звезды уравнения, описывающие состояние идеального газа, то в итоге получим, что температура T 0 в центре звезды прямо пропорциональна массе звезды ℳ и обратно пропорциональна ее радиусу R:

Где K – некоторый коэффициент пропорциональности, который может быть определен из того предположения, что при R = R ☉ и ℳ = ℳ ☉ , T 0 должна быть близка к температуре в центре Солнца 1,5 × 10 7 К. Далее, использовав приближённые соотношения L bol ≈ R 5,2 и L bol ≈ ℳ 3,9 , получим:

T 0 = 1,5 × 10 7 R 1/3 .

Более точные расчёты показывают, что эта формула дает удовлетворительные результаты для всех звёзд Главной последовательности.

Поскольку, по мере продвижения вверх по Главной последовательности к более голубым звёздам, их радиусы и массы увеличиваются, то температура в центре звезд также возрастает (для класса B0 T 0 ≈ 3 × 10 7 К, а для K0 – T 0 ≈ 1 × 10 7 К).

От значения температуры сильно зависит характер ядерных реакций в недрах звезды, а также темп энерговыделения. Условия в недрах звезд классов G, K, M (у Солнца – в том числе) таковы, что выделение ядерной энергии у них происходит в основном в результате протон-протонной реакции (см. раздел 3.10.1 ). Мощность энерговыделения при этом типе реации E ~ T 4 . Большая длительность стадии выгорания водорода связана с очень малой вероятностью основной реакции протон-протонного цикла. Здесь надо отметить, что толщина наружной конвективной зоны зависит от эффективной температуры внешних слоев (фотосферы) звезды и от химического состава ее вещества. При T эфф ≤ 8000 К наружная конвективная зона развита тем сильнее, чем меньше эффективная температура звезды, т.к. её «холодная» поверхность не в состоянии передать всю поступающую изнутри энергию, и для этого необходим механический процесс (конвекция). Звезда класса M, например, практически вся состоит из конвективной зоны. С другой стороны, расчёты показывают, что при T эфф > 8000 К поверхностной конвективной зоны у звезды возникать не должно, поскольку выход энергии может быть обеспечен только за счёт её излучения.

В отличие от звёзд поздних спектральных классов, звёзды в верхней части Главной последовательности имеют массу больше солнечной. Следовательно, и температура в их недрах выше, а выделение термоядерной энергии происходит через углеродный цикл (см. раздел 3.10.2 ). Такая реакция может быть доминирующей при температуре в центре T 0 ≥ 1,6 × 10 7 K. Вследствие высокой температуры недр светимость таких звёзд также больше солнечной, а потому эволюционировать они должны быстрее.

Выделение энергии при углеродном цикле E ~ T 20 , т.е. оно происходит очень быстро, и излучение (путем так называемого лучистого переноса) не в состоянии вынести всю выделенную энергию из недр звезды. Поэтому для выноса энергии подключается механический процесс (конвекция), и в недрах такой звезды возникает центральная конвективная зона. Например, звезда с массой 10ℳ ☉ должна иметь внутреннюю конвективную зону радиусом около ¼ от радиуса всей звезды, в то время как плотность в центре такой звезды примерно в 40 раз больше солнечной.

Отличительной особенностью субкарликов является низкое содержание тяжелых элементов или металлов (в астрономии под этим термином часто понимают все химические элементы тяжелее гелия). Из этого следует, что субкарлики – преимущественно старые звезды, состоящие из вещества, еще не побывавшего в недрах других звёзд. Возникли они, по-видимому, на ранних стадиях эволюции Галактики. Поскольку прозрачность вещества звезды тем больше, чем меньше таких тяжелых элементов, то субкарлики отличаются большей прозрачностью по сравнению с другими звездами, что не требует возникновения поверхностной конвективной зоны.

5.4.5. Фаза красного гиганта

Звезда находится на Главной последовательности до тех пор, пока происходит выгорание водорода в ее центральном ядре. Постепенное преобразование водорода в гелий в ядре звезды приводит к увеличению молекулярного веса его вещества, а значит – к уменьшению давления, а затем к сжатию ядра, увеличению его температуры и, следовательно, светимости всей звезды. Общий радиус звезды при этом тоже увеличивается, а эффективная температура – падает.

Далее, когда заканчивается водород в центральной части звезды, она испытывает гравитационное сжатие в течение непродолжительного времени. Температура, давление в ядре звезды и её светимость возрастают. При данных условиях гелий еще не может вступить в термоядерный синтез, однако этого достаточно, чтобы вступил в такую реакцию водород, находящийся в тонком слое, окружающем гелиевое ядро звезды. После того, как это происходит, сильно увеличивается общий размер звезды, а эффективная температура падает. В результате у звезды возникает гигантская конвективная зона (по размеру примерно 90% от радиуса). Звезда вступает в стадию так называемого красного гиганта.

Наше Солнце тоже ожидает переход в стадию красного гиганта. Произойдет это, когда Солнцу будет, по разным оценкам, от 9 до 13 млрд. лет. Сейчас ему около 4,7 млрд. лет; водорода в центре 35% (в начале эволюции было ~73%).

Яркость Солнца возрастёт на 10% в течение ближайших 1,1 млрд. лет и ещё на 40% в течение следующих 3,5 млрд. лет. Согласно некоторым климатическим моделям, увеличение количества солнечного излучения, падающего на поверхность Земли, приведёт к катастрофическим последствиям, включая возможность полного испарения всех океанов. К этому моменту Солнце увеличится в диаметре на величину, равную примерно 99% нынешней дистанции до орбиты Земли (1 а. е.). Однако к тому времени орбита Земли может увеличиться до 1,7 а. е., поскольку ослабнет притяжение Солнца из-за уменьшения его массы. И хотя Земля (возможно) сможет избежать поглощения внешними оболочками Солнца, большая часть живых организмов (если не все) исчезнет в результате катастрофической близости к звезде.

Стадия красного гиганта, когда водород горит в слое, окружающем ядро, продлится у Солнца примерно 500 млн. лет. Затем последует быстрая (~50 млн. лет) стадия горения гелия и более тяжелых элементов в ядре и окружающем слое, сопровождающаяся сбросом оболочки, после чего Солнце превратится в медленно остывающий белый карлик.

Гелиевое ядро красного гиганта изотермично, поскольку лишено источников энергии. При ℳ > 2,5ℳ ☉ оно оказывается достаточно горячим, чтобы газ оставался идеальным. Впоследствии этот факт будет способствовать более быстрому вступлению гелия в термоядерный синтез. Наоборот, при ℳ
По мере выгорания водорода в слое, масса ядра растет, а сама зона ядерных реакций смещается все в более внешние слои, но до определенного предела, пока остаются условия для термоядерного синтеза. При ℳ = 1,3ℳ ☉ гелиевое ядро составляет 1/4 от всей массы звезды с размером в 1/1000 от ее радиуса и плотностью в центре ρ ≈ 350 кг/см 3 .

После выгорания водорода гелиевое ядро сжимается и возникают условия для вступления гелия в тройной α-процесс (см. раздел 3.10.3 ). Для эффективности этого процесса необходимо, чтобы температура была T ≥ 10 8 К и плотность ρ > 1–10 кг/см 3 . Реакция сгорания гелия в итоге порождает выход энергии 7,3 МэВ. Поскольку энерговыделение при этом происходит очень бурно (E ~ T 30), то иногда оно носит характер взрыва с резким расширением оболочек звезды и возможной потерей массы, после чего светимость резко падает, гелиевое ядро опять сжимается и т. д. Такое явление получило название гелиевая вспышка. Помимо указанной реакции образования углерода из гелия возможны и другие реакции, которые требуют все более и более высокой температуры (T > 1,5 × 10 8 К): 12 C + 4 He → 16 O + γ, 16 O + 4 He → 20 Ne + γ, 20 Ne + 4 He → 24 Mg + γ.

После возгорания гелия в ядре звезды у неё исчезает наружная конвективная оболочка, зато возникает конвекция в самом ядре. В этот период на диаграмме Герцшпрунга – Рассела звезда перемещается опять в сторону Главной последовательности. Это продолжается до тех пор, пока запасы гелия в ядре не истощатся. Далее, у звезды опять возникает протяженная наружная конвективная зона. Гелий, также как и водород, начинает гореть в тонком слое, окружающем теперь уже углеродное (если ℳ 40ℳ ☉) ядро. Звезда в этот период возвращается в область гигантов и сверхгигантов.

После этого у наиболее массивных звёзд в результате гравитационного сжатия и достижения необходимых условий (T > 10 9 К) начинается термоядерное горение углерода в ядре (12 C + 12 C) с образованием Ne, Na, Mg. Затем аналогично наступает очередь реакций с участием более тяжелых ядер: Ne, O, Si. Образуются ядра химических элементов вплоть до Fe, Co, Ni, Mn, Cr. Для этого требуется все более и более высокая температура и плотность в центре: T > 3 × 10 9 К и ρ ≈ 10 5 –10 9 г/см 3 . В результате звезда приобретает весьма сложную структуру, а у самых массивных звёзд образуется железное ядро. Надо отметить, что в результате отщепления с помощью высокоэнергетичных γ-квантов α-частиц с последующим их поглощением ядрами химических элементов могут образовываться и более тяжелые, чем Fe и Ni, ядра.

5.4.6. Цефеиды

Важной особенностью описанных эволюционных процессов является то обстоятельство, что звезда на диаграмме спектр-светимость как минимум хотя бы один раз пересекает зону, отмеченную как полоса нестабильности. В эту полосу попадает множество типов звёзд, которые в этом случае называются переменными и общим свойством которых являются пульсации, т. е. периодические изменения радиуса, эффективной температуры и светимости. Наиболее наглядное объяснение этому эффекту было дано для цефеид – физических переменных звезд, характерный представитель которых – это δ Цефея.

Основную роль в этом процессе играет частично дважды ионизованный гелий, выполняющий функцию клапана в наружных слоях звезды. Однократно ионизованный гелий обладает повышенной непрозрачностью для излучения, тогда как дважды ионизованный гелий – значительно более прозрачен. Случайное сжатие внешнего слоя ионизованного гелия приводит к повышению непрозрачности, поглощению излучения, разогреву внешней оболочки и всей звезды в целом, ионизации гелия, повышению давления, а, следовательно, расширению слоя, увеличению радиуса звезды. Это, в свою очередь, снижает непрозрачность слоя, звезда начинает терять энергию за счет излучения (повышается её светимость) и охлаждаться. Слой гелия опять сжимается, и все повторяется с начала.

Весьма важной при определении расстояний до удаленных объектов является обнаруженная связь между светимостью (средней абсолютной звёздной величиной) и периодом пульсации цефеид, которая с точностью до ±0 m .3 выглядит на данном этапе исследований так:

M = –(1.01 + 2.87lgP) = –2.5lg(L/L ☉) + 4 m .8,

Где P – период пульсации цефеиды, выраженный в сутках.

5.4.7. Возможные пути эволюции красного гиганта (сверхгиганта)

Ход дальнейшей эволюции звезды зависит, прежде всего, от её массы. В результате последующих эволюционных процессов красный гигант с начальной массой ℳ исходная может превратиться в один из типов «мёртвых» звёзд (т. е. в звезду, в недрах которой не осуществляются термоядерные реакции, и она светит вследствие иных физических процессов), либо исчезнуть (как звезда) в результате взрыва сверхновой. Масса звезды в процессе такого превращения (ℳ конечная) может существенно измениться.

Если к моменту окончания фазы красного гиганта масса звезды ℳ исходная заключена в пределах

0,8ℳ ☉
то, при условии, что ℳ конечная
Если исходная масса красного гиганта лежит в пределах

8ℳ ☉
а конечная ℳ конечная > 1,44ℳ ☉ , то произойдёт вспышка сверхновой типа Ia, в результате чего либо образуется нейтронная звезда, либо произойдёт полный разлёт остатков красного гиганта.

Если исходная масса красного сверхгиганта

ℳ исходная > 10ℳ ☉ ,

То произойдёт взрыв сверхновой типа II, в результате чего также образуется нейтронная звезда. Если при этом ℳ конечная > 2ℳ ☉ , то далее нейтронная звезда сколлапсирует в чёрную дыру.

5.4.8. Белые карлики и планетарные туманности

Горение гелия в ядре и в околоядерном слое сопровождается различными процессами, обуславливающими нестабильность состояния звезды (например, гелиевые вспышки). Это может приводить к постепенному истечению вещества (особенно тяжёлых элементов) под действием давления излучения (в основном это происходит в виде звездного ветра, имеющего скорость 10–30 км/с) или даже к внезапному сбросу внешних оболочек. Иногда звезда в течение жизни может терять до 70–80% массы вещества.

В звёздах с 0,8ℳ ☉
После потери всей оболочки, окружающей это ядро, оно превращается в «мёртвую» звезду – белый карлик – горячий компактный объект с массой порядка солнечной, но с радиусом, в десятки или даже сотни раз меньшим радиуса Солнца. При этом, чем больше масса белого карлика, тем меньше его размер и больше плотность. Сделанные расчёты приводят к таким предельным величинам: R ≥ 1027 км, ρ ≤ 2,3 × 10 10 г/см 3 . При таких плотностях электронные оболочки атомов разрушаются, и вещество представляет собой электронно-ядерную плазму, причём её электронная составляющая представляет собой вырожденный электронный газ.

Субраманьян Чандрасекар (1910 – 1995)

Вследствие малых размеров, несмотря на высокую эффективную температуру (вплоть до 70000 К), белые карлики имеют низкую светимость. Поскольку белые карлики лишены внутренних источников энергии, они, медленно остывая, постепенно излучают запасенную тепловую энергию. Светимость и температура их медленно снижается: известны, например, белые карлики с T эфф ≈ 5000 К. Рассчитано, что светимость L ≈ 0,001L ☉ соответствует возрасту примерно 10 9 лет. Примечателен вид спектров белых карликов. Спектральные линии (в основном – гелия) их сильно уширены из-за большого давления и имеют заметное гравитационное красное смещение.

Предельная масса белого карлика определяется пределом Чандрасекара:

ℳ Ch = 1,44ℳ ☉ .

При М > M Ch белый карлик вообще не может существовать как устойчивый объект, т.к. сила давления вырожденного газа оказывается неспособной противостоять гравитации, и звезда должна быстро сжиматься. Такой коллапс в некоторых случаях может приводить к возникновению нейтронной звезды.

Если сброс оболочки красного гиганта происходит очень быстро, то в результате образуется так называемая планетарная туманность . Она выглядит как кольцеобразная, быстро расширяющаяся газовая оболочка, окружающая яркую и горячую звезду в центре. Центральная звезда – не что иное, как белый карлик – раскаленное ядро бывшего красного гиганта.

5.4.9. Сверхновые звёзды. Сверхновые типа Ia и II

Сверхновыми называют звёзды, внезапно увеличивающие свою светимость в десятки миллионов раз и в максимуме достигающие абсолютной звёздной величины от –14 m до –21 m , что иногда превышает светимость всей материнской галактики. Обычно вспышка (излучение фотонов) сверхновой длится несколько сотен дней, так, что полная энергия, излучаемая сверхновой сравнима с излучением Солнца за всю его жизнь. С учётом энергии, уносимой нейтрино, энергия взрыва ещё на 4 порядка выше.

Исторически сверхновые (supernova, SN) были разделены на два типа в зависимости от их спектра. В спектре сверхновых типа I нет линий водорода, а типа II – есть. Со временем эти две группы разделили на подклассы. К типу I относят богатые кремнием SN типа Ia, богатые гелием SN типа Ib, а также те, в спектрах которых нет ни гелия, ни кремния (тип Ic). Сверхновые типа II разделяют на II-P, в кривых блеска которых наблюдается протяжённые (~ 100 сут) «плато», на II-L, кривые блеска которых линейно убывают со временем, и на II-n, в спектрах которых наблюдаются узкие линии.

Сверхновая звезда типа Іа (SN Ia) – это т. н. термоядерная сверхновая, в основе механизма взрыва которой лежит процесс термоядерного синтеза в углеродно-кислородном ядре звезды.

Предшественниками SN Ia являются белые карлики с массой, близкой к пределу Чандрасекара. Принято считать, что такие звезды могут образовываться при перетекании вещества от второй компоненты двойной звёздной системы, либо это конечный продукт эволюции молодых массивных звёзд типа Вольфа – Райе.

Механизм вспышки SN Ia заключается в следующем. При увеличении массы белого карлика постепенно увеличивается его плотность и температура. Наконец, при достижении температуры порядка 10 8 K, возникают условия для термоядерного «поджигания» углеродно-кислородной смеси. От центра к внешним слоям начинает распространяться фронт горения, оставляя за собой продукты горения - ядра группы железа. Распространение фронта горения происходит в медленном режиме и является неустойчивым к различным видам возмущений. Начинаются интенсивные крупномасштабные конвективные процессы, приводящие к ещё большему усилению термоядерных реакций и выделению энергии, необходимой для сброса оболочки сверхновой.

Характерная черта сверхновых типа Ia - сходство кривых блеска и одинаковая светимость в их максимуме. После открытия этого факта стало возможным использование сверхновых в качестве стандартных свеч. Поскольку причиной взрыва сверхновой типа Ia, как правило, является процесс перетекания вещества с красного гиганта на белый карлик, а предельная масса равна пределу Чандрасекара, то при взрывах сверхновых такого типа происходит выделение примерно одной и той же световой энергии. Наблюдая за кривой блеска, можно определить, какую же звёздную величину сверхновая имела в максимуме, а значит - и определить расстояние. В среднем в одной галактике сверхновые типа Ia вспыхивают 1 раз в 500 лет.

Наиболее известными сверхновыми типа Ia в нашей Галактике являются SN 1572 и SN 1604. SN 1572 или сверхновая Тихо Браге вспыхнула в созвездии Кассиопеи в ноябре 1572 года. В 1952 году на месте вспышки был найден источник радиоизлучения. В 1960 году остаток сверхновой был найден в оптическом диапазоне. SN 1604 или сверхновая Кеплера вспыхнула в 1604 году в созвездии Змееносца, приблизительно в 6000 парсеках от Солнечной системы. Максимальная видимая звёздная величина достигла −2,5.

Сверхновая типа Ia


Сверхновая SN 1987А

Сверхновые типа II . В процессе термоядерного синтеза и образования тяжёлых элементов звезда сжимается, а температура в её центре растёт. Если масса звезды достаточно велика, то процесс термоядерного синтеза доходит до завершения с образованием ядер железа и никеля, а сжатие продолжается. При этом термоядерные реакции будут продолжаться только в некотором слое звезды вокруг центрального ядра - там, где ещё осталось невыгоревшее термоядерное топливо. Центральное ядро сжимается все сильнее, и в некоторый момент из-за давления в нём протоны начинают поглощать электроны, превращаясь в нейтроны. Это вызывает быструю потерю энергии, уносимой образующимися нейтрино, так что ядро звезды сжимается и охлаждается. Процесс коллапса центрального ядра настолько быстр, что вокруг него образуется волна разрежения. Тогда вслед за ядром к центру звезды устремляется и оболочка. Далее происходит отскок вещества оболочки от ядра и образуется распространяющаяся наружу ударная волна. При этом выделяется достаточная энергия для сброса оболочки сверхновой с большой скоростью.

Принято считать, что образованием сверхновой II типа заканчивается эволюция всех звёзд, первоначальная масса которых превышает 10ℳ ☉ . После взрыва остаётся нейтронная звезда или чёрная дыра, а вокруг этих объектов в пространстве некоторое время существуют остатки оболочек взорвавшейся звезды в виде расширяющейся газовой туманности.

Примером сверхновой типа II служит SN 1987A, вспыхнувшая в галактике Большое Магелланово Облако приблизительно в 50 кпк от Солнца. Свет вспышки достиг Земли 23 февраля 1987. В максимуме она была видна невооружённым глазом, при этом пиковая видимая звёздная величина составила +3. Это самая близкая вспышка сверхновой со времён изобретения телескопа.

Крабовидная туманность

Важнейшей особенностью вспышек сверхновых звезд является мощный поток нейтрино, которые возникают в результате слабого взаимодействия протонов и электронов (p + e – → n + ν). Оболочки таких звёзд, рассеянные взрывом, образуют различного вида расширяющиеся туманности, которые затем хорошо наблюдаются в различных диапазонах длин волн (ярчайший пример – Крабовидная туманность).

Крабовидная туманность (M1, NGC 1952) - это газообразная туманность в созвездии Тельца. Она расположена на расстоянии около 6500 св. лет от Земли, имеет диаметр в 6 св. лет и расширяется со скоростью 1000 км/с. Крабовидная туманность является остатком сверхновой, взорвавшейся, согласно записям арабских и китайских астрономов, 4 июля 1054 года. Вспышка была видна на протяжении 23 дней невооружённым глазом даже в дневное время. В центре туманности находится нейтронная звезда.

Your browser does not support the video tag.

Взрыв сверхновой и образование
Крабовидной туманности

5.4.10. Нейтронные звёзды

Массивные (ℳ > 10ℳ ☉) звёзды проходят эволюционный путь горения вплоть до образования звёздного ядра из самого стабильного (максимальная энергия связи на нуклон) элемента 56 Fe. В таком ядре выделение ядерной энергии невозможно, рост давления не компенсирует рост сил тяготения при росте плотности и медленное квазистатическое сжатие сменяется быстрым коллапсом – происходит потеря гидродинамической устойчивости и взрыв сверхновой звезды. При быстром сжатии до плотности, близкой к плотности вещества в атомном ядре, выделяется огромное количество гравитационной энергии – примерно в 20 раз больше, чем за всё время ядерной эволюции, длящейся десятки млн. лет. Подавляющая часть этой энергии уносится нейтрино. После взрыва и сброса оболочки образуется остаток в виде нейтронной звезды – второй тип «мёртвых» звёзд.

Фактически вся звёздная эволюция может рассматриваться как своеобразный процесс нейтронизации первоначально почти протонного вещества. В чистом водороде число нейтронов равно нулю. В исходной для современного звёздообразования смеси водорода с 10% (по числу атомов) гелия на 9 протонов приходится 1 α-частица, т. е. отношение числа нейтронов к протонам равно 2/13. Превращение водорода в гелий увеличивает это отношение до 1/2. В конце эволюции звёзд при очень больших плотностях захваты электронов ядрами приводят к нейтронизации вещества – электроны как бы «вдавливаются» в протоны. Нейтроны при таких гравитационных силах являются уже стабильными частицами (не подвержены β-распаду).

Нейтронная звезда – это один из конечных продуктов эволюции звёзд, состоит из нейтронной сердцевины и тонкой коры вырожденного вещества с преобладанием ядер железа и никеля. Нейтронные звёзды имеют очень малый размер - 20–30 км в диаметре, поэтому средняя плотность вещества такой звезды порядка плотности атомного ядра (2,8 × 10 15 г/см 3).

Массы большинства известных нейтронных звёзд близки к 1,4 массы Солнца, т.е. значению предела Чандрасекара. Современные расчеты показывают, что для нейтронных звёзд также существует предельная масса (предел Толмана – Оппенгеймера – Волкова), при котором нейтронная звезда ещё не сколлапсирует в чёрную дыру: ℳ max ≤ 2,5ℳ ☉ . При этом плотность достигает ρ max ≥ 10 15 г/см 3 , а радиус – R ≈ 10 км. Однако существуют и «маленькие» нейтронные звезды, для которых ℳ min ≈ 0,1ℳ ☉ ; ρ min ≈ 2 × 10 14 г/см 3 ; R ≈ 200 км.

При сжатии обычной звезды в нейтронную напряжённость магнитного поля усиливается до 10 12 –10 13 Э (для сравнения: у Земли около 0,5 Э) в силу сохранения магнитного потока, и именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров, благодаря чему нейтронные звёзды и могут быть обнаружены. Если же нейтронная звезда входит в состав тесной звёздной системы, то происходит аккреция вещества на нейтронную звезду, следствием чего является нетепловое рентгеновское излучение.

5.4.11. Пульсары

В августе 1967 г. в Кембридже (Англия) было зарегистрировано космическое электромагнитное излучение в радиодиапазоне, исходящее от точечных источников в виде строго следующих друг за другом чётких импульсов (Нобелевская премия 1974 года). Длительность отдельного импульса у таких источников составляет от нескольких миллисекунд до нескольких десятых долей секунды. Резкость импульсов и необычайная правильность их повторений позволяют с очень большой точностью определить периоды пульсаций этих объектов, названных пульсарами (pulse + star). Периоды известных пульсаров заключены в пределах от 0,0015 до 4,3 с. В настоящее время известно более 1000 пульсаров. Расстояния до пульсаров в среднем составляет 3 кпк, т. е. пульсары принадлежат нашей Галактике и концентрируются в её плоскости.

Пульсарный эффект обусловлен сочетанием быстрого вращения и нетеплового излучения нейтронных звёзд. При сжатии до размеров нейтронной звезды её вращение, в силу закона сохранения момента количества движения, ускоряется до нескольких сотен оборотов в секунду. Промежуток времени между последовательными импульсами равен периоду вращения нейтронной звезды.

Эффект пульсара объясняется периодическим прохождением через наблюдателя узконаправленного конуса излучения, формирующегося вблизи поверхности вращающейся нейтронной звезды с сильным магнитным полем. Поскольку напряжённость магнитного поля нейтронной звезды у её магнитных полюсов составляет 10 12 –10 13 Э, то большие и быстро вращающиеся магнитные поля индуцируют в магнитосфере пульсара сильные электрические поля, ускоряющие заряженные частицы до ультрарелятивистских энергий. Эти частицы, в свою очередь, создают нетепловое синхротронное излучение пульсара, которое и непосредственно наблюдается с периодом, равным периодом вращения нейтронной звезды.

Поскольку кинетическая энергия пульсара трансформируется в электромагнитное излучение, то происходит его торможение и увеличения периода «пульсаций». Этот эффект подтверждён наблюдениями.

5.4.12. Гамма-всплески

Гамма-всплески – это гигантские выбросы электромагнитного излучения гамма-диапазона вдоль некоторого направления в пространстве, наблюдаемые в удалённых галактиках. Гамма-всплески принято подразделять на короткие и более длительные. Длительные гамма-всплески (продолжительностью более 2 секунд) принято связывать со вспышками сверхновых, короткие – со слиянием двойных нейтронных звёзд.

ГРАВИТАЦИОННЫЙ КОЛЛАПС, гидродинамическое сжатие космического объекта под действием собственных сил тяготения, приводящее к значительному уменьшению его размеров. Для развития гравитационного коллапса необходимо, чтобы силы давления (отталкивания) отсутствовали вообще или, по крайней мере, были недостаточны для противодействия силам гравитации. Гравитационный коллапс возникает на двух крайних стадиях эволюции звёзд. Во-первых, рождение звезды начинается с гравитационного коллапса газопылевого облака. Во-вторых, некоторые звёзды заканчивают свою эволюцию посредством гравитационного коллапса, их центральная часть (ядро) переходит при этом в конечное состояние нейтронной звезды или чёрной дыры. Одновременно разреженная оболочка может быть выброшена сильной ударной волной, что приводит к вспышке сверхновой звезды. Гравитационный коллапс происходит также и в более крупных масштабах - на определённых этапах эволюции ядер галактик. Астрономические наблюдения с помощью орбитальных космических телескопов в оптическом, ИК- и рентгеновском диапазонах убедительно свидетельствуют о присутствии в центрах некоторых галактик массивных чёрных дыр массой от нескольких миллионов до нескольких миллиардов масс Солнца. В центре нашей Галактики находится «точечный» невидимый объект - чёрная дыра с массой 3 миллионов масс Солнца, определённой по орбитам вращающихся вокруг неё соседних звёзд. Такие чёрные дыры первоначально возникают вследствие гравитационного коллапса и затем постепенно увеличивают свою массу, поглощая окружающее вещество.

Гравитационный коллапс связан с потерей устойчивости объекта по отношению к сжатию под действием сил гравитации. После потери устойчивости с течением времени объект всё сильнее отклоняется от исходного состояния гидростатического равновесия, причём силы гравитации начинают преобладать над силами давления, что вызывает дальнейшее ускорение сжатия. В основе гравитационного коллапса при рождении звёзд и при образовании нейтронных звёзд и чёрных дыр лежат совершенно различные физические процессы. Однако гидродинамическая картина развития гравитационного коллапса в основных чертах одинакова в обоих случаях.

Рождение звёзд связано с гравитационной неустойчивостью межзвёздной среды. При образовании нейтронных звёзд и чёрных дыр толчком к началу гравитационного коллапса служат потеря звездой устойчивости вследствие диссоциации атомных ядер на составляющие их нуклоны и/или нейтронизация вещества звезды (массовый захват атомными ядрами электронов), сопровождаемые интенсивными потерями энергии путём испускания электронных нейтрино.

Начавшийся гравитационный коллапс развивается во всё более ускоренном темпе в основном по двум причинам. Во-первых, затраты энергии на расщепление частиц вещества (диссоциация молекул и ионизация атомов при сжатии протозвёздных облаков, диссоциация атомных ядер при образовании нейтронных звёзд) приводят к снижению скорости роста давления, препятствующего сжатию вещества. Во-вторых, интенсивные потери энергии на излучение во время гравитационного коллапса ещё больше замедляют рост давления.

Детальное описание гравитационного коллапса можно получить лишь с помощью быстродействующих ЭВМ с учётом конкретных механизмов потерь энергии (ИК-излучение или нейтрино) и других физических свойств коллапсирующего вещества. Чем больше плотность вещества внутри коллапсирующего объёма, тем быстрее развивается гравитационный коллапс. Поэтому в первую очередь коллапсирует область вблизи центра звезды (центральное ядро). После остановки гравитационного коллапса ядра вещество оболочки наталкивается на него со сверхзвуковой скоростью, образуя сильную ударную волну (УВ). В центральной области объекта возникает избыток давления, под действием которого УВ перемещается в наружном направлении. УВ не только останавливает падение оболочки, но может также придать наружным слоям скорость, направленную от центра. Этот обнаруженный в детальных расчётах гравитационного коллапса эффект называется гидродинамическим отражением (отскоком). Его существование важно для диагностики гравитационного коллапса в наблюдениях, в частности для теории вспышек сверхновых звёзд.

После выпадения на ядро основной массы оболочки и затухания, вызванных гидродинамическим отражением пульсаций ядра гравитационный коллапс фактически заканчивается. Однако значительная доля выделившейся в процессе гравитационного коллапса энергии не успевает излучиться и оказывается запасённой в виде теплоты в образовавшемся плотном гидростатически равновесном объекте (в протозвезде или в горячей нейтронной звезде). По мере излучения энергии протозвезда продолжает медленно сжиматься. В соответствии с теоремой вириала температура в центре протозвезды повышается и, в конце концов, достигает величины, достаточной для протекания термоядерных реакций, - протозвезда превращается в обычную звезду.

На конечных стадиях эволюции массивных звёзд могут создаваться условия, благоприятные для образования неустойчивых к гравитационному коллапсу звёздных ядер с массой, превышающей предельную массу нейтронной звезды (2-3 массы Солнца). При таких обстоятельствах гравитационный коллапс уже не может остановиться на промежуточном состоянии равновесной нейтронной звезды и продолжается неограниченно с образованием чёрной дыры. Основную роль здесь играют эффекты общей теории относительности, поэтому такой гравитационный коллапс называется релятивистским.

На гравитационный коллапс могут существенно влиять вращение коллапсирующего объекта и его магнитное поле. При сохранении момента количества движения и магнитного потока скорость вращения и магнитное поле возрастают в процессе сжатия, что может изменить картину гравитационного коллапса не только количественно, но и качественно. Например, в отсутствие сферической симметрии становятся возможными потери энергии путём излучения гравитационных волн. Достаточно сильное начальное вращение может привести к остановке гравитационного коллапса на промежуточной стадии, когда дальнейшее сжатие окажется возможным лишь при наличии каких-либо механизмов потери момента количества движения или при фрагментации объекта на сгустки меньших размеров. Количественная теория гравитационного коллапса с учётом вращения и/или магнитного поля только начинает своё развитие и опирается на достижения современной вычислительной математики. Результаты, полученные для гравитационного коллапса без учёта вращения и магнитного поля, имеют тем не менее важное прикладное значение и являются в ряде случаев, по-видимому, хорошим приближением к действительности.

Исследования гравитационного коллапса приобрели особый интерес в связи с достижениями инфракрасной астрономии, которая позволяет наблюдать за рождением звёзд, а также с постройкой подземных нейтринных обсерваторий, способных зарегистрировать вспышку нейтринного излучения в случае образования нейтронных звёзд и чёрных дыр в нашей Галактике.

Лит.: Зельдович Я. Б., Новиков И. Д. Теория тяготения и эволюция звезд. М., 1971 ; Шкловский И. С. Звезды: их рождение, жизнь и смерть. 3-е изд. М., 1984; Физика космоса: Маленькая энциклопедия. 2-е изд. М., 1986: Физическая энциклопедия. М., 1988. Т. 1.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ