Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

В развитие идеи де-Бройля о волновых свойствах вещества Э. Шрёдингер получил в 1926 г. свое знаменитое уравнение. Шрёдингер сопоставил движению микрочастицы комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил греческой буквой «пси» (). Мы будем называть ее пси-функцией.

Пси-функция характеризует состояние микрочастицы. Вид функции получается из решения уравнения Шрёдингера, которое выглядит следующим образом:

Здесь - масса частицы, i - мнимая единица, - оператор Лапласа, результат действия которого на некоторую функцию представляет собой сумму вторых частных производных по координатам:

Буквой U в уравнении (21.1) обозначена функция координат и времени, градиент которой, взятый с обратным знаком, определяет силу, действующую на частицу. В случае, когда функция U не зависит явно от времени, она имеет смысл потенциальной энергии частицы.

Из уравнения (21.1) следует, что вид пси-функции определяется функцией U, т. е. в конечном счете характером сил, действующих на частицу.

Уравнение Шрёдингера является основным уравнением нерелятивистской квантовой механики. Оно не может быть выведено из других соотношений. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия самым точным образом согласуются с опытными фактами.

Шрёдингер установил свое уравнение, исходя из оптико-механической аналогии. Эта аналогия заключается в сходстве уравнений, описывающих ход световых лучей, с уравнениями, определяющими траектории частиц в аналитической механике. В оптике ход лучей удовлетворяет принципу Ферма (см. § 115 2-го тома), в механике вид траектории удовлетворяет так называемому принципу наименьшего действия.

Если силовое поле, в котором движется частица, стационарно, то функция V не зависит явно от времени и имеет, как уже отмечалось, смысл потенциальной энергии. В этом случае решение уравнения Шрёдингера распадается на два множителя, один из которых зависит только от координат, другой - только от времени:

Здесь Е - полная энергия частицы, которая в случае стационарного поля остается постоянной. Чтобы убедиться в справедливости выражения (21.3), подставим его в уравнение (21.1). В результате получим соотношение

Сократив на общий множитель придем к дифференциальному уравнению, определяющему функцию

Уравнение (21.4) называется уравнением Шрёдингера для стационарных состояний. В дальнейшем мы будем иметь дело только с этим уравнением и для краткости будем называть его просто уравнением Шрёдингера. Уравнение, (21.4) часто пишут в виде

Поясним, как можно прийти к уравнению Шрёдингера. Для простоты ограничимся одномерным случаем. Рассмотрим свободно движущуюся частицу.

Согласно идее де-Бройля ей нужно сопоставить плоскую волну

(в квантовой механике принято показатель экспоненты брать со знаком минус). Заменив в соответствии с (18.1) и (18.2) через Е и , придем к выражению

Продифференцировав это выражение один раз по t, а второй раз дважды по х, получим

В нерелятивистской классической механике энергия Е и импульс свободной частицы связаны соотношением

Подставив в это соотношение выражения (21.7) для Е и и сократив затем на , получим уравнение

которое совпадает с уравнением (21.1), если в последнем положить

В случае частицы, движущейся в силовом поле, характеризуемом потенциальной энергией U, энергия Е и импульс связаны соотношением

Распространив и на этот случай выражения (21.7) для Е и получим

Умножив это соотношение на , перенеся член влево, придем к уравнению

совпадающему с уравнением (21.1).

Изложенные рассуждения не имеют доказательной силы и не могут рассматриваться как вывод уравнения Шрёдингера. Их цель - пояснить, каким образом можно было прийти к установлению этого уравнения.

В квантовой механике большую роль играет понятие Под оператором подразумевают правило, посредством которого одной функции (обозначим ее ) сопоставляется другая функция (обозначим ее ). Символически это записывается следующим образом:

Здесь - символическое обозначение оператора (с таким же успехом можно было взять любую другую букву с «шляпкой» над ней, например и т. д.). В формуле (21.2) роль Q играет роль - функция F, а роль f - правая часть формулы.

Из статистического толкования волн де Бройля (см. § и соотношения не- определенностей Гейзенберга (см. § 215) следовало, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравне- ние, из которого бы вытекали наблю- даемые на опыте волновые свойства частиц.

Основное уравнение должно быть уравнением относительно волновой функции так как именно она, или, точнее, величина |Ф|2, определяет вероятность пребывания частицы в мо- мент времени t в объеме dV, в обла- сти с координатами и х + dx, y+dy,


z и Так как искомое уравнениедолжно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, опи- сывающему электромагнитные волны. Основное уравнение нерелятивист- ской квантовоймеханики сформулиро- вано в 1926 г. Э.Шредингером. Урав- нение Шредингера, как и все основные уравнения физики (например, уравне- ния Ньютона в классической механике и уравнения Максвелла для электро- магнитного поля), не выводится, а по- стулируется. Правильность этого урав- нения подтверждается согласием с опы- том получаемых с его помощью резуль- татов, что, в свою очередь, придает ему характер закона природы. Уравнение

Шредингера имеет вид

д е -
г масса частицы; А - оператор Лапласа

Мнимаяединица, y,z,t) -

Потенциальная функция частицы в си- ловом поле, в котором она движется; z,t) - искомая волновая функция

Уравнение справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоро- стью, т. е. со скоростью v с. Оно до- полняется условиями, накладываемы- ми на волновую функцию: 1) волновая функция должна быть конечной, одно- значной и непрерывной (см. § 216);

2) производные -, -, --, долж-

дх ду

ны быть непрерывны; 3) функция |Ф|2 должна быть интегрируема; это усло- вие в простейших случаях сводится к


Условию нормировки (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно де Бройля, сопостав- ляется Для простоты рассмот- рим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) t) = A cos - илив комплекснойзаписи t)- Следовательно, плоская волна де Бройля имеет вид

(217.2)

(учтено, что - = -). В квантово й

Показатель экспоненты берут со знаком « - », поскольку физический смысл имеет только |Ф|2, то это несуществен- но. Тогда

Используя взаимосвязь между энерги- ей Е и импульсом = --) и подставляя

выражения (217.3), получим дифференци- альное уравнение

которое совпадает с уравнением для случая U- О (мы рассматривали свободную частицу).

Если частица движется в силовом поле, характеризуемом потенциальной энерги- ей U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и ис- пользуя взаимосвязь между ("для

Случая = Е -U), придем к диффе- ренциальному уравнению, совпадающему с (217.1).


Приведенные рассуждения не долж- ны восприниматься как вывод уравне- ния Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравне- ния Шредингера является согласие с опытом тех выводов, к которым приводит.

Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость времени, иными словами, найти урав- нение Шредингера для стационарных состояний - состояний с фиксирован- ными значениями энергии. Это возмож- но, если силовое поле, в котором час- тица движется, стационарно, т. е. функ- ция U= z) не зависит явно от вре- мени и имеет смысл потенциальной энергии.

В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выража-

Ется множителем е" = е, так что

(217.4)

где Е - полная энергия частицы, посто- янная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

Откуда после деления па общий множи- тель е соответствующих преобра-


зовании придем к уравнению, опреде- ляющему функцию

Уравнение урав-

нением Шредингера для стационар- ных состояний. В это уравнение в ка- честве параметра входит полная энер- гия Е частицы. В теории дифференци- альных уравнений доказывается, что подобные уравнения имеют бесчислен- ное множество решений, из которых по- средством наложения граничных усло- вий отбирают решения, имеющие фи- зический



Для уравнения Шредингера такими условиями являются условия регуляр- ности волновых функций: волновые функции должны быть конечными, од- нозначными и непрерывными вместе со своими первыми производными.

Таким образом, реальный физичес- кий смысл имеют только такие реше- ния, которые выражаются регулярны- ми функциями Но регулярные реше- ния имеют место не при любых значе- ниях параметра Е, а лишь при опреде- ленном их наборе, характерном для дан- ной задачи. Эти значения энергии на- зываются собственными. Решения же, которые соответствуют собственным значениям энергии, называются соб- ственными функциями. Собственные значения Е могут образовывать как не- прерывный, так и дискретный ряд. В пер- вом случае говорят о непрерывном, или сплошном, спектре, во втором - о дис- кретном спектре.

§ 218. Принцип причинности в квантовой механике

Из соотношения неопределенностей часто делают вывод о неприменимости


принципа причинности к явлениям, происходящим в микромире. При этом основываются на следующих соображе- ниях. В классической механике, соглас- но принципупричинности- принци- пу классического детерминизма, по известному состоянию системы в неко- торый момент времени (полностью оп- ределяется значениями координат и импульсов всех частиц системы) и си- лам, приложенным к ней, можно абсо- лютно точно задать ее состояние в лю- бой последующий момент. Следова- тельно, классическая физика основыва- ется на следующем понимании причин- ности: состояние механической систе- мы в начальный момент времени с из- вестным законом взаимодействия час- тиц есть причина, а ее состояние в пос- момент - следствие.

С другой стороны, микрообъекты не могут иметь одновременно и опреде- ленную координату, и определенную соответствующую проекцию импульса [задаются соотношением неопределен- ностей поэтому и делается вы- вод о том, что в начальный момент вре- мени состояние системы точно не оп- ределяется. Если же состояние системы не определенно в начальный момент времени, то не могут быть предсказаны и последующие состояния, т. е. наруша- ется принцип причинности.

Однако никакого нарушения прин- ципа причинности применительно к микрообъектам не наблюдается, по- скольку в квантовой механике понятие состояния микрообъекта приобретает совершенно иной смысл, чем в класси- ческой механике. В квантовой меха- нике состояние микрообъекта полнос- тью определяется волновой функцией квадрат модуля которой

2 задает плотность вероятно- сти нахождения частицы в точке с ко- ординатами х, у, z.

В свою очередь, волновая функция удовлетворяет уравнению

Шредингера содержащему пер- вую производную функции Ф по време- ни. Это же означает, что задание функ- ции (для момента времени опре- деляет ее значение в последующие мо- менты. Следовательно, в квантовой ме- ханике начальное состояние есть причина, а состояние Ф в последующий момент - следствие. Это и есть форма принципа причинности в квантовой механике, т.е. задание функции пре- допределяет ее значения для любых последующих моментов. Таким обра- зом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшествую- щего состояния, как того требует прин- цип причинности.

§219. Движение свободной частицы

Свободнаячастица - частица,дви- жущаяся в отсутствие внешних полей. Так как на свободную (пусть она движется вдоль оси х) силы не дей- ствуют, то потенциальная энергия час- тицы U(x) = const и ее можно принять равной нулю. Тогда полная энергия ча- стицы совпадает с ее кинетической энергией. В таком случае уравнение Шредингера (217.5) для стационарных состояний примет вид

(219.1)

Прямой подстановкой можно убе- диться в том, что частным решением уравнения (219.1) является функция - где А = const и к = const, с собственным значением энергии


Функция = = представляет собой только координат- ную часть волновой функции Поэтому зависящая от времени волно- вая функция, согласно (217.4),

(219.3) представляет собой плоскую монохроматическую волну де Бройля [см. (217.2)].

Из выражения (219.2) следует, что зависимость энергии от импульса

оказывается обычной для нерелятиви- стских частиц. Следовательно, энергия свободной частицы может принимать любые значения (так как волновое чис- ло к может принимать любые положи- тельные значения), т. е. энергетический спектр свободной частицы является непрерывным.

Таким образом, свободная квантовая частица описывается плоской монохро- матической волной де Бройля. Этому соответствует не зависящая от време- ни плотность вероятности обнаружения частицы в данной точке пространства

т. е. все положения свободной частицы в пространстве являются равновероят- ными.

§ 220. Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими

«стенками»

Проведем качественный анализ ре- шений уравнения Шредингера приме-


Рис. 299



(220.4)

нительно к частице в одномерной пря- моугольной «потенциальной яме» с бесконечно высокими «стенками». Та- кая «яма» описывается потенциальной энергией вида (для простоты принима- ем, что частица движется вдоль оси х)

где ширина «ямы», а энергия отсчи- тывается от ее дна (рис. 299).

Уравнение Шредингера (217.5) для стационарных состояний в случае одно- мерной задачи запишется в виде

По условию задачи (бесконечно вы- сокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и вол- новая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х- 0 и х = непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные усло- вия в данном случае имеют вид

В пределах «ямы» (0 х урав- нение Шредингера (220.1) сведется к уравнению

Общее решение дифференциально- го уравнения (220.3):

Так как по (220.2) = 0, то В = 0.

(220.5)

Условие (220.2) = 0 выполняется только при где п - целые числа, т. е. необходимо, чтобы

Из выражений (220.4) и (220.6) сле- дует,

т. е. стационарное уравнение Шредин- гера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяет- ся только при собственных значени- ях зависящих от целого числа п. Следовательно, энергия частицы в

«потенциальной яме» с бесконечно вы- сокими «стенками» принимает лишь определенныедискретныезначения, т.е. квантуется.

Квантованные значения энергии называются уровнями энергии, а чис- ло п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определен- ном энергетическом уровне или, как говорят, частица находится в квантовом


Подставив в (220.5) значение к из (220.6), найдем собственные функции:


Постоянную интегрирования А най- дем из условия нормировки (216.3), которое для данного случая запишется в виде

В результате интегрирования полу-

А - а собственные функции будут иметь вид

I рафики собственных функции (220.8), соответствующие уровням

энергии (220.7) при п=1,2, 3, приведе- ны на рис. 300, а. На рис. 300, б изобра- жена плотность вероятности обнаруже- ния частицы на различных расстояни- ях от «стенок» ямы, равная =

Для п= 1, 2 и 3. Из рисун- ка следует, что, например, в квантовом состоянии с п = 2 частица не может на- ходиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое пове- дение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны. Из выражения (220.7) вытекает, что энергетический интервал между двумя

Соседними уровнями равен


Например, для электрона при раз- мерах ямы - 10"1 м (свободные элек-


Троны в металле) 10 Дж

Т. е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерыв- ным. Если же размеры ямы соизмери- мы с атомными м), то для электрона Дж эВ, т.е. получаются явно дискретные зна- чения энергии (линейчатый спектр).

Таким образом, применение уравне- ния Шредингера к частице в «потенци- альной яме» с бесконечно высокими

«стенками» приводит к квантованным значениям энергии, в то время как клас- сическая механика на энергию этой ча- стицы никаких ограничений не накла- дывает.

Кроме того,

Рассмотрение данной задачи приводит к выводу, что частица «в потенциаль- ной яме» с бесконечно высокими «стен- ками» не может иметь энергию меньше

Минимальной, равной [см. (220.7)].

Наличие отличной от нуля мини- мальной энергии не случайно и выте- кает из соотношения неопределеннос- тей. Неопределенность координаты Ах частицы в «яме» шириной Ах= Тогда, согласно соотношению неопре- деленностей импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса

Такому разбросу значений


импульса соответствует кинетическая энергия

Все остальные уровни (п > 1) име- ют энергию, превышающую это мини- мальное значение.

Из формул (220.9) и (220.7) следу- ет, что при больших квантовых числах

т. е. соседние уровни расположены тес- но: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последова- тельности уровней и характерная осо- бенность квантовых процессов - диск- ретность - сглаживается. Этот резуль- тат является частным случаем принци- па соответствия Бора (1923), соглас- но которому законы квантовой механи- ки должны при больших значениях квантовых чисел переходить в законы классической физики.

Более общая трактовка принципа соответствия: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полнос- тью, а включает в себя классическую теорию, указывая границы ее примене- ния, причем в определенных предель- ных случаях новая теория переходит в старую. Так, формулы кинематики и динамики специальной теории относи- тельности переходят при v с в форму- лы механики Ньютона. Например, хотя гипотеза да Бройля приписывает вол- новые свойства всем телам, но в тех слу- чаях, когда мы имеем дело с макроско- пическими телами, их волновыми свой- ствами можно пренебречь, т.е. приме- нять классическую механику Ньютона.


§ 221. Прохождение частицы сквозь потенциальный барьер.

Туннельный эффект

простейший потенци- альный барьер прямоугольной формы (рис. для одномерного (по оси движения частицы. Для потенциально- го барьера прямоугольной формы вы- сотой шириной /можем записать

При данных условиях задачи клас- сическая частица, обладая энергией Е, либо беспрепятственно пройдет над ба- рьером (при Е > U), либо отразится от него (при Е < U) будет двигаться в обратную сторону, т.е. она не может проникнуть сквозь барьер. Для микро- частицы, даже при Е > U, имеется от- личная от нуля вероятность, что части- ца отразится от барьера и будет двигать- ся в обратную сторону. При Е име- ется также отличная от нуля вероят- ность, что частица окажется в области х> т.е. проникнет сквозь барьер. По- добные, казалось бы, парадоксальные выводы следуют непосредственно из решения уравнения Шредингера, опи-


412


сывающего движение микрочастицы при условиях данной задачи.

Уравнение (217.5) для стационарных состояний для каждой из выделенных рис. 301, а области име- ет

(для областей

(для области

Общие решения этих дифференци- альных уравнений:


Решение (221.3) содержит также волны (после умножения на временной множитель), распространяющиеся в обе стороны. Однако в области 3 име- ется только волна, прошедшая сквозь барьер и распространяющаяся слева направо. Поэтому коэффициент формуле (221.3) следует принять рав- ным нулю.

В области 2 решение зависит от со- отношений E>U или Е Физичес- кий интерес представляет случай, ког- да полная энергия частицы меньше вы- соты потенциального барьера, посколь- ку при Е законы классической фи- зики однозначно не разрешают части- це проникнуть сквозь барьер. В данном случае, согласно q = - мни- мое число, где

(для области

(для области 2);




Значение q и 0, полу- чим решения уравнения Шредингера для трех областей в следующем виде:


(для области 3).

В частности, для области 1 полная волновая функция, согласно (217.4), будет иметь вид


В этом выражении первое слагаемое представляет собой плоскую волну типа (219.3), распространяющуюся в положительном направлении оси х (со- ответствует частице, движущейся в сто- рону барьера), а второе - волну, рас- пространяющуюся в противоположном направлении, т. е. отраженную от барь- ера (соответствует частице, движущей- ся от барьера налево).


(для области 3).

В области 2 функция уже не соответствует плоским волнам, распро- страняющимся в обе стороны, посколь- ку показатели степени экспонент не мнимые, а действительные. Можно по- казать, что для частного случая высо- кого и широкого барьера, когда 1,

Качественный характер функций и иллюстрируется на рис. 301, откуда следует, что волно-


Функция не равна нулю и внутри ба- рьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей ампли- тудой. Следовательно, получили, что частица имеет отличную от нуля веро- ятность прохождения сквозь потенци- альный барьер конечной ширины.

Таким образом, квантовая механика приводит к принципиально новому спе- цифическому квантовому явлению, по- лучившему название туннельного эф- фекта, в результате которого микро- объект может «пройти» сквозь потен- циальный барьер. через Совместное решение уравнений для прямоугольного потенциального барьера дает (в предпо- ложении, что коэффициент прозрачно- сти мал по сравнению с единицей)


где - постоянный множитель, кото- рый можно приравнять единице; U - высота потенциального барьера; Е - энергия частицы; - ширина барьера.

Из выражения (221.7) следует, что D сильно зависит от массы т частицы, ширины / барьера и от (U - чем шире барьер, тем меньше вероятность прохождения сквозь него частицы.

Для потенциального барьера произ- вольной формы (рис. 302), удовлетво- ряющей условиям так называемого ква- зиклассического приближения (доста- точно гладкая форма кривой), имеем


где U= U(x).

С классической точки зрения про- хождение частицы сквозь потенциаль- ный барьер при Е невозможно, так как частица, находясь в области барье- ра, должна была бы обладать отрица- тельной кинетической энергией. Тун- нельный эффект является специфиче- ским квантовым эффектом.

Прохождение частицы сквозь об- ласть, в которую, согласно законам клас- сической механики, она не может про- никнуть, можно пояснить соотношени- ем неопределенностей. Неопределен- ность импульса Ар на отрезке Ах = со- ставляет Ар > -. Связанная с этим раз- бросом в значениях импульса кинети-

302

Ческая энергия может оказаться

достаточной для того, чтобы полная

энергия частицы оказалась больше по- тенциальной.

Основы теории туннельных перехо- дов заложены в работах Л. И. Мандель- штама

Туннельное прохождение сквозь потен- циальный барьер лежит в основе мно- гих явлений физики твердого тела (на- пример, явления в контактном слое на границе двух полупроводников), атом- ной и ядерной физики (например, распад, протекание термоядерных реак- ций).

§ 222. Линейный гармонический осциллятор

В квантовой механике

Линейный гармонический осцил- лятор - система, совершающая одно- мерное движение под действием квази- упругой силы, - является моделью, ис- пользуемой во многих задачах класси- ческой и квантовой теории (см. § 142). Пружинный, физический и математи- ческий маятники - примеры класси- ческих гармонических осцилляторов.

Потенциальная энергия гармони- ческого осциллятора [см. (141.5)] равна

Где - собственная частота колебаний осциллятора; т - масса частицы.

Зависимость (222.1) имеет вид пара- болы (рис. 303), т.е. «потенциальная яма» в данном случае является парабо- лической.

Амплитуда малых колебаний клас- сического осциллятора определяется его полной энергией Е (см. рис. 17).


дингера учитывающим выраже- ние (222.1) для потенциальной энергии. Тогда стационарные состояния кванто- вого осциллятора определяются урав- нением Шредингера вида

= 0, (222.2)

где Е - полная энергия осциллятора. В теории дифференциальных урав-

нений доказывается, что уравнение (222.2) решается только при собствен- ных значениях энергии

(222.3)

Формула (222.3) показывает, что энергия квантового осциллятора может


иметь лишь дискретные значения, т. е. квантуется. Энергия ограничена сни- зу отличным от нуля, как и для прямо- угольной «ямы» с бесконечно высоки- ми «стенками» (см. § 220), минималь- ным значением энергии = Су-

ществование минимальной энергии - она называется энергией нулевых ко- лебаний - является типичной для кван- товых систем и представляет собой пря- мое следствие соотношения неопреде- ленностей.

Наличие нулевых колебаний означа- ет, что частица не может находиться на дне «потенциальной ямы» (независимо от формы ямы). В самом деле, «падение на дно ямы» связано с обращением в нуль импульса частицы, а вместе с тем и его неопределенности. Тогда неопреде- ленность координаты становится сколь угодно большой, что противоречит, в свою очередь, пребыванию частицы в

«потенциальной яме».

Вывод о наличии энергии нулевых колебаний квантового осциллятора про- тиворечит выводам классической тео- рии, согласно которой наименьшая энергия, которую может иметь осцил- лятор, равна нулю (соответствует поко- ящейся в положении равновесия части- це). Например, согласно выводам клас- сической физики при Т = 0 энергия колебательного движения атомов кри- сталла должна была бы обращаться в нуль. Следовательно, должно исчезать и рассеяние света, обусловленное коле- баниями атомов. Однако эксперимент показывает, что интенсивность рассея- ния света при понижении температуры не равна нулю, а стремится к некоторо- му предельному значению, указываю- щему на то, что при Т 0 колебания атомов в кристалле не прекращаются. Это является подтверждением наличия нулевых колебаний.


Из формулы (222.3) также следует, что уровни энергии линейного гармо- нического осциллятора расположены на одинаковых расстояниях друг от друга (см. рис. 303), а именно расстоя- ние между соседними энергетическими уровнями равно причем минималь- ное значение энергии =

Строгое решение задачи о квантовом осцилляторе приводит еще к одному значительному отличию от классиче

Введение

Известно, что курс квантовой механики является одним из сложных для восприятия. Это связано не столько с новым и "необычным" математическим аппаратом, сколько прежде всего с трудностью осознания революционных, с позиции классической физики, идей, лежащих в основе квантовой механики и сложностью интерпретации результатов.

В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.

Уравнение Шредингера и физический смысл его решений

Волновое уравнение Шредингера

Одним из основных уравнений квантовой механики является уравнение Шредингера, определяющее изменение состояний квантовых систем с течением времени. Оно записывается в виде

где Н -- оператор Гамильтона системы, совпадающий с оператором энергии, если он не зависит от времени. Вид оператора определяется свойствами системы. Для нерелятивистского движения частицы массы в потенциальном поле U(r) оператор действителен и представляется суммой операторов кинетической и потенциальной энергии частицы

Если частица движется в электромагнитном поле, то оператор Гамильтона будет комплексным.

Хотя уравнение (1.1) является уравнением первого порядка по времени, вследствие наличия мнимой единицы оно имеет и периодические решения. Поэтому уравнение Шредингера (1.1) часто называют волновым уравнением Шредингера, а его решение называют волновой функцией, зависящей от времени. Уравнение (1.1) при известном виде оператора Н позволяет определить значение волновой функции в любой последующий момент времени, если известно это значение в начальный момент времени. Таким образом, волновое уравнение Шредингера выражает принцип причинности в квантовой механике.

Волновое уравнение Шредингера может быть получено на основании следующих формальных соображений. В классической механике известно, что если энергия задана как функция координат и импульсов

то переход к классическому уравнению Гамильтона--Якоби для функции действия S

можно получить из (1.3) формальным преобразованием

Таким же образом уравнение (1.1) получается из (1.3) при переходе от (1.3) к операторному уравнению путем формального преобразования

если (1.3) не содержит произведений координат и импульсов, либо содержит такие их произведения, которые после перехода к операторам (1.4) коммутируют между собой. Приравнивая после этого преобразования результаты действия на функцию операторов правой и левой частей полученного операторного равенства, приходим к волновому уравнению (1.1). Не следует, однако, принимать эти формальные преобразования как вывод уравнения Шредингера. Уравнение Шредингера является обобщением опытных данных. Оно не выводится в квантовой механике, так же как не выводятся уравнения Максвелла в электродинамике, принцип наименьшего действия (или уравнения Ньютона) в классической механике.

Легко убедиться, что уравнение (1.1) удовлетворяется при волновой функцией

описывающей свободное движение частицы с определенным значением импульса. В общем случае справедливость уравнения (1.1) доказывается согласием с опытом всех выводов, полученных с помощью этого уравнения.

Покажем, что из уравнения (1.1) следует важное равенство

указывающее на сохранение нормировки волновой функции с течением времени. Умножим слева (1.1) на функцию *, a уравнение, комплексно сопряженное к (1.1), на функцию и вычтем из первого полученного уравнения второе; тогда находим

Интегрируя это соотношение по всем значениям переменных и учитывая самосопряженность оператора, получаем (1.5).

Если в соотношение (1.6) подставить явное выражение оператора Гамильтона (1.2) для движения частицы в потенциальном поле, то приходим к дифференциальному уравнению (уравнение непрерывности)

где является плотностью вероятности, а вектор

можно назвать вектором плотности тока вероятности.

Комплексную волновую функцию всегда можно представить в виде

где и -- действительные функции времени и координат. Таким образом, плотность вероятности

а плотность тока вероятности

Из (1.9) следует, что j = 0 для всех функций, у которых функция Ф не зависит от координат. В частности, j= 0 для всех действительных функций.

Решения уравнения Шредингера (1.1) в общем случае изображаются комплексными функциями. Использование комплексных функций весьма удобно, хотя и не необходимо. Вместо одной комплексной функции состояние системы можно описать двумя вещественными функциями и, удовлетворяющими двум связанным уравнениям. Например, если оператор Н -- вещественный, то, подставив в (1.1) функцию и отделив вещественную и мнимую части, получим систему двух уравнений

при этом плотность вероятности и плотность тока вероятности примут вид

Волновые функции в импульсном представлении.

Фурье-образ волновой функции характеризует распределение импульсов в квантовом состоянии. Требуется вывести интегральное уравнение для с Фурье-образом потенциала в качестве ядра.

Решение. Между функциями и имеются два взаимно обратных соотношения.

Если соотношение (2.1) использовать в качестве определения и применить к нему операцию, то с учетом определения 3-мерной -функции,

в результате, как нетрудно убедиться, получится обратное соотношение (2.2). Аналогичные соображения использованы ниже при выводе соотношения (2.8).

тогда для Фурье-образа потенциала будем иметь

Предполагая, что волновая функция удовлетворяет уравнению Шредингера

Подставляя сюда вместо и соответственно выражения (2.1) и (2.3), получаем

В двойном интеграле перейдем от интегрирования по переменной к интегрированию по переменной, а затем эту новую переменную вновь обозначим посредством. Интеграл по обращается в нуль при любом значении лишь в том случае, когда само подынтегральное выражение равно нулю, но тогда

Это и есть искомое интегральное уравнение с Фурье-образом потенциала в качестве ядра. Конечно, интегральное уравнение (2.6) можно получить только при условии, что Фурье-образ потенциала (2.4) существует; для этого, например, потенциал должен убывать на больших расстояниях по меньшей мере как, где.

Необходимо отметить, что из условия нормировки

следует равенство

Это можно показать, подставив в (2.7) выражение (2.1) для функции:

Если здесь сначала выполнить интегрирование по, то мы без труда получим соотношение (2.8).

Движение микрочастиц в различных силовых полях описывается в рамках нерелятивистской квантовой механики с помощью уравнения Шредингера, из которого вытекают наблюдаемые на опыте волновые свойства частиц. Это уравнение, как и все основные уравнения физики, не выводятся, а постулируется. Его правильность подтверждается согласием результатов расчета с опытом. Волновое уравнение Шредингера имеет следующий общий вид :

- (ħ 2 / 2m) ∙ ∆ψ + U (x, y, z, t) ∙ ψ = i ∙ ħ ∙ (∂ψ / ∂t)

где ħ = h / 2π, h = 6,623∙10 -34 Дж ∙ с - постоянная Планка;
m - масса частицы;
∆ - оператор Лапласа (∆ = ∂ 2 / ∂x 2 + ∂ 2 / ∂y 2 + ∂ 2 / ∂z 2);
ψ = ψ (x, y, z, t) - искомая волновая функция;
U (x, y, z, t) - потенциальная функция частицы в силовом поле, где она движется;
i - мнимая единица.

Это уравнение имеет решение лишь при условиях, накладываемых на волновую функцию:

  1. ψ (x, y, z, t) должна быть конечной, однозначной и непрерывной;
  2. первые производные от нее должны быть непрерывны;
  3. функция | ψ | 2 должна быть интегрируема, что в простейших случаях сводится к условию нормировки вероятностей.
Для многих физических явлений, происходящих в микромире, уравнение (8.1) можно упростить, исключив зависимость ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т.е. U = U (x, y, z) не зависит явно от времени и имеет смысл потенциальной энергии. Тогда после преобразований можно прийти к уравнению Шредингера для стационарных состояний:

∆ψ + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

где ψ = ψ (x, y, z) - волновая функция только координат;
E - параметр уравнения - полная энергия частицы.

Для этого уравнения реальный физический смысл имеют лишь такие решения, которые выражаются регулярными функциями ψ (называемыми собственными функциями), имеющими место только при определенных значениях параметра E, называемого собственным значением энергии. Эти значения E могут образовывать как непрерывный, так и дискретный ряд, т.е. как сплошной, так и дискретный спектр энергий.

Для какой-либо микрочастицы при наличии уравнения Шредингера типа (8.2) задача квантовой механики сводится к решению этого уравнения, т.е. нахождению значений волновых функций ψ = ψ (x, y, z), соответствующих спектру собственных энергией E. Далее находится плотность вероятности | ψ | 2 , определяющая в квантовой механике вероятность нахождения частицы в единичном объеме в окрестности точки с координатами (x, y, z).

Одним из простейших случаев решения уравнения Шредингера является задача о поведении частицы в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками". Такая "яма" для частицы, движущейся только вдоль оси Х, описывается потенциальной энергией вида

где l - ширина "ямы", а энергия отсчитывается от ее дна (рис. 8.1).

Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

В силу того, что "стенки ямы" бесконечно высокие, частица не проникает за пределы "ямы". Это приводит к граничным условиям:

ψ (0) = ψ (l) = 0

В пределах "ямы" (0 ≤ x ≤ l) уравнение (8.4) сводится к виду:

∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ E ∙ ψ = 0

∂ 2 ψ / ∂x 2 + (k 2 ∙ ψ) = 0

где k 2 = (2m ∙ E) / ħ 2


Решение уравнения (8.7) с учетом граничных условий (8.5) имеет в простейшем случае вид:

ψ (x) = A ∙ sin (kx)


где k = (n ∙ π)/ l

при целочисленных значениях n.

Из выражений (8.8) и (8.10) следует, что

E n = (n 2 ∙ π 2 ∙ ħ 2) / (2m ∙ l 2) (n = 1, 2, 3 ...)


т.е. энергия стационарных состояний зависит от целого числа n (называемого квантовым числом) и имеет определенные дискретные значения, называемые уровнями энергии.

Следовательно, микрочастица в "потенциальной яме" с бесконечно высокими "стенками" может находится только на определенном энергетическом уровне E n , т.е. в дискретных квантовых состояниях n.

Подставив выражение (8.10) в (8.9) найдем собственные функции

ψ n (x) = A ∙ sin (nπ / l) ∙ x


Постоянная интегрирования А найдется из квантовомеханического (вероятностного) условия нормировки

которое для данного случая запишется в виде:

Откуда в результате интегрирования получим А = √ (2 / l) и тогда имеем

ψ n (x) = (√ (2 / l)) ∙ sin (nπ / l) ∙ x (n = 1, 2, 3 ...)

Графики функции ψ n (х) не имеют физического смысла, тогда как графики функции | ψ n | 2 показывают распределение плотности вероятности обнаружения частицы на различных расстояниях от "стенок ямы"(рис. 8.1). Как раз эти графики (как и ψ n (х) - для сравнения) изучаются в данной работе и наглядно показывают, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (8.11) вытекает, что энергетический интервал между двумя соседними уровнями равен

∆E n = E n-1 - E n = (π 2 ∙ ħ 2) / (2m ∙ l 2) ∙ (2n + 1)

Отсюда видно, что для микрочастиц (типа электрона) при больших размерах "ямы" (l≈ 10 -1 м), энергетические уровни располагаются настолько тесно, что образуют практически непрерывный спектр. Такое состояние имеет место, например, для свободных электронов в металле. Если же размеры "ямы" соизмеримы с атомными (l ≈ 10 -10 м), то получается дискретный спектр энергии (линейчатый спектр). Эти виды спектров также могут быть изучены в данной работе для различных микрочастиц.

Другим случаем поведения микрочастиц (как, впрочем, и микросистем - маятников), часто встречаемым на практике (и рассматриваемым в этой работе), является задача о линейном гармоническом осцилляторе в квантовой механике.

Как известно, потенциальная энергия одномерного гармонического осциллятора массой m равна

U (x) = (m ∙ ω 0 2 ∙ x 2)/ 2

где ω 0 - собственная частота колебаний осциллятора ω 0 = √ (k / m);
k - коэффициент упругости осциллятора.

Зависимость (8.17) имеет вид параболы, т.е. "потенциальная яма" в данном случае является параболической (рис. 8.2).



Квантовый гармонический осциллятор описывается уравнением Шредингера (8.2), учитывающим выражение (8.17) для потенциальной энергии. Решение этого уравнения записывается в виде :

ψ n (x) = (N n ∙ e -αx2 / 2) ∙ H n (x)

где N n - постоянный нормирующий множитель, зависящий от целого числа n;
α = (m ∙ ω 0) / ħ;
H n (x) - полином степени n, коэффициенты которого вычисляются при помощи рекуррентной формулы при различных целочисленных n.
В теории дифференциальных уравнений можно доказать, что уравнение Шредингера имеет решение (8.18) лишь для собственных значений энергии:

E n = (n + (1 / 2)) ∙ ħ ∙ ω 0


где n = 0, 1, 2, 3... - квантовое число.

Это значит, что энергия квантового осциллятора может принимать лишь дискретные значения, т.е. квантуется. При n = 0 имеет место E 0 = (ħ ∙ ω 0) / 2, т.е. энергия нулевых колебаний, что является типичным для квантовых систем и представляет собой прямое следствие соотношения неопределенности.

Как показывает детальное решение уравнения Шредингера для квантового осциллятора , каждому собственному значению энергии при разных n соответствует своя волновая функция, т.к. от n зависит постоянный нормирующий множитель

а также H n (x) - полином Чебышева-Эрмита степени n.
При том первые два полинома равны:

H 0 (x) = 1;
H 1 (x) = 2x ∙ √ α

Любой последующий полином связан с нми по следующей рекуррентной формуле:

H n+1 (x) = 2x ∙ √ α ∙ H n (x) - 2n ∙ H n-1 (x)

Собственные функции типа (8.18) позволяют найти для квантового осциллятора плотность вероятности нахождения микрочастицы как | ψ n (х) | 2 и исследовать ее поведение на различных уровнях энергии. Решение этой задачи затруднительно ввиду необходимости использования рекуррентной формулы. Эта задача успешно может решаться лишь с использованием ЭВМ, что и делается в настоящей работе.

Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ(х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2 , определяет вероятность пребывания частицы в момент времени t в объеме ΔV, т. е. в области с координатами х и х + dх, у и у + dу, z и z + dz .

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером . Уравнение Шрёдингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы.

Общее уравнение Шредингера имеет вид:

где ? = h / (), m - масса частицы, Δ - оператор Лапласа , i - мнимая единица, U (x, y, z, t ) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x, y, z, t ) - искомая волновая функция частицы.

Уравнение (1) справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ «с.

Оно дополняется условиями , накладываемыми на волновую функцию:

1) волновая функция должна быть конечной, однозначной и непрерывной;

2) производные должны быть непрерывны;

3) функция |Ψ| 2 должна быть интегрируема (это условие в простейших случаях сводится к условию нормировки вероятностей).

Уравнение (1) называют уравнением Шредингера, зависящим от времени.

Дли многих физических явлений, происходящих в микромире, уравнение (1) можно упростить, исключив зависимость Ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U (х, у , z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде

. (2)

Уравнение (2) называется уравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций : вол новые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными.


Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями Ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения, которые соответствуют собственным значениям энергии, называются собственнымифункциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

где l — ширина «ямы», а энергия отсчитывается от ее дна (рис. 2).

Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

. (1)

По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = 1) непрерывная волновая функция также должна обращаться в нуль.

Следовательно, граничные условия в данном случае имеют вид:

Ψ (0) = Ψ (l ) = 0. (2)

В пределах «ямы» (0 ≤ х ≤ 0) уравнение Шредингера (1) сведется к уравнению:

или . (3)

где k 2 = 2mE / ? 2 . (4)

Общее решение дифференциального уравнения (3):

Ψ (x ) = A sin kx + B cos kx .

Так как по (2) Ψ (0) = 0, то В = 0. Тогда

Ψ (x ) = A sin kx . (5)

Условие Ψ (l ) = A sin kl = 0 (2) выполняется только при kl = nπ , где n - целые числа, т.е. необходимо, чтобы

k = nπ / l . (6)

Из выражений (4) и (6) следует, что:

(n = 1, 2, 3,…), (7)

т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях Е п, зависящих от целого числа п. Следовательно, энергия Е п частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется.

Квантованные значения энергии Е п называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне Е п, или, как говорят, частица находится в квантовом состоянии п.

Подставив в (5) значение k из (6), найдем собственные функции:

.

Постоянную интегрирования А найдем из условия нормировки, которое для данного случая запишется в виде:

.

В результате интегрирования получим , а собственные функции будут иметь вид:

(n = 1, 2, 3,…). (8)

Графики собственных функций (8), соответствующие уровням энергии (7) при n = 1,2,3, приведены на рис. 3, а. На рис. 3, б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная ‌‌‌‌‌‌ Ψ n (x )‌ 2 = Ψ n (x )·Ψ n * (x ) для п = 1, 2 и 3. Из рисунка следует, что, например, в квантовом состоянии с п= 2 частица не может находиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (7) вытекает, что энергетический интервал между двумя соседними уровнями равен:

Например, для электрона при размерах ямы l = 10 -1 м (свободные электроны в металле), ΔЕ n ≈ 10 -35 ·n Дж ≈ 10 -1 6 n эВ, т.е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l ≈ 10 -10 м), то для электрона ΔЕ n ≈ 10 -17 n Дж 10 2 n эВ, т.е. получаются явно дискретные значения энергии (линейчатый спектр).

Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная π 2 ? 2 /(2т1 2 ). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Δх частицы в «яме» шириной l равна Δх = l .

Тогда, согласно соотношению неопределенностей, импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса Δр h / l . Такому разбросу значений импульса соответствует кинетическая энергия Е min ≈ p ) 2 / (2m ) = ? 2 / (2ml 2 ). Все остальные уровни (п > 1) имеют энергию, превышающую это минимальное значение.

Из формул (9) и (7) следует, что при больших квантовых числах (n »1) ΔЕ n / E п ≈ 2/п «1, т. е. соседние уровни расположены тесно: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов — дискретность - сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ