Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

В предыдущем уроке мы разобрались с разложением на множители. Освоили два способа: вынесение общего множителя за скобки и группировку. В этом уроке - следующий мощный способ: формулы сокращённого умножения . В краткой записи - ФСУ.

Формулы сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне необходимы во всех разделах математики. Они применяются в упрощении выражений, решении уравнений, умножении многочленов, сокращении дробей, решении интегралов и т.д. и т.п. Короче, есть все основания разобраться с ними. Понять откуда они берутся, зачем они нужны, как их запомнить и как применять.

Разбираемся?)

Откуда берутся формулы сокращённого умножения?

Равенства 6 и 7 записаны не очень привычно. Как бы наоборот. Это специально.) Любое равенство работает как слева направо, так и справа налево. В такой записи понятнее, откуда берутся ФСУ.

Они берутся из умножения.) Например:

(a+b) 2 =(a+b)(a+b)=a 2 +ab+ba+b 2 =a 2 +2ab+b 2

Вот и всё, никаких научных хитростей. Просто перемножаем скобки и приводим подобные. Так получаются все формулы сокращённого умножения. Сокращённое умножение - это потому, что в самих формулах нет перемножения скобок и приведения подобных. Сокращены.) Сразу дан результат.

ФСУ нужно знать наизусть. Без первых трёх можно не мечтать о тройке, без остальных - о четвёрке с пятёркой.)

Зачем нужны формулы сокращённого умножения?

Есть две причины, выучить, даже зазубрить эти формулы. Первая - готовый ответ на автомате резко уменьшает количество ошибок. Но это не самая главная причина. А вот вторая...

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Основная функция скобок – менять порядок действий при вычислениях значений . Например , в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).


Пример. Раскройте скобку: \(-(4m+3)\).
Решение : \(-(4m+3)=-4m-3\).

Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
Решение : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).


Пример. Раскройте скобки \(5(3-x)\).
Решение : В скобке у нас стоят \(3\) и \(-x\), а перед скобкой - пятерка. Значит, каждый член скобки умножается на \(5\) - напоминаю, что знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей .


Пример. Раскройте скобки \(-2(-3x+5)\).
Решение : Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).

Пример. Упростить выражение: \(5(x+y)-2(x-y)\).
Решение : \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).


Осталось рассмотреть последнюю ситуацию.

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:

\((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

Пример. Раскройте скобки \((2-x)(3x-1)\).
Решение : У нас произведение скобок и его можно раскрыть сразу по формуле выше. Но чтобы не путаться, давайте сделаем всё по шагам.
Шаг 1. Убираем первую скобку - каждый ее член умножаем на скобку вторую:

Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
- сначала первое…

Потом второе.

Шаг 3. Теперь перемножаем и приводим подобные слагаемые:

Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.

Примечание ко всему разделу. На самом деле, вам нет необходимости запоминать все четыре правила, достаточно помнить только одно, вот это: \(c(a-b)=ca-cb\) . Почему? Потому что если в него вместо c подставить единицу, получиться правило \((a-b)=a-b\) . А если подставить минус единицу, получим правило \(-(a-b)=-a+b\) . Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

Скобка в скобке

Иногда в практике встречаются задачи со скобками, вложенными внутрь других скобок. Вот пример такого задания: упростить выражение \(7x+2(5-(3x+y))\).

Чтобы успешно решать подобные задания, нужно:
- внимательно разобраться во вложенности скобок – какая в какой находиться;
- раскрывать скобки последовательно, начиная, например, с самой внутренней.

При этом важно при раскрытии одной из скобок не трогать все остальное выражение , просто переписывая его как есть.
Давайте для примера разберем написанное выше задание.

Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
Решение:


Пример. Раскройте скобки и приведите подобные слагаемые \(-(x+3(2x-1+(x-5)))\).
Решение :

\(-(x+3(2x-1\)\(+(x-5)\) \())\)

Здесь тройная вложенность скобок. Начинаем с самой внутренней (выделено зеленым). Перед скобкой плюс, так что она просто снимается.

\(-(x+3(2x-1\)\(+x-5\) \())\)

Теперь нужно раскрыть вторую скобку, промежуточную. Но мы перед этим упростим выражение привидением подобный слагаемых в этой второй скобке.

\(=-(x\)\(+3(3x-6)\) \()=\)

Вот сейчас раскрываем вторую скобку (выделено голубым). Перед скобкой множитель – так что каждый член в скобке умножается на него.

\(=-(x\)\(+9x-18\) \()=\)

И раскрываем последнюю скобку. Перед скобкой минус – поэтому все знаки меняются на противоположные.

Раскрытие скобок - это базовое умение в математике. Без этого умения невозможно иметь оценку выше тройки в 8 и 9 классе. Поэтому рекомендую хорошо разобраться в этой теме.

Рассмотрим теперь возведение в квадрат двучлена и, применяясь к арифметической точке зрения, будем говорить о квадрате суммы, т. е. (a + b)² и о квадрате разности двух чисел, т. е. (a – b)².

Так как (a + b)² = (a + b) ∙ (a + b),

то найдем: (a + b) ∙ (a + b) = a² + ab + ab + b² = a² + 2ab + b², т. е.

(a + b)² = a² + 2ab + b²

Этот результат полезно запомнить и в виде вышеописанного равенства и словами: квадрат суммы двух чисел равен квадрату первого числа плюс произведение двойки на первое число и на второе число, плюс квадрат второго числа.

Зная этот результат, мы можем сразу написать, напр.:

(x + y)² = x² + 2xy + y²
(3ab + 1)² = 9a² b² + 6ab + 1

(x n + 4x)² = x 2n + 8x n+1 + 16x 2

Разберем второй из этих примеров. Нам требуется возвести в квадрат сумму двух чисел: первое число есть 3ab, второе 1. Должно получиться: 1) квадрат первого числа, т. е. (3ab)², что равно 9a²b²; 2) произведение двойки на первое число и на второе, т. е. 2 ∙ 3ab ∙ 1 = 6ab; 3) квадрат 2-го числа, т. е. 1² = 1 – все эти три члена должно сложить между собою.

Совершенно также получим формулу для возведения в квадрат разности двух чисел, т. е. для (a – b)²:

(a – b)² = (a – b) (a – b) = a² – ab – ab + b² = a² – 2ab + b².

(a – b)² = a² – 2ab + b² ,

т. е. квадрат разности двух чисел равен квадрату первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа .

Зная этот результат, мы можем сразу выполнять возведение в квадрат двучленов, представляющих с точки зрения арифметики разность двух чисел.

(m – n)² = m² – 2mn + n²
(5ab 3 – 3a 2 b) 2 = 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2

(a n-1 – a) 2 = a 2n-2 – 2a n + a 2 и т. п.

Поясним 2-ой пример. Здесь мы имеем в скобках разность двух чисел: первое число 5ab 3 и второе число 3a 2 b. В результате должно получиться: 1) квадрат первого числа, т. е. (5ab 3) 2 = 25a 2 b 6 , 2) произведение двойки на 1-ое и на 2-ое число, т. е. 2 ∙ 5ab 3 ∙ 3a 2 b = 30a 3 b 4 и 3) квадрат второго числа, т. е. (3a 2 b) 2 = 9a 4 b 2 ; первый и третий члены надо взять с плюсом, а 2-ой с минусом, получим 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2 . В пояснение 4-го примера заметим лишь, что 1) (a n-1)2 = a 2n-2 … надо показателя степени умножить на 2 и 2) произведение двойки на 1-ое число и на 2-ое = 2 ∙ a n-1 ∙ a = 2a n .

Если встать на точку зрения алгебры, то оба равенства: 1) (a + b)² = a² + 2ab + b² и 2) (a – b)² = a² – 2ab + b² выражают одно и тоже, а именно: квадрат двучлена равен квадрату первого члена, плюс произведение числа (+2) на первый член и на второй, плюс квадрат второго члена. Это ясно, потому что наши равенства можно переписать в виде:

1) (a + b)² = (+a)² + (+2) ∙ (+a) (+b) + (+b)²
2) (a – b)² = (+a)² + (+2) ∙ (+a) (–b) + (–b)²

В некоторых случаях так именно и удобно толковать полученные равенства:

(–4a – 3b)² = (–4a)² + (+2) (–4a) (–3b) + (–3b)²

Здесь возводится в квадрат двучлен, первый член которого = –4a и второй = –3b. Далее мы получим (–4a)² = 16a², (+2) (–4a) (–3b) = +24ab, (–3b)² = 9b² и окончательно:

(–4a – 3b)² = 6a² + 24ab + 9b²

Возможно было бы также получить и запомнить формулу для возведения в квадрат трехчлена, четырехчлена и вообще любого многочлена. Однако, мы этого делать не будем, ибо применять эти формулы приходится редко, а если понадобится какой-либо многочлен (кроме двучлена) возвести в квадрат, то станем сводить дело к умножению. Например:

31. Применим полученные 3 равенства, а именно:

(a + b) (a – b) = a² – b²
(a + b)² = a² + 2ab + b²
(a – b)² = a² – 2ab + b²

к арифметике.

Пусть надо 41 ∙ 39. Тогда мы можем это представить в виде (40 + 1) (40 – 1) и свести дело к первому равенству – получим 40² – 1 или 1600 – 1 = 1599. Благодаря этому, легко выполнять в уме умножения вроде 21 ∙ 19; 22 ∙ 18; 31 ∙ 29; 32 ∙ 28; 71 ∙ 69 и т. д.

Пусть надо 41 ∙ 41; это все равно, что 41² или (40 + 1)² = 1600 + 80 + 1 = 1681. Также 35 ∙ 35 = 35² = (30 + 5)² = 900 + 300 + 25 = 1225. Если надо 37 ∙ 37, то это равно (40 – 3)² = 1600 – 240 + 9 = 1369. Подобные умножения (или возведение в квадрат двузначных чисел) легко выполнять, при некотором навыке, в уме.

Раскрытие скобок является одним из видов преобразования выражения. В этом разделе мы опишем правила раскрытия скобок, а также рассмотрим наиболее часто встречающиеся примеры задач.

Yandex.RTB R-A-339285-1

Что называется раскрытием скобок?

Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Например, заменить выражение 2 · (3 + 4) на выражение вида 2 · 3 + 2 · 4 без скобок. Этот прием носит название раскрытия скобок.

Определение 1

Под раскрытием скобок подразумевают приемы избавления от скобок и рассматривают его обычно в отношении выражений, которые могут содержать:

  • знаки « + » или « - » перед скобками, в которые заключены суммы или разности;
  • произведение числа, буквы или нескольких букв и суммы или разности, которая помещена в скобки.

Так мы привыкли рассматривать процесс раскрытия скобок в курсе школьной программы. Однако никто не мешает нам посмотреть на это действие шире. Мы можем назвать раскрытием скобок переход от выражения, которое содержит отрицательные числа в скобках, к выражению, не имеющему скобок. К примеру, мы можем перейти от 5 + (− 3) − (− 7) к 5 − 3 + 7 . Фактически, это тоже раскрытие скобок.

Точно также мы можем заменить произведение выражений в скобках вида (a + b) · (c + d) на сумму a · c + a · d + b · c + b · d . Такой прием также не противоречит смыслу раскрытия скобок.

Вот еще один пример. Мы можем допустить, что в выражениях вместо чисел и переменных могут быть использованы любые выражения. Например, выражению x 2 · 1 a - x + sin (b) будет соответствовать выражение без скобок вида x 2 · 1 a - x 2 · x + x 2 · sin (b) .

Отдельного внимания заслуживать еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения 3 − (5 − 7) мы получаем выражение 3 − 5 + 7 . Оба этих выражения мы можем записать в виде равенства 3 − (5 − 7) = 3 − 5 + 7 .

Проведение действий с громоздкими выражениями может потребовать записи промежуточных результатов. Тогда решение будет иметь вид цепочки равенств. Например, 5 − (3 − (2 − 1)) = 5 − (3 − 2 + 1) = 5 − 3 + 2 − 1 или 5 − (3 − (2 − 1)) = 5 − 3 + (2 − 1) = 5 − 3 + 2 − 1 .

Правила раскрытия скобок, примеры

Приступим к рассмотрению правил раскрытия скобок.

У одиночных чисел в скобках

Отрицательные числа в скобках часто встречаются в выражениях. Например, (− 4) и 3 + (− 4) . Положительные числа в скобках тоже имеют место быть.

Сформулируем правило раскрытия скобок, в которых заключены одиночные положительные числа. Предположим, что а – это любое положительное число. Тогда (а) мы можем заменить на а, + (а) на + а, - (а) на – а. Если вместо а взять конкретное число, то согласно правилу: число (5) запишется как 5 , выражение 3 + (5) без скобок примет вид 3 + 5 , так как + (5) заменяется на + 5 , а выражение 3 + (− 5) эквивалентно выражению 3 − 5 , так как + (− 5) заменяется на − 5 .

Положительные числа обычно записываются без использования скобок, так как скобки в этом случае излишни.

Теперь рассмотрим правило раскрытия скобок, внутри которых содержится одиночное отрицательное число. + (− a) мы заменяем на − a , − (− a) заменяется на + a . Если выражение начинается с отрицательного числа (− a) , которое записано в скобках, то скобки опускаются и вместо (− a) остается − a .

Приведем примеры: (− 5) можно записать как − 5 , (− 3) + 0 , 5 принимает вид − 3 + 0 , 5 , 4 + (− 3) превращается в 4 − 3 , а − (− 4) − (− 3) после раскрытия скобок принимает вид 4 + 3 , так как − (− 4) и − (− 3) заменяется на + 4 и + 3 .

Следует понимать, что записать выражение 3 · (− 5) как 3 · − 5 нельзя. Об этом речь пойдет в следующих пунктах.

Давайте посмотрим, на чем основываются правила раскрытия скобок.

Согласно правилу разность a − b равна a + (− b) . На основе свойств действий с числами мы можем составить цепочку равенств (a + (− b)) + b = a + ((− b) + b) = a + 0 = a , которая будет справедлива. Эта цепочка равенств в силу смысла вычитания доказывает, что выражение a + (− b) - это разность a − b .

Основываясь на свойствах противоположных чисел и правил вычитания отрицательных чисел мы можем утверждать, что − (− a) = a , a − (− b) = a + b .

Встречаются выражения, которые составляются из числа, знаков минуса и нескольких пар скобок. Использование приведенных выше правил позволяет последовательно избавляться от скобок, продвигаясь от внутренних скобок к наружным или в обратном направлении. Примером такого выражения может быть − (− ((− (5)))) . Раскроем скобки, продвигаясь изнутри наружу: − (− ((− (5)))) = − (− ((− 5))) = − (− (− 5)) = − (5) = − 5 . Также этот пример можно разобрать и в обратном направлении: − (− ((− (5)))) = ((− (5))) = (− (5)) = − (5) = − 5 .

Под a и b можно понимать не только числа, но также произвольные числовые или буквенные выражения со знаком « + » впереди, которые не являются суммами или разностями. Во всех этих случаях можно применять правила точно также, как мы делали это в отношении одиночных чисел в скобках.

К примеру, после раскрытия скобок выражение − (− 2 · x) − (x 2) + (− 1 x) − (2 · x · y 2: z) примет вид 2 · x − x 2 − 1 x − 2 · x · y 2: z . Как мы это сделали? Мы знаем, что − (− 2 · x) есть + 2 · x , а так как это выражение стоит вначале, то + 2 · x можно записать как 2 · x , − (x 2) = − x 2 , + (− 1 x) = − 1 x и − (2 · x · y 2: z) = − 2 · x · y 2: z .

В произведениях двух чисел

Начнем с правила раскрытия скобок в произведении двух чисел.

Предположим, что a и b – это два положительных числа. В этом случае произведение двух отрицательных чисел − a и − b вида (− a) · (− b) мы можем заменить на (a · b) , а произведения двух чисел с противоположными знаками вида (− a) · b и a · (− b) заменить на (− a · b) . Умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

Верность первой части записанного правила подтверждается правилом умножения отрицательных чисел. Для подтверждения второй части правила мы можем использовать правила умножения чисел с разными знаками.

Рассмотрим несколько примеров.

Пример 1

Рассмотрим алгоритм раскрытия скобок в произведении двух отрицательных чисел - 4 3 5 и - 2 , вида (- 2) · - 4 3 5 . Для этого заменим исходное выражение на 2 · 4 3 5 . Раскроем скобки и получим 2 · 4 3 5 .

А если мы возьмем частное отрицательных чисел (− 4) : (− 2) , то запись после раскрытия скобок будет иметь вид 4: 2

На месте отрицательных чисел − a и − b могут быть любые выражения со знаком минус впереди, которые не являются суммами или разностями. К примеру, это могут быть произведения, частные, дроби, степени, корни, логарифмы, тригонометрические функции и т.п.

Раскроем скобки в выражении - 3 · x x 2 + 1 · x · (- ln 5) . Согласно правилу, мы можем произвести следующие преобразования: - 3 · x x 2 + 1 · x · (- ln 5) = - 3 · x x 2 + 1 · x · ln 5 = 3 · x x 2 + 1 · x · ln 5 .

Выражение (− 3) · 2 можно преобразовать в выражение (− 3 · 2) . После этого можно раскрыть скобки: − 3 · 2 .

2 3 · - 4 5 = - 2 3 · 4 5 = - 2 3 · 4 5

Деление чисел с разными знаками также может потребовать предварительного раскрытия скобок: (− 5) : 2 = (− 5: 2) = − 5: 2 и 2 3 4: (- 3 , 5) = - 2 3 4: 3 , 5 = - 2 3 4: 3 , 5 .

Правило может быть использовано для выполнения умножения и деления выражений с разными знаками. Приведем два примера.

1 x + 1: x - 3 = - 1 x + 1: x - 3 = - 1 x + 1: x - 3

sin (x) · (- x 2) = (- sin (x) · x 2) = - sin (x) · x 2

В произведениях трех и большего количества чисел

Перейдем к произведенимя и частным, которые содержат большее количество чисел. Для раскрытия скобок здесь будет действовать следующее правило. При четном количестве отрицательных чисел можно опустить скобки, заменив числа противоположными. После этого необходимо заключить полученное выражение в новые скобки. При нечетном количестве отрицательных чисел, опустив скобки, заменить числа на противоположные. После этого полученное выражение необходимо взять в новые скобки и поставить перед ним знак минус.

Пример 2

Для примера, возьмем выражение 5 · (− 3) · (− 2) , которое представляет собой произведение трех чисел. Отрицательных чисел два, следовательно, мы можем записать выражение как (5 · 3 · 2) и затем окончательно раскрыть скобки, получив выражение 5 · 3 · 2 .

В произведении (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) пять чисел являются отрицательными. поэтому (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) = (− 2 , 5 · 3: 2 · 4: 1 , 25: 1) . Окончательно раскрыв скобки, получаем −2,5·3:2·4:1,25:1 .

Обосновать приведенное выше правило можно следующим образом. Во-первых, такие выражения мы можем переписать как произведение, заменив умножением на обратное число деление. Представляем каждое отрицательное число как произведение множительного числа и - 1 или - 1 заменяем на (− 1) · a .

Используя переместительное свойство умножения меняем местами множители и переносим все множители, равные − 1 , в начало выражения. Произведение четного числа минус единиц равно 1 , а нечетного – равно − 1 , что позволяет нам использовать знак минус.

Если бы мы не использовали правило, то цепочка действий по раскрытию скобок в выражении - 2 3: (- 2) · 4: - 6 7 выглядела бы следующим образом:

2 3: (- 2) · 4: - 6 7 = - 2 3 · - 1 2 · 4 · - 7 6 = = (- 1) · 2 3 · (- 1) · 1 2 · 4 · (- 1) · 7 6 = = (- 1) · (- 1) · (- 1) · 2 3 · 1 2 · 4 · 7 6 = (- 1) · 2 3 · 1 2 · 4 · 7 6 = = - 2 3 · 1 2 · 4 · 7 6

Приведенное выше правило может быть использовано при раскрытии скобок в выражениях, которые представляют собой произведения и частные со знаком минус, не являющихся суммами или разностями. Возьмем для примера выражение

x 2 · (- x) : (- 1 x) · x - 3: 2 .

Его можно привести к выражению без скобок x 2 · x: 1 x · x - 3: 2 .

Раскрытие скобок, перед которыми стоит знак +

Рассмотрим правило, которое можно применить для раскрытия скобок, перед которыми стоит знак плюс, а «содержимое» этих скобок не умножается и не делится на какое-либо число или выражение.

Согласно правилу скобки вместе со стоящим перед ними знаком опускаются, при этом знаки всех слагаемых в скобках сохраняются. Если перед первым слагаемым в скобках не стоит никакого знака, то нужно поставить знак плюс.

Пример 3

Для примера приведем выражение (12 − 3 , 5) − 7 . Опустив скобки, мы сохраняем знаки слагаемых в скобках и ставим перед первым слагаемым знак плюс. Запись будет иметь вид (12 − 3 , 5) − 7 = + 12 − 3 , 5 − 7 . В приведенном примере знак перед первым слагаемым ставить не обязательно, так как + 12 − 3 , 5 − 7 = 12 − 3 , 5 − 7 .

Пример 4

Рассмотрим еще один пример. Возьмем выражение x + 2 a - 3 x 2 + 1 - x 2 - 4 + 1 x и проведем с ним действия x + 2 a - 3 x 2 + 1 - x 2 - 4 + 1 x = = x + 2 a - 3 x 2 + 1 - x 2 - 4 + 1 x

Вот еще один пример раскрытия скобок:

Пример 5

2 + x 2 + 1 x - x · y · z + 2 · x - 1 + (- 1 + x - x 2) = = 2 + x 2 + 1 x - x · y · z + 2 · x - 1 - 1 + x + x 2

Как раскрываются скобки, перед которыми стоит знак минус

Рассмотрим случаи, когда перед скобками стоит знак минус, и которые не не умножаются (или делятся) на какое-либо число или выражение. Согласно правилу раскрытия скобок, перед которыми стоит знак « - », скобки со знаком « - » опускаются, при этом знаки всех слагаемых внутри скобок меняются на противоположные.

Пример 6

К примеру:

1 2 = 1 2 , - 1 x + 1 = - 1 x + 1 , - (- x 2) = x 2

Выражения с переменными могут быть преобразованы с использованием того же правила:

X + x 3 - 3 - - 2 · x 2 + 3 · x 3 · x + 1 x - 1 - x + 2 ,

получаем x - x 3 - 3 + 2 · x 2 - 3 · x 3 · x + 1 x - 1 - x + 2 .

Раскрытие скобок при умножении числа на скобку, выражения на скобку

Здесь мы рассмотрим случаи, когда нужно раскрыть скобки, которые умножаются или делятся на какое-либо число или выражение. Тут применимы формулы вида (a 1 ± a 2 ± … ± a n) · b = (a 1 · b ± a 2 · b ± … ± a n · b) или b · (a 1 ± a 2 ± … ± a n) = (b · a 1 ± b · a 2 ± … ± b · a n) , где a 1 , a 2 , … , a n и b – некоторые числа или выражения.

Пример 7

Например, проведем раскрытие скобок в выражении (3 − 7) · 2 . Согласно правилу, мы можем провести следующие преобразования: (3 − 7) · 2 = (3 · 2 − 7 · 2) . Получаем 3 · 2 − 7 · 2 .

Раскрыв скобки в выражении 3 · x 2 · 1 - x + 1 x + 2 , получаем 3 x 2 · 1 - 3 · x 2 · x + 3 · x 2 · 1 x + 2 .

Умножение скобки на скобку

Рассмотрим произведение двух скобок вида (a 1 + a 2) · (b 1 + b 2) . Это поможет нам получить правило для раскрытия скобок при проведении умножения скобки на скобку.

Для того, чтобы решить приведенный пример, обозначим выражение (b 1 + b 2) как b . Это позволит нам использовать правило умножения скобки на выражение. Получим (a 1 + a 2) · (b 1 + b 2) = (a 1 + a 2) · b = (a 1 · b + a 2 · b) = a 1 · b + a 2 · b . Выполнив обратную замену b на (b 1 + b 2) , снова применим правило умножения выражения на скобку: a 1 · b + a 2 · b = = a 1 · (b 1 + b 2) + a 2 · (b 1 + b 2) = = (a 1 · b 1 + a 1 · b 2) + (a 2 · b 1 + a 2 · b 2) = = a 1 · b 1 + a 1 · b 2 + a 2 · b 1 + a 2 · b 2

Благодаря ряду несложных приемов мы можем прийти к сумме произведений каждого из слагаемых из первой скобки на каждое из слагаемых из второй скобки. Правило можно распространить на любое количество слагаемых внутри скобок.

Сформулируем правила умножения скобки на скобку: чтобы перемножить между собой две суммы, необходимо каждое из слагаемых первой суммы перемножить на каждое из слагаемых второй суммы и сложить полученные результаты.

Формула будет иметь вид:

(a 1 + a 2 + . . . + a m) · (b 1 + b 2 + . . . + b n) = = a 1 b 1 + a 1 b 2 + . . . + a 1 b n + + a 2 b 1 + a 2 b 2 + . . . + a 2 b n + + . . . + + a m b 1 + a m b 1 + . . . a m b n

Проведем раскрытие скобок в выражении (1 + x) · (x 2 + x + 6) Оно представляет собой произведение двух сумм. Запишем решение: (1 + x) · (x 2 + x + 6) = = (1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6) = = 1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6

Отдельно стоит остановиться на тех случаях, когда в скобках присутствует знак минус наряду со знаками плюс. Для примера возьмем выражение (1 − x) · (3 · x · y − 2 · x · y 3) .

Сначала представим выражения в скобках в виде сумм: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) . Теперь мы можем применить правило: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) = = (1 · 3 · x · y + 1 · (− 2 · x · y 3) + (− x) · 3 · x · y + (− x) · (− 2 · x · y 3))

Раскроем скобки: 1 · 3 · x · y − 1 · 2 · x · y 3 − x · 3 · x · y + x · 2 · x · y 3 .

Раскрытие скобок в произведениях нескольких скобок и выражений

При наличии в выражении трех и более выражений в скобках, раскрывать скобки необходимо последовательно. Начать преобразование необходимо с того, что два первых множителя берут в скобки. Внутри этих скобок мы можем проводить преобразования согласно правилам, рассмотренным выше. Например, скобки в выражении (2 + 4) · 3 · (5 + 7 · 8) .

В выражении содержится сразу три множителя (2 + 4) , 3 и (5 + 7 · 8) . Будем раскрывать скобки последовательно. Заключим первые два множителя еще в одни скобки, которые для наглядности сделаем красными: (2 + 4) · 3 · (5 + 7 · 8) = ((2 + 4) · 3) · (5 + 7 · 8) .

В соответствии с правилом умножения скобки на число мы можем провести следующие действия: ((2 + 4) · 3) · (5 + 7 · 8) = (2 · 3 + 4 · 3) · (5 + 7 · 8) .

Умножаем скобку на скобку: (2 · 3 + 4 · 3) · (5 + 7 · 8) = 2 · 3 · 5 + 2 · 3 · 7 · 8 + 4 · 3 · 5 + 4 · 3 · 7 · 8 .

Скобка в натуральной степени

Степени, основаниями которых являются некоторые выражения, записанные в скобках, с натуральными показателями можно рассматривать как произведение нескольких скобок. При этом по правилам из двух предыдущих пунктов их можно записать без этих скобок.

Рассмотрим процесс преобразования выражения (a + b + c) 2 . Его можно записать в виде произведения двух скобок (a + b + c) · (a + b + c) . Произведем умножение скобки на скобку и получим a · a + a · b + a · c + b · a + b · b + b · c + c · a + c · b + c · c .

Разберем еще один пример:

Пример 8

1 x + 2 3 = 1 x + 2 · 1 x + 2 · 1 x + 2 = = 1 x · 1 x + 1 x · 2 + 2 · 1 x + 2 · 2 · 1 x + 2 = = 1 x · 1 x · 1 x + 1 x · 2 · 1 x + 2 · 1 x · 1 x + 2 · 2 · 1 x + 1 x · 1 x · 2 + + 1 x 2 · 2 + 2 · 1 x · 2 + 2 · 2 · 2

Деление скобки на число и скобки на скобку

Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые. Например, (x 2 - x) : 4 = x 2: 4 - x: 4 .

Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2 3 . Для этого сначала заменим деление умножением на обратное число (x + 2) : 2 3 = (x + 2) · 2 3 . Умножим скобку на число (x + 2) · 2 3 = x · 2 3 + 2 · 2 3 .

Вот еще один пример деления на скобку:

Пример 9

1 x + x + 1: (x + 2) .

Заменим деление умножением: 1 x + x + 1 · 1 x + 2 .

Выполним умножение: 1 x + x + 1 · 1 x + 2 = 1 x · 1 x + 2 + x · 1 x + 2 + 1 · 1 x + 2 .

Порядок раскрытия скобок

Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида, т.е. в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

Порядок выполнения действий:

  • первым делом необходимо выполнить возведение скобок в натуральную степень;
  • на втором этапе производится раскрытие скобок в произведениях и частных;
  • заключительным шагом будет раскрытие скобок в суммах и разностях.

Рассмотрим порядок выполнения действий на примере выражения (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) . Намнем преобразование с выражений 3 · (− 2) : (− 4) и 6 · (− 7) , которые должны принять вид (3 · 2: 4) и (− 6 · 7) . При подстановке полученных результатов в исходное выражение получаем: (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) = (− 5) + (3 · 2: 4) − (− 6 · 7) . Раскрываем скобки: − 5 + 3 · 2: 4 + 6 · 7 .

Имея дело с выражениями, которые содержат скобки в скобках, удобно проводить преобразования, продвигаясь изнутри наружу.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ