Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Планеты Солнечной системы

Согласно официальной позиции Международного астрономического союза (МАС), организации присваивающей имена астрономическим объектам, планет всего 8.

Плутон был исключен из разряда планет в 2006 году. т.к. в поясе Койпера находятся объекты которые больше/либо равны по размерам с Плутоном. Поэтому, даже если его принимать его за полноценное небесное тело, то тогда необходимо к этой категории присоединить Эриду, у которой с Плутоном почти одинаковый размер.

По определению MAC, есть 8 известных планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун.

Все планеты делят на две категории в зависимости от их физических характеристик: земной группы и газовые гиганты.

Схематическое изображение расположения планет

Планеты земного типа

Меркурий

Самая маленькая планета Солнечной системы имеет радиус всего 2440 км. Период обращения вокруг Солнца, для простоты понимания приравненный к земному году, составляет 88 дней, при этом оборот вокруг собственной оси Меркурий успевает совершить всего полтора раза. Таким образом, его сутки длятся приблизительно 59 земных дней. Долгое время считалось, что эта планета все время повёрнута к Солнцу одной и той же стороной, поскольку периоды его видимости с Земли повторялись с периодичностью, примерно равной четырем Меркурианским суткам. Это заблуждение было развеяно с появлением возможности применять радиолокационные исследования и вести постоянные наблюдения с помощью космических станций. Орбита Меркурия – одна из самых нестабильных, меняется не только скорость перемещения и его удалённость от Солнца, но и само положение. Любой интересующийся может наблюдать этот эффект.

Меркурий в цвете, снимок космического аппарата MESSENGER

Близость к Солнцу стала причиной того, что Меркурий подвержен самым большим перепадам температуры среди планет нашей системы. Средняя дневная температура составляет около 350 градусов по Цельсию, а ночная -170 °C. В атмосфере выявлены натрий, кислород, гелий, калий, водород и аргон. Существует теория, что он был ранее спутником Венеры, но пока это остается недоказанным. Собственные спутники у него отсутствуют.

Венера

Вторая от Солнца планета, атмосфера которой почти полностью состоит из углекислого газа. Её часто называют Утренней звездой и Вечерней звездой, потому что она первой из звёзд становится видна после заката, так же как и перед рассветом продолжает быть видимой и тогда, когда все остальные звёзды скрылись из поля зрения. Процент диоксида углерода составляет в атмосфере 96%, азота в ней сравнительно немного – почти 4% и в совсем незначительном количестве присутствует водяной пар и кислород.

Венера в УФ спектре

Подобная атмосфера создает эффект парника, температура на поверхности из-за этого даже выше, чем у Меркурия и достигает 475 °C. Считается самой неторопливой, венерианские сутки длятся 243 земных дня, что почти равно году на Венере – 225 земных дней. Многие называют её сестрой Земли из-за массы и радиуса, значения которых очень близки к земным показателям. Радиус Венеры составляет 6052 км (0,85% земного). Спутников, как и у Меркурия, нет.

Третья планета от Солнца и единственная в нашей системе, где на поверхности есть жидкая вода, без которой не смогла бы развиться жизнь на планете. По крайней мере, жизнь в том виде, в котором мы её знаем. Радиус Земли равен 6371 км и, в отличие от остальных небесных тел нашей системы, более 70% её поверхности покрыто водой. Остальное пространство занимают материки. Ещё одной особенностью Земли являются тектонические плиты, скрытые под мантией планеты. При этом они способны перемещаться, хоть и с очень малой скоростью, что со временем вызывает изменение ландшафта. Скорость перемещения планеты по ней – 29-30 км/сек.

Наша планета из космоса

Один оборот вокруг своей оси занимает почти 24 часа, причем полное прохождение по орбите длится 365 суток, что намного больше в сравнении с ближайшими планетами-соседями. Земные сутки и год также приняты как эталон, но сделано это лишь для удобства восприятия временных отрезков на остальных планетах. У Земли имеется один естественный спутник – Луна.

Марс

Четвёртая планета от Солнца, известная своей разрежённой атмосферой. Начиная с 1960 года, Марс активно исследуется учеными нескольких стран, включая СССР и США. Не все программы исследования были успешными, но найденная на некоторых участках вода позволяет предположить, что примитивная жизнь на Марсе существует, или существовала в прошлом.

Яркость этой планеты позволяет видеть его с Земли без всяких приборов. Причем раз в 15-17 лет, во время Противостояния, он становится самым ярким объектом на небе, затмевая собой даже Юпитер и Венеру.

Радиус почти вдвое меньше земного и составляет 3390 км, зато год значительно дольше – 687 суток. Спутников у него 2 — Фобос и Деймос.

Наглядная модель Солнечной системы

Внимание ! Анимация работает только в браузерах поддерживающих стандарт -webkit (Google Chrome, Opera или Safari).

  • Солнце

    Солнце является звездой, которая представляет собой горячий шар из раскаленных газов в центре нашей Солнечной системы. Его влияние простирается далеко за пределы орбит Нептуна и Плутона. Без Солнца и его интенсивной энергии и тепла, не было бы жизни на Земле. Существуют миллиарды звезд, как наше Солнце, разбросанных по галактике Млечный Путь.

  • Меркурий

    Выжженный Солнцем Меркурий лишь немного больше, чем спутник Земли Луна. Подобно Луне, Меркурий практически лишен атмосферы и не может сгладить следы воздействия от падения метеоритов, поэтому он как и Луна покрыт кратерами. Дневная сторона Меркурия очень сильно нагревается на Солнце, а на ночной стороне температура падает на сотни градусов ниже нуля. В кратерах Меркурия, которые расположены на полюсах, существует лед. Меркурий совершает один оборот вокруг Солнца за 88 дней.

  • Венера

    Венера это мир чудовищной жары (еще больше чем на Меркурии) и вулканической активности. Аналогичная по структуре и размеру Земле, Венера покрыта толстой и токсичной атмосферой, которая создает сильный парниковый эффект. Этот выжженной мир достаточно горячий, чтобы расплавить свинец. Радарные снимки сквозь могучую атмосферу выявили вулканы и деформированные горы. Венера вращается в противоположном направлении, от вращения большинства планет.

  • Земля — планета океан. Наш дом, с его обилием воды и жизни делает его уникальным в нашей Солнечной системе. Другие планеты, в том числе несколько лун, также имеют залежи льда, атмосферу, времена года и даже погоду, но только на Земле все эти компоненты собрались вместе таким образом, что стало возможным существование жизнь.

  • Марс

    Хотя детали поверхности Марса трудно увидеть с Земли, наблюдения в телескоп показывают, что на Марсе существуют сезоны и белые пятна на полюсах. В течение многих десятилетий, люди полагали, что яркие и темные области на Марсе это пятна растительности и что Марс может быть подходящим местом для жизни, и что вода существует в полярных шапках. Когда космический аппарат Маринер-4, прилетел у Марсу в 1965 году, многие из ученых были потрясены, увидев фотографии мрачной планеты покрытой кратерами. Марс оказался мертвой планетой. Более поздние миссии, однако, показали, что Марс хранит множество тайн, которые еще предстоит решить.

  • Юпитер

    Юпитер — самая массивная планета в нашей Солнечной системе, имеет четыре больших спутника и множество небольших лун. Юпитер образует своего рода миниатюрную Солнечную систему. Чтобы превратится в полноценную звезду, Юпитеру нужно было стать в 80 раз массивнее.

  • Сатурн

    Сатурн — самая дальняя из пяти планет, которые были известны до изобретения телескопа. Подобно Юпитеру, Сатурн состоит в основном из водорода и гелия. Его объем в 755 раз больше, чем у Земли. Ветры в его атмосфере достигают скорости 500 метров в секунду. Эти быстрые ветра в сочетании с теплом, поднимающимся из недр планеты, вызывают появление желтых и золотистых полос, которые мы видим в атмосфере.

  • Уран

    Первая планета найденная с помощью телескопа, Уран был открыт в 1781 году астрономом Уильямом Гершелем. Седьмая планета от Солнца настолько далека, что один оборот вокруг Солнца занимает 84 года.

  • Нептун

    Почти в 4,5 млрд. километрах от Солнца вращается далекий Нептун. На один оборот вокруг Солнца у него уходит 165 лет. Он невидим невооруженным глазом из-за его огромного расстояния от Земли. Интересно, что его необычная эллиптическая орбита, пересекается с орбитой карликовой планеты Плутона из-за чего Плутон находится внутри орбиты Нептуна порядка 20 лет из 248 за которые совершает один оборот вокруг Солнца.

  • Плутон

    Крошечный, холодный и невероятно далекий Плутон был открыт в 1930 году и долго считался девятой планетой. Но после открытий подобных Плутону миров, которые находились еще дальше, Плутон был переведен в категорию карликовых планет в 2006 году.

Планеты — гиганты

Существуют четыре газовых гиганта, располагающихся за орбитой Марса: Юпитер, Сатурн, Уран, Нептун. Они находятся во внешней Солнечной системе. Отличаются своей массивностью и газовым составом.

Планеты солнечной системы, масштаб не соблюден

Юпитер

Пятая по счёту от Солнца и крупнейшая планета нашей системы. Радиус её – 69912 км, она в 19 раз больше Земли и всего в 10 раз меньше Солнца. Год на Юпитере не самый долгий в солнечной системе, длится 4333 земных суток (неполных 12 лет). Его же собственные сутки имеют продолжительность около 10 земных часов. Точный состав поверхности планеты пока определить не удалось, однако известно, что криптон, аргон и ксенон имеются на Юпитере в гораздо больших количествах, чем на Солнце.

Существует мнение, что один из четырёх газовых гигантов на самом деле – несостоявшаяся звезда. В пользу этой теории говорит и самое большое количество спутников, которых у Юпитера много – целых 67. Чтобы представить себе их поведение на орбите планеты, нужна достаточно точная и чёткая модель солнечной системы. Самые крупные из них – Каллисто, Ганимед, Ио и Европа. При этом Ганимед является крупнейшим спутником планет во всей солнечной системе, радиус его составляет 2634 км, что на 8% превышает размер Меркурия, самой маленькой планеты нашей системы. Ио отличается тем, что является одним из трёх имеющих атмосферу спутников.

Сатурн

Вторая по размерам планета и шестая по счёту в Солнечной системе. В сравнении с остальными планетами, наиболее схожа с Солнцем составом химических элементов. Радиус поверхности равен 57350 км, год составляет 10 759 суток (почти 30 земных лет). Сутки здесь длятся немногим дольше, чем на Юпитере – 10,5 земных часов. Количеством спутников он ненамного отстал от своего соседа – 62 против 67. Самым крупным спутником Сатурна является Титан, так же, как и Ио, отличающийся наличием атмосферы. Немного меньше него по размеру, но от этого не менее известные – Энцелад, Рея, Диона, Тефия, Япет и Мимас. Именно эти спутники являются объектами для наиболее частого наблюдения, и потому можно сказать, что они наиболее изучены в сравнении с остальными.

Долгое время кольца на Сатурне считались уникальным явлением, присущим только ему. Лишь недавно было установлено, что кольца имеются у всех газовых гигантов, но у остальных они не настолько явно видны. Их происхождение до сих пор не установлено, хотя существует несколько гипотез о том, как они появились. Кроме того, совсем недавно было обнаружено, что неким подобием колец обладает и Рея, один из спутников шестой планеты.

В "окрестностях" Солнца, залитых потоками ослепительно яркого света, движется планета Меркурий. Видимое угловое расстояние планеты от центрального светила никогда не превышает 28 градусов, поэтому наблюдать Меркурий очень трудно. Большую часть времени он буквально утопает в лучах дневного светила и только ненадолго появляется на фоне золотистой утренней зари или в отблеске вечернего заката.

Все наблюдатели, начиная со знаменитого итальянского астронома Джованни Скиапарелли, изучавшего Меркурий в конце XIX столетия, неизменно указывали на одну особенность: планета вращается вокруг оси и обращается по орбите вокруг Солнца за один и тот же промежуток времени, равный 88 земным суткам. Об этом, казалось бы, свидетельствовали зарисовки расположения пятен на планетном диске. Получалось, что Меркурий обращен к Солнцу всегда одной стороной. А если так, то на одном его полушарии должен быть вечный день, а на другом - вечная ночь. Синхронность вращения планеты ученые объясняли приливным торможением Солнца, а в качестве наглядного примера указывали на Луну, повернутую одной стороной к Земле.

Во второй половине XX века представление о характере вращения Меркурия пришлось полностью пересмотреть. Этому способствовало бурное развитие радиофизических методов исследований. Точные данные о вращении планеты были получены в результате анализа сеансов радиолокации.

В 1965 году американские астрономы с помощью гигантского 305-метрового радиотелескопа в Аресибо (остров Пуэрто-Рико) радиолокационным методом определили период осевого вращения Меркурия в 2/3 продолжительности обращения по орбите. В земных солнечных сутках это составляет 58,6457. Таков в действительности период вращения Меркурия вокруг собственной оси по отношению к далеким звездам. Следовательно, на Меркурии не может быть ни вечного дня, ни вечной ночи. При такой скорости вращения одни солнечные сутки там равны без малого 176 (175,9371) земным суткам, или двум меркурианским годам (87,96855·2 = 175,9371). Другими словами, дни и ночи на Меркурии длятся по целому году! В перигелии - точке орбиты, ближайшей к Солнцу, - середина освещенного полушария Меркурия накаляется до 467°С. А на ночной стороне - леденящий холод: температура может опускаться до -183°С.

Как ближайшая к Солнцу планета, Меркурий получает от центрального светила значительно большую энергию, чем, например, Земля (в среднем в 10 раз). Из-за вытянутости орбиты поток энергии от Солнца варьируется примерно в два раза. Большая продолжительность дня и ночи приводит к тому, что яркостные температуры (измеряемые по инфракрасному излучению в соответствии с законом теплового излучения Планка) на «дневной» и на «ночной» сторонах поверхности Меркурия при среднем расстоянии от Солнца могут изменяться примерно от 600 К до 100 К. Но уже на глубине нескольких десятков сантиметров значительных колебаний температуры нет, что является следствием весьма низкой теплопроводности пород. Поверхность Меркурия, покрытая раздробленным веществом базальтового типа, довольно темная. Судя по наблюдениям с Земли и фотографиям с космических аппаратов, она в целом похожа на поверхность Луны, хотя контраст между темными и светлыми участками выражен слабее. Наряду с кратерами (как правило, менее глубокими, чем на Луне) есть холмы и долины.

В семье больших планет Меркурий отличается довольно скромными размерами. Его диаметр в 2,61 раза меньше диаметра Земли. Следовательно, по объему планета меньше земного шара в 17,8 раза (2,61·2,61·2,61 = 17,8). В то же время по массе планета уступает Земле в 18,1 раза. Выходит, что средняя плотность Меркурия почти равна земной - она составляет 5,43 г/см 3 (у Земли - 5,52 г/см 3). И это в то время, когда недра планеты не испытывают сильного сжатия! Таким образом, после нашей Земли Меркурий является самой плотной планетой.

Некоторые исследователи считают, что Меркурий - это уникальная планета-рудник, которая по массе на 60% состоит из железа. Его массивное железное ядро окружено сравнительно тонкой силикатной оболочкой с мощными разветвленными рудоносными жилами, выходящими прямо на поверхность. Вполне возможно, что днем на поверхности Меркурия, испепеленной огненным дыханием близкого Солнца, образуются "озера" из расплавленных металлов (олова, свинца, цинка), похожие на изверженную вулканическую лаву.

Американский КА "Маринер-10" (1974 г.) передал на Землю около 3000 снимков поверхности планеты с разрешением до 50 м.

Сравнение снимков Меркурия с изображениями Луны говорит об их большом сходстве. Поверхность Меркурия тоже покрыта множеством кратеров ударного происхождения, и меркурианский ландшафт легко спутать с лунным. Но при внимательном изучении снимков можно найти отличия: крупные кратеры встречаются на Меркурии реже, чем на Луне. Самый большой кратер на Меркурии носит имя великого немецкого композитора Бетховена. Его диаметр достигает 625 км!

Следующим важным различием гористых ландшафтов Меркурия и Луны является присутствие на Меркурии многочисленных зубчатых откосов, простирающихся на сотни километров. Изучение их структуры показало, что они образовались еще в ранний период развития планеты в результате глобального сжатия коры. Наличие на поверхности Меркурия хорошо сохранившихся больших кратеров говорит о том, что в течение последних 3-4 млрд лет там не происходило в широких масштабах движение участков коры, а также отсутствовала эрозия поверхности. Последнее обстоятельство почти полностью исключает существование в истории Меркурия сколько-нибудь существенной атмосферы.

На фотографиях поверхности Меркурия видно и несколько относительно гладких больших равнин, которые, очевидно, значительно моложе, чем сильно испещренные кратерами территории. Самой обширной равниной является Море Жары, или Море Зноя, достигающее в поперечнике 1300 км; расположено оно в экваториальной зоне планеты. Смотришь на него и невольно вспоминаешь лунное Море Дождей. И то и другое возникли в результате гигантских катастроф - столкновений с астероидными телами.

С помощью чувствительного магнитометра, установленного на "Маринере-10", у Меркурия было обнаружено дипольное магнитное поле, направленное примерно вдоль оси вращения планеты. Но напряженность этого поля на поверхности Меркурия не достигает и 1% от напряженности магнитного поля Земли. Тем не менее магнитное поле Меркурия значительно сильнее, чем поле Венеры или Марса.

По-видимому, для его генерации внутри планеты имеются необходимые условия.

Таким образом, в результате космических исследований было установлено, что Меркурий - это планета-парадокс: внешне и по истории формирования поверхности он похож на Луну, а по своему внутреннему строению обнаруживает удивительное сходство с Землей. Даже магнитное поле Меркурия подобно земному.

Меркурий – ближайшая к Солнцу планета. Она характеризуется параметрами, анализ которых позволяет получить представление о ее внутреннем строении и путях эволюции.

Главным параметром планеты является ее масса. У Меркурия масса равна 0,33×10 27 г, что составляет 1 / 18 массы Земли. Несмотря на небольшие размеры – диаметр 4880 км, радиус 2440 км, – Меркурий имеет необычайно высокую среднюю плотность – 5,42 г/см 3 , что значительно выше плотности Луны, размеры которой ненамного меньше Меркурия.

Расстояние от Солнца до Меркурия в перигелии 47 млн. км, в афелии – 70 млн. км, среднее орбитальное – 53 млн. км. Таким образом, Меркурий имеет одну из самых вытянутых эллиптических орбит среди планет Солнечной системы. Полный оборот вокруг Солнца он делает за 88 земных суток. Вокруг своей оси Меркурий вращается очень медленно – один полный оборот за 58,65 суток. Тем не менее американская межпланетная станция «Маринер-10» в 1974 г., сделав множество фотоснимков поверхности планеты, обнаружила у нее слабое магнитное поле напряженностью порядка 100 нТ, которое в 100 раз меньше земного магнитного поля. Ввиду близости Солнца поверхность дневной стороны планеты буквально выжигается – температура поднимается до 437°С. На теневой стороне она падает до -173°С. Солнечная постоянная Q 0 = 60 кал/см 2 ×мин, что в 29 раз больше, чем получает Земля от Солнца. Никакие живые организмы земного типа не могут существовать и развиваться в условиях меркурианской температуры. Нет здесь и воды – ни жидкой, ни атмосферной, как нет и самой атмосферы. Это мертвая безжизненная планета, поверхность которой местами, возможно, тускло блестит свинцовыми озерами.

Поверхность Меркурия имеет низкую отражательную способность (альбедо – 0,56, сравнимо с Землей – 0,36). Это указывает на преобладание темноцветных минералов в коре планеты, скорее всего, железисто-магнезиальных силикатов (Войткевич, 1979). В пользу такого предположения свидетельствует и высокая средняя плотность вещества планеты.

На фотографиях «Маринер-10» поверхность Меркурия представляет собой луноподобный пейзаж, плотно усеянный кратерами размером от 50 м до 200 километров и более (рис. 90). Между кратерами располагаются весьма протяженные равнины. Это первое отличие от


Рис. 90. Поверхность Меркурия – фотография сделана

американской межпланетной станции «Маринер-10» в 1974 г.

Луны, где нет межкратерных равнин (Кауфман, 1982). Кратеры имеют плоское дно без центральной горки, как на Луне. Все они ударного происхождения – за счет падения крупных и мелких метеоритов, астероидов и, возможно, комет. Судя по возрасту пород подобных образований на Луне, образование кратеров происходило 3 – 4 млрд. лет назад. Отмечается большое количество глыбообразных холмов и гор высотой 250 – 2000 м.

Изучая фотографии, геологи обнаружили еще одно существенное различие между Меркурием и Луной: по всей планете встречаются крупные уступы с мелкими зубцами высотой 1 – 2 км и длиной в несколько сотен километров (Кауфман, 1982). Такие геологические образования возникают обычно в результате сжатия тела планеты и уменьшения площади ее поверхности. Сжатие было обусловлено охлаждением недр Меркурия.

Какие же выводы можно сделать из приведенного фактического материала о природе ближайшей к Солнцу планеты и ее внутреннем строении?

То, что на Меркурии нет атмосферы, однозначно указывает на давно угасшую здесь вулканическую деятельность. Отсутствие у большинства кратеров центральной горки-вулкана, существование безлавовых кратеров свидетельствует о большой глубине астеносферного или подобного ему высокотемпературного слоя, где вещество пребывает в расплавленном состоянии. Частично лавовые заполнения кратеров могли образоваться за счет местного расплава пород, возникающего при преобразовании кинетической энергии в тепловую.

По оценкам исследователей (Хаббард, 1987), высокая плотность Меркурия объясняется наличием у него мощного металлического (по всей вероятности, железного) ядра, диаметр которого достигает 3600 км, т.е. сравним с размерами Луны. Толщина вышележащей мантии, состоящей, по всей видимости, из силикатных пород, в этом случае будет около 640 км. Типичная плотность силикатов – 3,3 г/см 3 , железа – 8,95 г/см 3 . Их смесь дает искомую 5,44 г/см 3 плотность Меркурия, если железо составляет 60% массы планеты.

При таком мощном железном ядре у Меркурия не остается места для достаточного развития жидкого внешнего ядра, подобно тому, что мы видели у Земли. Тогда возникает вопрос о природе наблюдаемого магнитного поля, имеющего тоже дипольную структуру. Здесь могут быть два предположения – либо оно генерируется намагничением железного ядра в прошлые эпохи, вследствие более быстрого вращения планеты, либо оно вбито солнечным ветром магнитного поля внешней короны Солнца.

Первое предположение нам кажется более правдоподобным, ибо это согласуется с дипольным характером поля. Современное медленное вращение планеты обусловлено вековым приливным торможением ее со стороны огромной гравитационной массы Солнца. Меркурий, видимо, давно почти остановил свое осевое вращение. Его ядро еще может пребывать в расплавленном состоянии.

Межкратерные равнины и отсутствие внекратерных горных образований сколько-нибудь значительных размеров можно объяснить отсутствием на планете условий для вулканизма. В отличие от Земли на Меркурии из-за мощного железного ядра, возникшего, по всей вероятности, изначально в ходе гетерогенной аккреции (см. гл. XV), никогда не было внешнего жидкого ядра, а отсюда и зоны вторичного расплава – астеносферы. Поэтому не было и вулканизма. Давление в основании мантии на глубине 640 км составляет всего 70 кбар (70000 атм), что позволяет развить температуру порядка 1500 К (около 2000°С), какой в общем-то недостаточно для образования мощного слоя расплавленного вещества, подобного земной астеносфере. В железном, однородном по химическому составу ядре нет источников тепла, так как нет ни радиоактивных, ни пероксидов (MeO 2) и дигидритов (MeH 2) металлов. Поэтому здесь не происходят термохимические реакции, являющиеся дополнительным источником тепла, летучих и воды. Эндогенная подпитка низов мантии не происходит.

Поскольку небольшая геологическая активность на Меркурии вследствие его малой массы и мощного приливного воздействия со стороны Солнца завершилась 4 млрд. лет назад, не оставив на поверхности почти никаких следов, кроме последующего сжатия (контрак­ции), то можно предположить, что за предыдущие 500 млн. лет произошла полная дифференциация металлической и силикатной фазы с образованием мощного железного ядра и тонкой мантии. Поэтому совершенно естественно, как и в случае с Землей, выводить внутреннее строение Меркурия как результат изначального разделения вещества. В условиях высоких температур близкой протозвезды легкие фракции улетучивались, а тяжелые сформировали вначале массивное ядро, на поверхность которого затем стремительно выпали более легкие силикатные частицы из окружавшего протосолнце пылегазового облака. Образ планеты был создан в процессе ее творения и в дальнейшем остался практически неизменным. Лишь запоздавший дождь каменных обломков, выпавший несколько позже на уже сформировавшуюся поверхность планеты, изрыл ее кратерами. Этот древний лик Меркурия и предстает сегодня перед нами.

Венера

Яркая белая утренняя или вечерняя «звезда», появляющаяся над горизонтом на западе после захода Солнца или на востоке перед его восходом, – это Венера – планета загадок (рис. 91). Ее гелиоцентрическое расстояние – 108 млн. км, она расположена на 50 млн. км ближе к


Рис. 91. Венера, фото «Маринер-10», полученное в 1974 г.

Солнцу, чем Земля. Масса Венеры 4,87×10 27 г, что составляет 81% земной массы. Средний радиус – 6050 км, средняя плотность – 5,245 г/см 3 , ускорение силы тяжести – 8,8 м/с 2 , вес предметов на Венере только на 10% меньше их веса на Земле. Период обращения планеты вокруг Солнца – Т = 225 суткам. Венера очень медленно вращается вокруг своей оси – один оборот за 243,16 суток, причем имеет обратное вращение (навстречу Земле). Это значит, что Солнце восходит на западе, а заходит на востоке. Продолжительность солнечных суток на Венере равна 117 земным суткам.

Венера имеет очень мощную атмосферу гигантской плотности. На поверхности планеты давление атмосферы составляет 100 атм (10 МПа), что соответствует давлению на глубине моря 1000 м.

Находясь ближе к Солнцу, Венера получает в два раза больше тепла, чем Земля – 3,6 кал/см 2 ×мин. Как показали измерения, выполненные советскими межпланетными станциями, температура на поверхности планеты испепеляющая (+480°С), больше, чем на Меркурии. Этот удивительный факт объясняется парниковым эффектом, создаваемым венерианской атмосферой. В свою очередь атмосфера, поглощая и задерживая солнечный свет, также нагревается (рис. 92). Часть тепла, проходя толщу атмосферы, нагревает поверхность планеты. Но переизлучение тепла происходит на более длинных волнах (в инфракрасном диапазоне), которые задерживаются молекулами углекислого газа СО 2 , составляющими 97% массы венерианской атмосферы. На долю кислорода приходится только 0,01%, азота – 2%, водяных паров – 0,05%.


Рис. 92. Температура и давление в атмосфере Венеры

Оранжерейный, парниковый эффект, создаваемый углекислотой, препятствует переизлучению тепла и охлаждению поверхности даже во время длинной венерианской ночи. Отсутствие значительных перепадов приземной температуры объясняет факт необычайно низких скоростей ветра (3 м/с), измеренных станциями «Венера». В то же время наблюдениями с «Маринер-10» были установлены громадные скорости ветра в атмосфере Венеры. Полный оборот вокруг планеты атмосфера делает всего за четыре дня, хотя сама планета, как мы знаем, вращается значительно медленнее. Следовательно, скорость ветра достигает ураганных значений – 100 м/с.

Облачный слой планеты начинается с высоты 35 км и тянется до высоты 70 км. Нижний ярус облаков состоит из 80%-ной серной кислоты (Н 2 SО 4).

Венера имеет очень слабое магнитное поле, напряженность его на экваторе составляет всего 14 – 23 нТ.

Рельеф поверхности планеты недоступен визуальному наблюдению из-за плотной облачности. Он изучался посредством радиолокации с Земли и с трех искусственных спутников – двух советских и одного американского. Кроме того, автоматическая станция «Венера-14», совершившая мягкую посадку на поверхность планеты, передала телевизионное изображение небольшого участка рельефа, на котором видны острые угловатые камни, щебень, песок – явные следы геологического выветривания пород. Измеренная плотность пород близка к земным базальтам – 2,7 - 2,9 г/см 3 . Отношение урана к торию U/Th также оказалось близким к тем значениям, которые наблюдаются в земной коре.

В рельефе поверхности планеты преобладают равнины. Горные районы занимают около 8% территории. Высота гор 1,5 – 5,0 км. Самый высокий горный массив (до 8 км) обнаружен на плато Иштар, размеры которого сравнимы с Австралией, а высота – около 1000 м над уровнем прилегающей равнины.

Низменности занимают 27% поверхности Венеры. Крупнейшая из них – Атлантида – имеет в поперечнике около 2700 км и глубину 2 км. Много невысоких гор и горных цепей. Вблизи экватора обнаружен гигантский разлом длиной до 1500 км и шириной 150 км, глубиной до 2 км. В целом в рельефе Венеры просматриваются черты строения, сходные с земными, – выявляются континентальные и океанические области – земля Иштар, где расположены высочайшие горы Максвелла, область Бета и большой, вытянутый вдоль экватора континент Афродиты. Низменности, подобные Атлантиде, сравнимы с океаническими областями, правда, ныне безводными. Обнаружено несколько вулканов с огромными кратерами (рис. 93), в горных областях отмечены кратеры ударного происхождения. Но в целом следует отметить важный факт: поверхность Венеры слабо кратирована, что указывает на продолжающуюся деятельность геологических процессов преобразования поверхностных пород и рельефообразования, которая в прошлом, несомненно, была значительнее.

Для определения внутреннего строения планеты была предпринята попытка расчета модели с использованием уравнения состояния земного вещества, а также железа и различных окислов и силикатов (Жарков, 1978; Хаббард, 1987). Была получена трехслойная модель, состоящая из коры толщиной 16 км, силикатной оболочки до глубины 3224 км и железного ядра в центре. Вопрос о наличии у Венеры жидкого ядра и астеносферы остался вне обсуждения.

Итак, проанализируем имеющиеся данные по Венере в свете наших знаний о Земле.

Наличие мощной атмосферы с большим содержанием углекислого газа и соединений серы свидетельствует о ее вулканическом происхождении. В условиях Земли СО 2 связывается карбонатной системой Мирового океана с образованием СаСО 3 , принимает участие в синтезе органического вещества, растворен в морской воде, находится в составе биомассы живого органического вещества и законсервирован в осадочных породах в виде отмерших организмов. Поэтому в земной атмосфере углекислого газа содержится ничтожное количество – менее 0,1%. Поступает же он ежегодно с вулканическими извержениями и по глубинным разломам земной коры – около 10 13 г. Общая масса земной атмосферы составляет около 5×10 21 г. На Венере давление атмосферы на два порядка больше. Следовательно, при примерно равной площади сферы планет массу венерианской атмосферы можно оценить в 1,7×10 24 г.

Таким образом, преобладание в атмосфере Венеры углекислого газа служит указанием на отсутствие на поверхности планеты воды и биосферы. Углекислый газ может выделяться также при нагревании карбонатных пород. Поэтому нельзя исключить возможность такого пути поступления СО 2 в венерианскую атмосферу (наряду с вулканизмом). Но тогда надо допустить возможность существования в прошлом на Венере океанов, в которых происходило образование этих карбонатных пород. Возникает вопрос: возможно ли такое, и если да, то когда они были на этой планете и почему исчезли?


Рис. 93. Вулканы на Венере. Радиолокационный снимок сделан

космическим зондом «Магеллан», в 1989 г.


Чтобы попытаться ответить на поставленные вопросы, забежим несколько вперед, в нашем изложении материала и коснемся темы эволюции звезд. Дело в том, что существует несколько стадий развития звезды: красного спектрального класса – с температурой поверхности 3000 К, оранжевого спектрального класса – 5000 К и желтого спектрального класса – 6000 К – это наше современное Солнце. В геологической истории Земли 320 млн. лет назад наступил карбоновый период, знаменательный внезапным расцветом царства наземных растений. Предыдущие формы жизни носят следы, указывающие на их развитие лишь в водоемах и, скорее всего, подо льдом. Можно предположить, что появление карбоновых тропических лесов на Земле обусловлено переходом Солнца от оранжевого в стадию желтого спектрального класса. Обильное тепло создало благоприятные возможности для бурного развития земной флоры. Но одновременно это же Солнце иссушило венерианские океаны, уничтожило органическую жизнь, к тому времени сложившуюся на планете. Продолжающийся вулканизм пополнил атмосферу СО 2 , и если масса его эксгаляций была такая же, как на Земле (10 13 г/год), то за 320 – 400 млн. лет его поступило в венерианскую атмосферу 4×10 21 г. Масса современной атмосферы на три порядка больше, – 1,7×10 24 г, следовательно, недостающая часть СО 2 могла поступить за счет начавшегося отжига (декарбоксилации) известняков, покрывающих дно обширных океанических бассейнов типа Атлантиды, а также за счет разложения погибшей биомассы планеты.

Имея почти такую же, как Земля, массу и, следовательно, сходные термодинамические условия на уровне внешнего ядра (Р = 1,5×10 6 атм, Т =3000 К) и получая до карбонового периода от менее горячего Солнца примерно столько же тепла, сколько сегодня получает его Земля, Венера располагала всеми необходимыми условиями для длительного развития и накопления своей гидросферы и органической жизни. К концу девонского периода на Венере вполне могли существовать моря и океаны и жизнь в них. Трагическая судьба планеты началась с переходом светила в стадию желтого спектрального класса и началом быстрого испарения венерианской гидросферы.

Следы былой геологической жизни на планете весьма отчетливы, и мы о них говорили выше. Венера, несомненно, имела раньше более быстрое вращение. Она, как и Меркурий, постепенно затормозила его под гравитационным воздействием близкого Солнца. Следовательно, планета обладала собственным магнитным полем. Отсутствие его в настоящее время вовсе не является свидетельством отсутствия жидкого ядра. Оно до минимума ослаблено медленным вращением планеты. Атмосфера планеты, несомненно, подпитывается вулканизмом. Иначе она в значительной мере была бы уже утрачена. Но вулканизм, как мы знаем, невозможен без внутренней активности планеты, т.е. без существования жидкого внешнего ядра и его производной – астеносферы.

Для проверки выдвинутой здесь и ранее (Орлёнок, 1990) гипотезы в рамках истории Венеры об однотипности органической жизни в условиях одинакового химического состава протовещества и близких физических условиях на поверхности планет необходимо искать во впадинах Атлантиды Венеры остатки морских осадочных пород – известняков, мраморов, песчаников с фауной и т. д. Один наперсток такой породы, доставленный на Землю, позволит решить сразу ряд крупных естественнонаучных и космогонических проблем. Нам остается только ждать этих фактов.

Луна

Порой, сами того не сознавая, люди чувствуют себя менее затерянными в бездне мироздания, когда в вечернем небе над ними поднимается желтый диск Луны. Вечная спутница Земли – Луна – с расстояния 384 тыс. км видела все, что происходило на земной поверхности. Только она одна могла бы во всех подробностях рассказать нам подлинную историю событий, происходивших на Земле. Размеры и масса Луны приближаются к планетным параметрам. Поэтому мы расмотрим ее строение здесь наряду с планетами Земной группы.

Масса Луны – 7,35×10 25 г, т.е. в 81 раз меньше земной. Диаметр – 3476 км, средняя плотность – 3,34 г/см 3 . Ускорение силы тяжести в 6 раз меньше, чем на поверхности Земли, и составляет 1,63 м/с 2 .

Луна делает один оборот вокруг Земли за 29,5 суток, скорость вращения вокруг оси 27,32 суток. Таким образом, периоды ее осевого вращения и сидерического обращения вокруг Земли равны. Вот почему Луна всегда обращена к нам одной и той же стороной (рис. 94).

Луна лишена воды и атмосферы. В течение солнечного дня, длящегося, как и ночь, 15 суток, ее поверхность нагревается до +130°С, а ночью охлаждается до -170°С.

С 1969 по 1972 г. 29 американских астронавтов побывали на Луне. Три автоматические станции и два лунохода, посланные СССР, также проделали большую работу. Все это позволило провести разносторонние исследования физических полей, рельефа и лунных пород. Сравнение фотографий обращенной к Земле и противоположной сторон Луны позволяет заключить, что из-за приливного торможения спутник уже давно практически остановил свое вращение.


Рис. 94. Луна

Рельеф лунного полушария, обращенного к Земле (рис. 94), довольно разнообразен. Здесь различают обширные низменности, получившие названия морей, материковые области с горными хребтами и отдельными горными массивами высотой 5 – 8 км, множество крупных и мелких кольцевых кратеров. В одном из них – кратере Альфонс диаметром 124 км – в 1958 г. наблюдалось свечение центральной горки. В нем были обнаружены выделения углерода.

На обратной стороне Луны преобладают кратерные формы и отмечено лишь два моря – море Москвы и море Мечты.

Поверхность кратеров и лунных морей – плоская, магматического происхождения. Судя по возрасту пород, последний этап вулканизма на Луне закончился 3,3 млрд. лет назад. Расплавленная мантия находилась в то время на сравнительно небольшой глубине, и магма после удара метеорита легко выходила по трещинам на поверхность, заполняя образовавшийся кратер. Обилие мелких кратеров микронного и миллиметрового диаметров свидетельствует о беспрепятственной метеоритной бомбардировке лунной поверхности, обусловленной отсутствием атмосферы и продолжающийся поныне. Например, только за четыре года осуществления американской программы «Аполлон» установленные сейсмографы зарегистрировали 12 000 сейсмических тол­чков, из них 1700 пришлось на долю сильных ударов метеоритных тел.

Однако часть кратеров, например Коперник (диаметр 100 км), имеет вулканическое происхождение. Об этом говорит сложный гористый рельеф их поверхности, слоистое строение стенок кратера. Это структура не ударного происхождения, а образовавшаяся в результате проседания.

Анализ доставленных на Землю образцов лунных пород и грунта показал, что это древнейшие образования, имеющие возраст от 3,3 до 4,2 млрд. лет. Следовательно, возраст Луны близок к возрасту Земли – 4,6 млрд. лет, что позволяет уверенно предполагать их одновременное образование.

Лунный грунт (реголит) имеет плотность 1,5 г/см 3 и сходен по химическому составу с земными породами. Малая плотность его объясняется большой (50%) пористостью. Среди твердых пород были выделены: «морской» базальт (содержание кремнезема 40,5%), габбро-анортозиты (содержание SiО 2 – 50%) и дацит с высоким содержанием кремнезема (61%), приближающим его к земным кислым (гранитным) породам.

Анортозитовые породы имеют наиболее широкое распространение на Луне. Это самые древние образования. По данным сейсмических исследований, проведенных с помощью шести сейсмографов, установленных американскими астронавтами, выявлено, что лунная кора до глубины 60 км состоит преимущественно из этих пород. Предполагается, что нориты образовались в результате частичного плавления анортозитов. Анортозиты слагают преимущественно возвышенные части лунной поверхности (континенты), нориты – горные области. Базальты покрывают обширные поверхности лунных морей и имеют более темную окраску. Они сильно обеднены кремнеземом и по химическому составу близки к Земным базальтам. Замечательно, что астронавтами не было доставлено ни одного образца морских осадочных пород. Это значит, что на Луне никогда не было морей и океанов, а выносимая с вулканизмом на поверхность вода диссипировала. Из-за малой массы скорость преодолевания газовыми молекулами силы лунного притяжения составляет всего 2,38 км/с. В то же время при нагревании скорость легких молекул – более 2,40 км/с. Поэтому Луна не может удерживать свою газовую атмосферу – она быстро улетучивается.

Средняя плотность так называемых «морских» базальтов – 3,9 г/см 3 , а анортозитовых пород – 2,9 г/см 3 , что выше средней плотности земной коры – 2,67 г/см 3 . Однако низкая средняя плотность Луны (3,34 г/см 3) указывает на общее однородное строение ее недр и отсутствие у Луны железного ядра сколько-нибудь значительных размеров.

Но нельзя совсем исключать наличие очень небольшого металлического ядра первичной конденсации, вокруг которого происходило формирование силикатной лунной оболочки.

В пользу предположения об однородной Луне говорит близость ее момента инерции I /Ma 2 к предельному значению, равному 0,4. Напомним, что для Земли величина I /Ma 2 = 0,33089, что соответствует значительной концентрации массы в центре планеты и согласуется с ее общей высокой средней плотностью.

Слабое изменение плотности r и силы тяжести g с глубиной в случае однородной модели позволяет определить давление в центре Луны из простого соотношения: Р = grR , где g = 1,63 м/с 2 , r = 3,34 г/см 3 , R = = 1738 км. Отсюда Р » 4,7×10 4 атм. На Земле такое давление достигается на глубине порядка 150 км.

Изучение распространения сейсмических волн показало, что почти все возмущения возникали глубоко в недрах Луны на глубине около 800 км. Эти лунотрясения происходили периодически и связаны с приливным возмущением со стороны Земли. Не коррелирующиеся с приливами лунотрясения вызываются тектоническим механизмом освобождения энергии – они значительно сильнее первых (Хаббард, 1987).

Глубже 1000 км поперечные волны плохо проходят. Эта область Луны, по-видимому, является аналогом земной астеносферы (Хаббард, 1987). Вещество здесь пребывает в расплавленном состоянии. Этот вывод подтверждается и тем фактом, что глубже 1000 км очаги лунотрясений не наблюдались.

У Луны не обнаружено собственного дипольного магнитного поля. Поэтому большой сенсацией было открытие астронавтами магнетизма лунных пород. Так, в районе моря Дождей измеренное поле было 6 нТ, в океане Бурь – 40 нТ, а на насыпном валу Фра-Мауро – 100 нТ. В районе кратера Декарт вдоль профиля наблюдений в несколько километров поле сильно менялось, достигая 300 нТ. Оказалось также, что кора континентов намагничена сильнее коры лунных морей. По современным оценкам, величина магнитного момента диполя Луны в миллион раз слабее земного. Это составляет всего несколько единиц нанотесл (гамм) на лунном магнитном экваторе. По образцам горных пород установлено, что основными носителями лунного магнетизма являются частички железа. Все это свидетельствует о существовании ранее более мощного собственного магнитного поля у Луны, когда ее осевое вращение было более быстрым и действовал вулканизм. Значит, Луна вначале обладала достаточно мощным расплавленным внешним ядром, в котором эффективно действовал механизм гидромагнитного динамо, подобный тому, что имеет место на Земле. Сегодня же на Луне регистрируется лишь остаточный магнетизм, законсервировавший память прошлых луномагнитных эпох.

Приливные возмущения Луны имеют, вероятно, для истории Земли такое же значение, что и возмущения Солнца для Меркурия и Венеры. Тесная связь между периодичностью максимальных приливных возмущений и проявлений вулканизма известна не только на Луне, но и на Земле. Но эти возмущения на Земле захватывают не только водную оболочку и ее поверхность. Периодические взаимные смещения испытывают частицы вещества внутри нашей планеты, особенно в ее расплавленных зонах – внешнем ядре и астеносфере. Постоянное приливное перемешивание вещества и возникающая при этом добавочная теплота от взаимного трения частиц должны были способствовать ускорению процессов термохимических реакций и общей дифференциации вещества. Возникавшие при этом уменьшения давлений или повышения температуры способны были в условиях расплавленных зон Земли и Луны ускорить химическое разложение дигидритов (MeH 2) и пероксидов (MeO 2) металлов протовещества.

Таким образом, Луна для Земли явилась своего рода катализатором и регулятором внутренней активности. Не будь ее, эволюция протовещества в земных условиях, несомненно, сильно замедлилась бы. Аналогичную роль сыграла Земля для Луны.

И, наконец, еще один важный аспект проблемы. Приливное взаимодействие Земли и Луны постепенно уменьшает скорость вращения обеих планет. В результате, как отмечалось, Луна уже прекратила свое вращение и постоянно обращена к Земле одной стороной. С момента своего образования значительно уменьшилась и скорость вращения Земли. Это находит подтверждение в непосредственных астрономических измерениях, а также при изучении древних вавилонских, египетских и шумерских записей о наблюдениях солнечного затмения, выполненных более 2000 лет назад. Дополнительную информацию по этому вопросу дают исследования ископаемых кораллов различного возраста. Было установлено, что по сравнению с силуром (440 млн. лет назад) скорость вращения Земли уменьшилась на 2,47 часа. На столько же увеличилась продолжительность суток. Все три рассмотренных и независимых источника дают один внутренне согласованный результат: уменьшение скорости вращения Земли происходит в среднем на две секунды в каждые 100000 лет.

Вследствие уменьшения скорости вращения Земли происходит обмен моментами количества движения с Луной. В результате скорость вращения Луны вокруг своей оси уменьшалась быстрее, чем Земли, и одновременно возрастало расстояние между ними. Средняя скорость удаления спутника, по расчетам П. Мельхиора (1976), составляет 3,6 см в год. Если бы это удаление шло так же равномерно, как и замедление скорости (3,6 см в год) за 4,5 млрд. лет Луна удалилась бы от Земли на расстояние 162 тыс. км. Следовательно, сразу после образования планет она находилась на расстоянии, в 2,4 раза меньше современного. Столь близкое расположение Луны должно было бы вызвать на Земле катастрофические приливные деформации коры и глубинного вещества. Это событие должно было бы отразиться в докембрийской геологии в виде колоссального по объему вулканизма и других явлениях. Одновременно аналогичные события должны были произойти и на Луне. Однако ничего подобного в действительности не запечатлено в истории обеих планет. Следовательно, есть основания предположить, что современная скорость приливного торможения не всегда была таковой, а приобретена Землей лишь сравнительно недавно.

С другой стороны, наблюдаемое приливное торможение вызвано главным образом океанскими приливными волнами. Не будь их, скорость торможения была бы значительно меньше. Но, как мы знаем, океаны современных размеров и глубин появились лишь в конце палеогена, т.е. 30 – 50 млн. лет назад. В докайнозойское время обширных и глубоководных бассейнов еще не было, а в небольших мелководных морях приливы ничтожно малы. Следовательно, современную скорость удаления Луны, вызванную приливным торможением Мирового океана, мы должны распространять не на всю историю Земли, а лишь на период океанизации, т.е. 30 – 50 млн. лет. С учетом сказанного найдем расстояние, на которое удалилась Луна за последние 50 млн. лет:
3,6 см/год×50×10 6 лет = 180×10 6 см, т.е. удаление составило 1800 км.

В докайнозойскую эпоху вследствие слабого приливного торможения скорость удаления была по меньшей мере на порядок ниже современной: 0,36 см/год×4,5×10 9 лет = 1,62×10 9 см, т.е. удаление составило 16200 км. Следовательно, Луна и Земля в момент своего образования находились всего на 17 – 20 тыс. км ближе, чем сейчас, что не могло существенно повлиять на величину тогдашних приливов.

Таким образом, наибольшее приливное торможение Земля испытывала в конце первой крупной фазы океанизации, т.е. в конце палеогена. До этого она вращалась с большей скоростью и должна была иметь большее полюсное сжатие и, следовательно, большее вздутие по экватору. Из наблюдений эволюции c искусственных спутников Земли такое вздутие экватора действительно установлено и составляет 70 м. Было также доказано, что оно не соответствует современной скорости вращения. Следовательно, возраст установленного экваториального вздутия составляет 25 – 50 млн. лет. Оно приобретено планетой в докайнозойскую эпоху при большей, чем теперь, скорости вращения.

Все имеющиеся данные указывают, что первоначальные скорости вращения Луны и Земли были значительно больше современных, а их гравитационное взаимодействие сильнее вследствие более близкого расположения их на орбите (Орлёнок, 1980). В этих условиях становятся понятными причины быстрого разогрева планеты, образования термореакционных зон внутри Земли и более раннее завершение активности Луны. Приливные перемещения частиц протовещества способствовали быстрому выделению огромных количеств тепла и разогреву недр планеты. В условиях Луны вследствие большей массы Земли приливный эффект был значительно больше, что ускорило процессы ее эволюции. Вот почему геологическая активность Луны закончилась так рано 3 – 3,6 млрд. лет назад.

В конце концов наступит момент, когда Земля также полностью прекратит свое вращение и будет постоянно обращена к Луне одной стороной. Но поскольку земное магнитное поле создается в результате быстрого вращения планеты, то оно исчезнет так же, как исчезло у Луны, Меркурия и Венеры, давно остановивших свое вращение под действием сил тяготения Земли и Солнца.

Итак, роль Луны в жизни Земли оказывается значительной. Это позволяет по-новому взглянуть на роль спутников в процессе эволюции других планет.

Марс

Орбита Марса проходит значительно выше земной – почти на 60 млн. км. Среднее гелиоцентрическое расстояние составляет 225 млн. км. Но благодаря эллиптичности орбиты Марс через каждые 780 дней сближается с Землей до расстояния 58 млн. км и удаляется до 101 млн. км. Эти точки называются противостояниями. Масса Марса 0,64×10 27 г, радиус 3394 км, средняя плотность 3,94 г/см 3 , ускорение силы тяжести 3,71 м/с 2 . Продолжительность марсианского года – 687 земных суток, период вращения вокруг оси такой же, как у Земли, – 24 часа 34 минуты 22,6 секунды. Наклон оси к плоскости орбиты также близок земному – 24°. Это обеспечивает смену сезонов года и существование «климатических» поясов – жаркого экваториального, двух умеренных и двух полярных тепловых поясов. Однако ввиду значительной удаленности от Солнца (Марс получает в 2,3 раза меньше солнечного тепла, чем Земля) контрасты тепловых поясов и сезонов года здесь иные. Полуденная температура на марсианском экваторе достигает +10°С, а на полярных шапках падает до -120°С.

У Марса имеются два спутника – Фобос и Деймос. Фобос более крупный – 27´21´19 км (рис. 95). Его орбита проходит всего в 5000 км от планеты. Деймос имеет размеры 15´12´11 км и расположен на более высокой орбите – 20000 км от поверхности Марса. По фотографиям «Маринер-9» – американской межпланетной станции, исследовавшей планету в 1972 году, оба спутника являются обломками астероидов. На них видны ямки-кратеры от удара крупных и мелких метеоритов без характерных взрывных валов и базальтовых магматических заполнений, как это наблюдалось на других планетах и Луне.

На Марсе обнаружена очень разреженная атмосфера, давление которой на поверхности составляет всего 0,01 атм. Она состоит на 95% из углекислого газа (СО 2); азота (N) – 2,5%; аргона (Ar) – 2%; 0,3% – кислорода (О 2) и 0,1% – водяных паров. Если атмосферную воду конденсировать, то она покроет марсианскую поверхность пленкой толщиной всего 10 – 20 мм.

Межпланетные советские станции обнаружили у Марса собственное дипольное магнитное поле слабой интенсивности – 64 нТ по экватору (магнитный момент равен 2,5×10 22 СГС (2,5×10 19 А×м 2)). Хотя эти измерения до сих пор дискутируются, наличие магнитного поля у быстро вращающейся планеты – факт закономерный. Его низкая напряженность может быть вполне объяснена отсутствием развитого жидкого внешнего ядра. Завершение вулканизма на планете имело место около 2,0 – 2,5 млрд. лет назад, тогда же редуцировалось и внешнее ядро Марса.


Рис. 95. Фобос (снимок получен американской

станцией «Маринер-9» в 1972 г.)

В 1976 году на Марсе совершили посадку американские станции «Викинг-1» и «Викинг-2». Перед ними ставилась задача поиска следов органической жизни на планете. Хотя решить эту проблему не удалось, был исследован грунт и сделаны фотографии района посадки поверхности Марса с низких высот. Совершенно неожиданно грунт оказался более обогащен железом, чем на Земле, – его состав, по данным измерений, таков: гидритные окислы железа (Fe 2 O 3) – 18%; кремнезем (SiO 2) – 13 – 15%; кальций (Са) – 3 – 8%; алюминий (Аl) – 2 – 7%; титан (Тi) – 0,5%. Такой состав характерен для продуктов разрушения полевошпат-пироксен-оливиновых пород с ильменитом. Красноватый цвет поверхности Марса обусловлен гематитизацией и лимонитизацией пород. Но для этого процесса нужна вода и кислород, которые, очевидно, и поступают из подпочвы при прогревании поверхности марсианским днем или теплыми газовыми эксгаляциями.

Белый цвет полярных шапок объясняется выпадением замерзшей углекислоты. Есть основание полагать, что мантия Марса обогащена железом, или же его высокое содержание в поверхностных породах вызвано низкой степенью дифференциации мантийных пород.

Как и на Луне, непродолжительная геологическая активность Марса обусловлена его небольшой массой. Поэтому трудно в этих условиях ожидать полной дифференциации протовещества в небольшой по мощности зоне расплава мантии.

Масса планеты обеспечивает в центре давление порядка 4×10 5 атм, что соответствует 100 км глубины на Земле. Температура плавления – 1100 К; по некоторым данным, достигается частично на глубине около 200 км. Если в качестве источников тепла брать радиоактивные элементы, то, согласно У. Хаббарду (1987), плавление мантии может начаться только через 2 – 3 млрд. лет после образования планеты. Однако, полагая, что Марс не является каким-то исключением, и прообраз его оболочечного строения, как и Земли, был заложен в ходе его аккреции из небулярного облака, мы полагаем, что внутреннее металлическое ядро (примерно 1 / 3 R), лишенное радиоактивных элементов, возникло изначально. Оно в дальнейшем конденсировало силикатную мантию, содержавшую радиоактивные элементы. Формирование зоны расплава шло, несомненно, по границе твердого железного ядра, как за счет распада коротко- и долгоживущих радиоактивных элементов, так и за счет давления. Формирование же астеносферы как вторичной зоны шло за счет накопления диффундируемого снизу тепла и радиоактивных разогревов вещества на уровне, значительно более глубоком, чем 200 км. Процесс имел очаговый характер, что нашло отражение в особенности марсианского рельефа и характере вулканизма.

Поражают прежде всего размеры марсианских вулканов. Так, гора Олимп имеет высоту 20 км при диаметре основания 500 км (рис. 96). В области Тарсис, расположенной к северу от экватора, есть еще три огромных вулкана. В северном же полушарии Марса находится вторая


Рис. 96. Гора Олимп

вулканическая область – Элизий. В южном полушарии – преимущественно кратеры с плоским дном. Большинство вулканов – щитовые, т.е. лавовые покровы занимают огромные пространства. Это характерно для лав низкой вязкости и крупных очагов вулканизма. На Земле такие извержения происходят при плавлении очень богатых железом пород. Приблизительная оценка глубины очага (0,1 высоты вулкана) дает для щитовых вулканов Марса величину порядка 200 км. Однако эта глубина совпадает с глубиной астеносферной зоны на Земле, где давление в несколько раз выше, чем на соответствующей глубине Марса. У последнего на глубине 200 км давление будет около 3000 атм, что соответствует земным 50 км. Многие корни земных вулканов действительно находятся на этих глубинах. Но если брать средний вертикальный температурный градиент, равный 12°/км, то температура на глубине 50 км будет всего 500 – 600°С, что в два раза ниже необходимой температуры плавления для земной мантии. Из этого следует, что в очаги вулканизма как на Земле, так и на Марсе магма поступает из более глубоких горизонтов, где термодинамические условия и накопленное глубинное тепло, диффундируемое из зоны внешнего ядра, создают температуры порядка 1100 К.

Из-за большей массы Марса и, следовательно, иных термодинамических условий в ядре, а также больших запасов радиоактивных элементов вулканическая активность на нем, несомненно, продолжалась дольше, чем на Луне. В финале ее, где-то 2,0 – 2,5 млрд. лет назад, под почвой и в верхних горизонтах коры произошло накопление воды. Периодические прорывы ее на поверхность планеты в экваториальной области оставили многочисленные следы в виде русел и, возможно, рек, грандиозных оползней и оплывин пород, зафиксированных на фотографиях станции «Маринер-9» (рис. 97).


Рис. 97. Долина «Маринер» – гигантский каньон

на Марсе со следами водной эрозии

Одним из таких свидетельств является гигантский каньон Маринер длиной 4000 км и шириной 2000 км. Его крутые борта опускаются до глубины 6 км. Долина, возможно, имеет и тектоническое происхождение, но по ее краям развита сеть меандрирующих русел явно водного происхождения. Аппараты «Викинг-1» и «Викинг-2» обнаружили гораздо больше признаков водной эрозии, чем сухих русел, которые наблюдал «Маринер-9» (Кауфман, 1982). По мнению исследователей, огромные массы воды периодически внезапно и быстро проносились в некоторых районах поверхности Марса. Много воды на Марсе остается в виде вечной мерзлоты и линз льда под поверхностью планеты. Периодическое ее оттаивание может вызвать наводнения и грандиозные оползни (рис. 98). Вследствие низкого атмосферного давления марсианские реки и озера не могут долго существовать. Вода быстро выкипает и испаряется.


Рис. 98. Гигантский оползень на Марсе в долине «Маринер»

на снимке «Викинг-1» (1976 г.)

Завершая рассмотрение строения планет земной группы и Луны, подведем некоторые итоги. Земля, несомненно, может служить моделью, своего рода эталоном для сравнения обстановки на других планетах. С другой стороны, отклонения от этого эталона несут информацию о специфических процессах, обусловленных гелиоцентрическим расстоянием и параметрами массы планеты.

Все планеты образованы из одного и того же материала – исходного материнского пылегазового облака. Все они обогащены тугоплавкими веществами и железом, ближайшие к Солнцу обеднены летучими элементами. Некоторые различия состава пород определяются, видимо, различным соотношением силикатного и металлического материала. Весьма непродолжительный период геологической и внутренней активности Меркурия, Луны и Марса, исчисляемый одним-двумя миллиардами лет, исключает возможность их дифференциации на оболочки. Сама концепция послеаккреационного расплава планетных недр, изначально однородных по составу, с последующей магматической дифференциацией явно бездоказательна. Процессы дифференциации у малых планет, имеющих небольшие термодинамические параметры, недостаточные для расплава больших объемов вещества, видимо, весьма ограничены. Нет здесь исключения и для Земли. Внутренние металлические ядра планет – большего или меньшего размера – формировались изначально в ходе аккреции пылегазового облака – как первичные ядра конденсации, вокруг которых в дальнейшем шло наращивание более легкого силикатного материала. По мере удаления от Солнца этот материал обогащался летучими элементами и водой. На Меркурии он был обеднен этими элементами, но обогащен железом и другими тугоплавкими веществами.

Масса планет и гелиоцентрическое расстояние являются основными параметрами их эволюции. Чем больше масса, тем дольше идет геологический процесс. Атмосфера – показатель геологической активности.

Весьма сильно влияние приливного торможения со стороны Солнца на расстояние 100 млн. км, которому в полной мере подвергались Меркурий и Венера. Аналогичную роль сыграла Земля для Луны. Все планеты в период своей геологической активности вращались быстрей и, конечно, имели магнитное поле и, следовательно, обладали достаточно развитым жидким внешним ядром. Около 3 млрд. лет назад, исчерпав свои термодинамические возможности и запасы коротко- и долго­живущих радиоактивных элементов, расплавленные околоядерные зоны сократились в размерах, а их температура понизилась. Сохранилось лишь остаточное магнитное поле или память о нем в намагниченных породах.

Астеносфера и расплавленные внешние ядра остались лишь на Земле и, по всей вероятности, на Венере, что находит отражение в продолжающемся геологическом процессе на поверхности этих планет.

Чьи инфракрасные датчики обнаружили спектр, характерный для испарившейся породы, а также смеси расплавленной и вновь застывшей лавы. Проведенный астрономами анализ показал, что это, видимо, стало результатом крупной космической катастрофы, мощного столкновения двух тел, одно из которых было размерами, по меньшей мере, с Луну (масса Луны — ок. 74 000 000 000 млрд т), а другое — с Меркурий (его масса — ок. 330 000 000 000 млрд т). Несколько тысяч лет назад они врезались друг в друга на большой скорости. Меньшее тело в результате было полностью уничтожено, основная часть его массы испарилась или заполнила окружающее пространство быстро остывающими брызгами раскаленной лавы. Примерно так.

Наблюдение затронуло систему звезды HD 172555, весьма молодой, всего 12 млн лет от роду (Солнцу 4,5 млрд лет), находящейся в каких-то 100 световых годах от Земли, в южном созвездии Павлин . С помощью бортовой аппаратуры телескопа Spitzer получив спектральные данные, ученые определили на них линии, характерные для аморфных кремнийсодержащих минералов — иначе говоря, плавленого стекла, а также газообразного моноксида кремния (то, как анализируются спектры, мы популярно объясняли в заметке «Рассматриваем картинку »). Оценив массу этих веществ, удалось показать, что в сумме она более чем вдвое превысила массу Луны. А чтобы расплавить и испарить столько породы, энергия столкновения должна была быть просто ужасной. По расчетам ученых, тела должны были врезаться друг в друга на скорости более 10 км/с.

«Для того, чтобы каменистая порода расплавилась и испарилась, скорость столкновения должна быть очень велика, — говорит астроном Кэри Лиссэ (Carey Lisse), один из авторов работы, раскрывшей подробности этого события, — Подобные явления происходят действительно редко и проходят быстро, но играют критическую роль в процессе формирования планет, подобных нашей Земле, и спутников, подобных Луне. Нам по‑настоящему повезло заметить одно из них».

По мнению астронома и его коллег, это столкновение во многом напоминало то, которое некогда — около 4 млрд лет назад — привело к появлению у нашей планеты ее единственного естественного спутника (об этой популярной сегодня теории «ударного» происхождения Луны лучше всего прочесть в статье «Прекрасная Селена »). Считается, что тогда в Землю врезалось тело размерами примерно с Марс. Удар был настолько сильный, что поверхность нашей (еще молодой) планеты расплавилась, а выброшенные в космос фрагменты усеяли все околоземное пространство. За долгие годы они притянулись, образовав единое тело — Луну. То, что сегодня наблюдается в той звездной системе, близко к той катастрофе и по характеру, и по масштабам. Возможно, через миллионы лет и там появится новая луна.

Ранняя история Солнечной системы была полна подобными катастрофами. К примеру, ученые полагают, что именно они привели к тому, что Меркурий потерял свою внешнюю оболочку, Уран вращается, «лежа на боку», а Венера — в обратном направлении. Все это — издержки процесса роста, совсем как «взбрыки» в подростковом возрасте.

Меркурий - одна из самых небольших по своим размерам планета в Солнечной системе, расположенная к тому же на самом ближайшем расстоянии от Солнца. Луна же является небесным телом, которое находится относительно недалеко от Земли. Всего за всю историю человечества на Луне побывали 12 человек. До летит в течение шести месяцев. До Луны сегодня добираются всего лишь за трое суток. Чем же интересны оба этих небесных тела для астрономов и других ученых?

Зачем нужны землянам Луна и Меркурий?

Самый часто задаваемый относительно них вопрос звучит следующим образом: «Какое небесное тело крупнее - Луна или Меркурий?». Отчего это так много значит для ученых? Дело в том, что Меркурий является самым ближайшим кандидатом для того, чтобы его колонизировать. Подобно Луне, Меркурий не окружен атмосферой. Сутки здесь длятся очень долго и составляют целых 59 земных суток.

Планета вращается вокруг своей оси очень медленно. Но не только вопрос о том, какое небесное тело крупнее - Луна или Меркурий - интересует ученых в связи с возможной колонизацией. Дело в том, что освоению Меркурия может помешать его близость к главному светилу нашей системы. Но ученые предполагают, что на полюсах планеты могут иметься ледяные шапки, могущие облегчить процесс колонизации.

Самая близкая к Солнцу планета

С другой стороны, непосредственная близость к звезде может гарантировать постоянные поставки солнечной энергии, в случае если ученым все же удастся колонизировать планету и построить на ней энергетические станции. Исследователи полагают, что по причине небольшого наклона Меркурия на его территории могут существовать участки, называемые «пиками вечного света». Они и представляют главный интерес для ученых. В почве Меркурия находятся большие залежи руды, которые могут быть использованы для создания космических станций. А также его почвы богаты элементом Гелием-3, который также мог бы стать источником неиссякаемой энергии.

Затруднения в изучении Меркурия

Меркурий всегда было очень тяжело изучать астрономам. В первую очередь из-за того, что планету заслоняют яркие лучи главного светила системы. Именно поэтому ученые очень долго не могли определить, какое небесное тело крупнее - Луна или Меркурий. Планета, вращающаяся в окрестностях Солнца, всегда оказывается повернутой к светилу одной и той же стороной. Несмотря на это, в прошлом ученые пытались составлять карту обратной стороны Меркурия. Но она не пользовалась большой популярностью, и к ней относились со скепсисом. Очень долго было крайне тяжело определить, какое небесное тело крупнее - Луна или Меркурий. Фото этих планет позволяли делать вывод, что они примерно одинаковы.

и Меркурии

Одними из первых астрономических открытий были открытия кратеров на Марсе и Луне. Тогда ученые ожидали, что их окажется предостаточно и на Меркурии. Ведь эта планета по своим размерам находится между Луной и Марсом. Луна или Меркурий - что крупнее и какое это может иметь отношение к кратерам? Все это стало известно после того, как Меркурий два раза облетела межпланетная станция под названием «Маринер-10». Она сделала огромное количество фотоснимков, а также были составлены подробнейшие карты Меркурия. Теперь знаний о планете было столько же, сколько и о спутнике Земли.

Оказалось, что кратеров на территории Меркурия столько же, сколько и на Луне. А поверхность подобного рода имела точно такое же происхождение - во всем были виноваты бесчисленные метеоритные потоки и мощные вулканы. Даже ученый не смог бы по фотографиям отличить поверхность Меркурия от поверхности спутника Земли.

Ямки от метеоритов на этих небесных телах образуются по причине отсутствия атмосферы, которая могла бы смягчить удары извне. Раньше ученые считали, что Меркурий все же обладает атмосферой, только очень разреженной. Сила тяжести планеты не может удерживать на ее поверхности атмосферу, которая могла бы быть подобна земной. Но все же приборы станции «Маринер-10» показали, что у поверхности планеты концентрация газов больше, чем в космосе.

Возможна ли

Первым препятствием, которое встает на пути мечтающих заселить спутник Земли, является его постоянная подверженность метеоритным бомбардировкам. Атаки метеоритов, как выяснили ученые, происходят в сто раз чаще, чем предполагалось ранее. На поверхности Луны постоянно происходят различные изменения. Кратеры метеоритов могут в своем диаметре составлять от нескольких сантиметров до 40 метров.

Однако в 2014 году Роскосмосом было сделано заявление о том, что уже к 2030 году Россия начнет программу по добыче полезных ископаемых на Луне. В отношении таких программ вопрос о том, какое небесное тело крупнее - Луна или Меркурий - отходит на второй план. Ведь пока что это заявление было сделано только в отношении спутника Земли. Колонизировать Меркурий Россия пока не собирается. Планы насчет добычи были озвучены в День космонавтики в 2014 году. Для этого в РАН уже разрабатывается научная программа.

Луна или Меркурий - что крупнее и какая планета выигрышнее для колонизации?

На Меркурии температура составляет около 430 °С. И она может снижаться до -180 °С. Ночью на поверхности спутника Земли температура также опускается вплоть до -153 °С, а днем может достигать +120 °С. В этом отношении для колонизации эти планеты пока что одинаково непригодны. Какое небесное тело крупнее - Луна или Меркурий? Ответ будет следующим: крупнее все-таки планета. Меркурий больше Луны по своим размерам. Диаметр Луны составляет 3474 км, а диаметр Меркурия - 4879 км. Поэтому пока что мечты расселиться за пределами Земли для человечества остаются фантастикой.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ