Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Определение функции распределения

Пусть $X$ – случайная величина, а $x$ – вероятность распределения этой случайной величины .

Определение 1

Функцией распределения называется функция $F(x)$ удовлетворяющая условию $F\left(x\right)=P(X

Также иначе функцию распределения иногда называются интегральной функцией распределения или интегральным законом распределения.

В общем виде график функции распределения представляет собой график неубывающей функции с областью значений, принадлежащей отрезку $\left$ (причем 0 и 1 обязательно входят в область значений). При этом функция может, как иметь, так и не иметь скачков функции (рис. 1)

Рисунок 1. Пример графика функции распределения

Функция распределения дискретной случайной величины

Пусть случайная величина $X$ является дискретной. И пусть для нее дан ряд её распределения. Для такой величины функцию распределения вероятностей можно записать в следующем виде:

Функция распределения непрерывной случайной величины

Пусть случайная величина $X$ теперь является непрерывной.

График функции распределения такой случайной величины всегда представляет собой неубывающую непрерывную функцию (рис. 3).

Рассмотрим теперь случай, где случайная величина $X$ является смешанной.

График функции распределения такой случайной величины всегда представляет собой неубывающую функцию, которая имеет минимальное значение в 0, максимальное значение в 1, но которая не на всей области определения является непрерывной функцией (то есть имеет скачки в отдельных точках) (рис. 4).

Рисунок 4. Функция распределения смешанной случайной величины

Примеры задач на нахождение функции распределения

Пример 1

Приведен ряд распределений появления события $A$ в трех опытах

Рисунок 5.

Найти функцию распределения вероятностей и построить её график.

Решение.

Так как случайная величина является дискретной, то мы можем пользоваться формулой $\ F\left(x\right)=\sum\limits_{x_i

При $x>3$, $F\left(x\right)=0,2+0,1+0,3+0,4=1$;

Отсюда получаем следующую функцию распределения вероятностей:

Рисунок 6.

Построим ее график:

Рисунок 7.

Пример 2

Проводится один опыт, в котором событие $A$ может, как произойти, так и не произойти. Вероятность того, что данное событие произойдет равно $0,6$. Найти и построить функцию распределения случайной величины.

Решение.

Так как вероятность того, что событие $A$ произойдет равно $0,6$, то вероятность того, что данное событие не произойдет равно $1-0,6=0,4$.

Построим для начала ряд распределения данной случайной величины:

Рисунок 8.

Так как случайная величина является дискретной, найдем функцию распределения по аналогии с задачей 1:

При $x\le 0$, $F\left(x\right)=0$;

При $x>1$, $F\left(x\right)=0,4+0,6=1$;

Таким образом, получаем следующую функцию распределения:

Рисунок 9.

Построим ее график:

Рисунок 10.

Тема №11

На практике для задания случайных величин общего вида обычно используется функция распределения.

Вероятность того, что случайная величина х примет определенное значение х 0 , выражается через функцию распределения по формуле

р (х = х 0) = F(x 0 +0) – F(x 0). (3)

В частности, если в точке х = х 0 функция F(x) непрерывна, то

р (х = х 0) =0.

Случайная величина х с распределением р(А) называется дискретной, если на числовой прямой существует конечное или счетное множество W, такое, что р (W,) = 1.

Пусть W = {x 1 , x 2 ,…} и p i = p ({x i }) = p (x = x i ), i = 1,2,….Тогда для любого борелевского множества А вероятность р(А) определяется однозначно формулой

Положив в этой формуле А = {x i / x i < x}, x Î R , получим формулу для функции распределения F(x) дискретной случайной величины х :

F(x) = p (x < x ) =. (5)

График функции F(x) представляет собой ступенчатую линию. Скачки функции F(x) в точках х = х 1 , х 2 …(x 1 равны соответствующим вероятностям р 1 , p 2 , … .

Пример 1. Найдите функцию распределения

дискретной случайной величины х из примера 1§ 13.

Используя функцию распределения, вычислите

вероятности событий: х < 3, 1 £ x < 4, 1 £ x £ 3.

F(x)
0 х 1 х 2 х 3 х 4 х
Решение. Используя данные из таблицы,

полученной в § 13, и формулу (5), получим

функцию распределения:

По формуле (1) Р(x < 3) = F(3) = 0,1808; по формуле (2)

р(1 £ x < 4) = F (4) – F(1) = 0,5904 – 0,0016 = 0,5888;

p (1 £ x £ 3) = p (1 £ x <3) + p(x = 3) = F(3) – F(1) + F(3+0) – F(3) =

F(3+0) – F(1) = 0,5904 – 0,0016 = 0,5888.

Пример 2. Дана функция

Является ли функция F(x) функцией распределения некоторой случайной величины? В случае положительного ответа найдите . Построить график функции F(x).

Решение. Для того чтобы наперед заданная функция F(x) являлась функцией распределения некоторой случайной величины х, необходимо и достаточно выполнение следующих условий (характеристических свойств функции распределения):

1. F(x) – неубывающая функция.

3. При любом х Î R F(x – 0) = F(x ).

Для заданной функции F(x) выполнение

этих условий очевидно. Значит,

F(x) – функция распределения.

Вероятность вычисляем по

формуле (2):

График функции F(x ) представлен на рисунке 13.

Пример 3. Пусть F 1 (x ) и F 2 (x ) – функции распределения случайных величин х 1 и х 2 соответственно, а 1 и а 2 – неотрицательные числа, сумма которых равна 1.

Доказать, что F(x ) = a 1 F 1 (x ) + a 2 F 2 (x ) является функцией распределения некоторой случайной величины х .



Решение. 1) Так как F 1 (x ) и F 2 (x ) – неубывающие функции и а 1 ³ 0, а 2 ³ 0, то a 1 F 1 (x ) и a 2 F 2 (x ) - неубывающие, следовательно, их сумма F(x ) тоже неубывающая.

3) При любом х Î R F(x - 0) = a 1 F 1 (x - 0) + a 2 F 2 (x - 0)= a 1 F 1 (x ) + a 2 F 2 (x ) = F(x ).

Пример 4. Дана функция

Является ли F(x) функцией распределения случайной величины?

Решение. Легко заметить, что F(1) = 0,2 > 0,11 = F(1,1). Следовательно, F(x ) не является неубывающей, а значит, не является функцией распределения случайной величины. Заметим, что остальные два свойства для данной функции справедливы.

Контрольное задание №11

1. Дискретная случайная величина х

x ) и, используя ее, найдите вероятности событий: а) –2 £ х < 1; б) ½х ½£ 2. Постройте график функции распределения.

3. Дискретная случайная величина х задана таблицей распределения:

x i
p i 0,05 0,2 0,3 0,35 0,1

Найдите функцию распределения F(x ) и найдите вероятности следующих событий: а) x < 2; б) 1 £ х < 4; в) 1 £ х £ 4; г) 1 < x £ 4; д) х = 2,5.

4. Найдите функцию распределения дискретной случайной величины х , равной числу выпавших очков при одном бросании игральной кости. Используя функцию распределения, найдите вероятность того, что выпадет не менее 5 очков.

5. Производятся последовательные испытания 5 приборов на надежность. Каждый следующий прибор испытывается только в том случае, если предыдущий оказался надежным. Составьте таблицу распределения и найдите функцию распределения случайного числа испытаний приборов, если вероятность выдержать испытания для каждого прибора 0,9.

6. Задана функция распределения дискретной случайной величины х :

а) Найдите вероятность события 1 £ х £ 3.

б) Найдите таблицу распределения случайной величины х .

7. Задана функция распределения дискретной случайной величины х :

Составьте таблицу распределения данной случайной величины.

8. Монету бросают n раз. Составьте таблицу распределения и найдите функцию распределения числа появлений герба. Постройте график функции распределения при n = 5.

9. Монету бросают, пока не выпадет герб. Составьте таблицу распределения и найдите функцию распределения числа появлений цифры.

10. Снайпер стреляет по цели до первого попадания. Вероятность промаха при отдельном выстреле равна р . Найдите функцию распределения числа промахов.

Содержание статьи

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ – плотность вероятности распределения частиц макроскопической системы по координатам, импульсам или квантовым состояниям. Функция распределения является основной характеристикой самых разнообразных (не только физических) систем, которым свойственно случайное поведение, т.е. случайное изменение состояния системы и, соответственно, ее параметров. Даже в стационарных внешних условиях само состояние системы может быть таким, что результат измерения некоторого его параметра является случайной величиной. Функция распределения в подавляющем большинстве случаев содержит в себе всю возможную и потому исчерпывающую информацию о свойствах таких систем.

В математической теории вероятностей и математической статистике функция распределения и плотность вероятности отличаются друг от друга, но однозначно связаны между собой. Ниже речь пойдет почти исключительно о плотности вероятности, которую (согласно принятой в физике давней традиции) называют плотностью распределения вероятности или функцией распределения, ставя знак равенства между этими двумя терминами.

Случайное поведение в той или иной мере характерно для всех квантовомеханических систем: элементарные частицы, атомы молекулы и т.п. Однако случайное поведение – это не специфическая черта только квантовомеханических систем, многие чисто классические системы обладают этим свойством.

Примеры.

При бросании монеты на твердую горизонтальную поверхность, неясно, как она ляжет: цифрой вверх или гербом. Известно, что вероятности этих событий, при определенных условиях, равны 1/2. При бросании игральной кости нельзя с уверенностью сказать, какая из шести цифр окажется на верхней грани. Вероятность выпадения каждой из цифр при определенных предположениях (кость – однородный куб без сколотых ребер и вершин падает на твердую, гладкую горизонтальную поверхность) равна 1/6.

Хаотичность движения молекул в наибольшей степени проявляется в газе. Даже в стационарных внешних условиях, флуктуируют (меняются случайным образом) точные значения макроскопических параметров, и только их средние значения при этом постоянны. Описание макроскопических систем на языке средних значений макропараметров и составляет суть термодинамического описания ().

Пусть есть идеальный одноатомный газ и три его (еще не усредненных) макроскопических параметра: N – число атомов, движущихся внутри сосуда, занятого газом; P –давление газа на стенку сосуда и – внутренняя энергия газа. Газ идеальный и одноатомный, поэтому его внутренняя энергия есть просто сумма кинетических энергий поступательного движения атомов газа.

Число N флуктуирует, по крайней мере, из-за процесса сорбции (прилипания к стенке сосуда при соударении с ней) и десорбции (процесса отлипания, когда молекула отрывается от стенки сама по себе или в результате удара по ней другой молекулы), наконец, процесса образования кластеров – короткоживущих комплексов из нескольких молекул. Если бы Можно было измерять N мгновенно и точно, то полученная зависимость N (t ) была бы похожей на изображенную на рисунке.

Размах флуктуаций на рисунке для наглядности сильно завышен, но при небольшом среднем значении (бN с ~ 10 2) числа частиц в газе он примерно таким и будет.

Если выбрать маленькую площадку на стенке сосуда измерять силу, действующую на эту площадку в результате ударов молекул газа, находящегося в сосуде, то отношение среднего значения нормальной к площадке компоненты этой силы к площади площадки и принято называть давлением. В разные моменты времени к площадке будет подлетать разное количество молекул, причем с разными скоростями. В результате, если бы можно было измерять эту силу мгновенно и точно, была бы картина, подобная изображенной на рисунке, нужно только изменить обозначения по вертикальной оси:

N (t ) Ю P (t ) и бN (t )с Ю бP (t )с.

Практически все то же справедливо и для внутренней энергии газа , только процессы, приводящие к случайным изменениям данной суммы другие. Например, подлетая к стенке сосуда, молекула газа сталкивается не с абстрактной абсолютно упруго и зеркально отражающей стенкой, а с одной из частиц, составляющих материал этой стенки. Пусть стенка стальная, тогда это ионы железа, колеблющиеся около положений равновесия – узлов кристаллической решетки. Если молекула газа подлетает к стенке на той фазе колебаний иона, когда он движется ей навстречу, то в результате соударения молекула отлетит от стенки со скоростью большей чем подлетала. Вместе с энергией этой молекулы увеличится и внутренняя энергия газа E . Если молекула сталкивается с ионом, движущемся в том же направлении, что и она, то отлетит эта молекула со скоростью меньшей, чем та, с которой она полетала. Наконец, молекула может попасть в междуузелье (пустое место между соседними узлами кристаллической решетки) и застрять там, так, что даже сильным нагревом ее не извлечь оттуда. В последних двух случаях внутренняя энергия газа E уменьшится. Следовательно, E (t ) – также случайная функция времени и – среднее значение этой функции.

Броуновское движение.

Определив положение броуновской частицы в некоторый момент времени t 1, можно точно предсказать только то, что ее положение в последующий момент времени t 2 не превышает (t 2 – t 1)·c , где c – скорость света в вакууме.

Различают случаи дискретного и непрерывного спектра состояний и, соответственно, переменной x . Под спектром значений некоторой переменной понимается вся совокупность возможных ее значений.

В случае дискретного спектрасостояний для задания распределения вероятностей нужно, во-первых, указать полный набор возможных значений случайной переменной

x 1, x 2, x 3,… x k,… (1)

и, во-вторых, их вероятности:

W 1, W 2, W 3,… W k,… (2)

Сумма вероятностей всех возможных событий должна быть равна единице (условие нормировки)

Описание распределения вероятностей соотношениями (1) – (3) невозможно в случае непрерывного спектра состояний и, соответственно, непрерывного спектра возможных значений переменной x . Пусть x принимает все возможные действительные значения в интервале

x О [a , b ] (4)

где a и b необязательно конечны. Например, для модуля вектора скорости молекулы газа V О , лежащему внутри всего интервала возможных значений, т.е. x О [x , x + Dx ] О [a , b ] (5)

Тогда вероятность DW (x , Dx ) попадания x в интервал (5) равна

Здесь N – полное число измерений x , а Dn (x , Dx ) – число результатов, попавших в интервал (5).

Вероятность DW естественно зависит от двух аргументов: x – положения интервала внутри [a , b ] и Dx – его длины (предполагается, хотя это совершенно необязательно, что Dx > 0). Например, вероятность получения точного значения x , другими словами, вероятность попадания x в интервал нулевой длины есть вероятность невозможного события и потому равна нулю: DW (x , 0) = 0

С другой стороны, вероятность получить значение x где-то (все равно где) внутри всего интервала [a , b ] есть вероятность достоверного события (уж что-нибудь всегда получается) и потому равна единице (принимается, что b > a ): DW (a , b a ) = 1.

Пусть Dx мало. Критерий достаточной малости зависит от конкретных свойств системы, которую описывает распределение вероятностей DW (x , Dx ). Если Dx мало, то функцию DW (x , Dx ) можно разложить в ряд по степеням Dx :

Если нарисовать график зависимости DW (x , Dx ) от второго аргумента Dx , то замена точной зависимости приближенным выражением (7) означает замену (на небольшом участке) точной кривой куском параболы (7).

В (7) первое слагаемое равно нулю точно, третье и последующие слагаемые при достаточной малости Dx можно опустить. Введение обозначения

дает важный результат DW (x , Dx ) » r(x )·Dx (8)

Соотношение (8), выполняемое тем точнее, чем меньше Dx означает, что при малой длине интервала, вероятность попадания в этот интервал пропорциональна его длине.

Можно еще перейти от малого, но конечного Dx к формально бесконечно малому dx , с одновременной заменой DW (x , Dx ) на dW (x ). Тогда приближенное равенство (8) превращается в точное dW (x ) = r(x dx (9)

Коэффициент пропорциональности r(x ) имеет простой смысл. Как видно из (8) и (9), r(x ) численно равно вероятности попадания x в интервал единичной длины. Поэтому одно из названий функции r(x ) – плотность распределения вероятностей для переменной x .

Функция r(x ) содержит в себе всю информацию о том, как вероятность dW (x ) попадания x в интервал заданной длины dx зависит от местоположения этого интервала, т.е. она показывает, как вероятность распределена по x . Поэтому функцию r(x ) принято называть функцией распределения для переменной x и, тем самым, функцией распределения для той физической системы, ради описания спектра состояний которой была введена переменная x . Термины «плотность распределения вероятностей» и «функция распределения» в статистической физике используются как эквивалентные.

Можно рассмотреть обобщение определения вероятности (6) и функции распределения (9) на случай, к примеру, трех переменных. Обобщение на случай произвольно большого числа переменных выполняется точно также.

Пусть случайно меняющееся во времени состояние физической системы определяется значениями трех переменных x , y и z с непрерывным спектром:

x О [a , b ]

y О [c , d ]

z О [e , f ] (10)

где a , b ,…, f , как и ранее, не обязательно конечны. Переменные x , y и z могут быть, например, координатами центра масс молекулы газа, компонентами вектора ее скорости x Ю V x , y Ю V y и z Ю V z или импульса и т.д. Под событием понимается одновременное попадание всех трех переменных в интервалы длины Dx , Dy и Dz соответственно, т.е.:

x О [x , x + Dx ]

y О [y , y + Dy ]

z О [z , z + Dz ] (11)

Вероятность события (11) можно определить аналогично (6)

с тем отличием, что теперь Dn – число измерений x , y и z , результаты которых одновременно удовлетворяют соотношениям (11). Использование разложения в ряд, аналогичного (7), дает

dW (x , y , z ) = r(x , y , z dx dy dz (13)

где r(x , y , z ) – функция распределения сразу для трех переменных x , y и z .

В математической теории вероятностей термин «функция распределения» используется для обозначения величины отличающейся от r(x ), а именно: пусть x – некоторое значение случайной переменной x . Функция Ф(x), дающая вероятность того, что x примет значение не большее, чем x и называется функцией распределения. Функции r и Ф имеют разный смысл, но они связаны между собой. Использование теоремы сложения вероятностей дает (здесь а – левый конец интервала возможных значений x (см. ВЕРОЯТНОСТЕЙ ТЕОРИЯ): , (14) откуда

Использование приближенного соотношения (8) дает DW (x , Dx ) » r(x )·Dx .

Сравнение с точным выражением (15) показывает, что использование (8) эквивалентно замене интеграла, входящего в (16), произведением подынтегральной функции r(x ) на длину промежутка интегрирования Dx :

Соотношение (17) будет точным, если r = const , следовательно, ошибка при замене (16) на (17) будет невелика, когда подынтегральная функция слабо меняется на длине промежутка интегрирования Dx .

Можно ввести Dx эфф – длину интервала, на котором функция распределения r(x ) меняется существенно, т.е. на величину порядка самой функции, или величина Drэфф по модулю порядка r. Используя формулу Лагранжа, можно написать:

откуда следует, что Dx эфф для любой функции r

Функцию распределения можно считать «почти постоянной» на некотором промежутке изменения аргумента, если ее приращение |Dr| на этом промежутке по модулю много меньше самой функции в точках этого промежутка. Требование |Dr| эфф| ~ r (функция распределения r і 0) дает

Dx x эфф (20)

длина промежутка интегрирования должна быть мала по сравнению с той, на которой подынтегральная функция меняется существенно. Иллюстрацией служит рис. 1.

Интеграл в левой части (17) равен площади под кривой. Произведение в правой части (17) – площадь заштрихованного на рис. 1 столбика. Критерием малости отличия соответствующих площадей является выполнение неравенства (20). В этом можно убедиться, подставляя в интеграл (17) первые члены разложения функции r(x ) в ряд по степеням

Требование малости поправки (второго слагаемого в правой части (21) по сравнению с первым и дает неравенство (20) с Dx эфф из (19).

Примеры ряда функций распределения, играющих важную роль в статистической физике.

Распределение Максвелла для проекции вектора скорости молекулы на заданное направление (для примера, это направление оси OX ).

Здесь m – масса молекулы газа, T – его температура, k – постоянная Больцмана.

Распределение Максвелла для модуля вектора скорости :

Распределение Максвелла для энергии поступательного движения молекул e = mV 2/2

Распределение Больцмана , точнее, так называемая барометрическая формула, которая определяет распределение концентрации молекул или давления воздуха по высоте h от некоторого «нулевого уровня» в предположении, что температура воздуха от высоты не зависит (модель изотермической атмосферы). В действительности температура в нижних слоях атмосферы заметно падает с ростом высоты.

Чтобы найти функции распределения случайных величин и их переменных, необходимо изучить все особенности данной области знаний. Существует несколько различных методов для нахождения рассматриваемых значений, включая изменение переменной и генерирование момента. Распределение - такое понятие, в основу которого легли такие элементы, как дисперсия, вариации. Однако они характеризуют только степень размаха рассеяния.

Более важными функциями случайных величин являются те, которые связаны и независимы, и одинаково распределены. Например, если X1 - вес случайно выбранного индивидуума из популяции самцов, X2 - вес другого, ..., а Xn - вес еще одного человека из мужского населения, тогда, необходимо узнать, как случайная функция X распределяется. В этом случае применима классическая теорема, называемая центральной предельной. Она позволяет показать, что при больших n функция следует стандартным распределениям.

Функции одной случайной переменной

Центральная предельная теорема предназначена для аппроксимации дискретных рассматриваемых значений, таких как биномиальное и Пуассона. Функции распределения случайных величин, рассматриваются, в первую очередь, на простых значениях одной переменной. Например, если X является непрерывной случайной величиной, имеющей собственное распределение вероятности. В данном случае исследуется, как найти функцию плотности Y, используя два разных подхода, а именно метод функции распределения и изменения переменной. Сначала рассматриваются только взаимно однозначные значения. Затем необходимо модифицировать технику изменения переменной, чтобы найти ее вероятность. Наконец, нужно узнать, как кумулятивного распределения может помочь моделировать случайные числа, которые следуют за определенными последовательными схемами.

Методика распределения рассматриваемых значений

Метод функции распределения вероятностей случайной величины применим для того, чтобы найти ее плотность. При использовании этого способа вычисляется кумулятивное значение. Затем, дифференцируя его, можно получить плотность вероятности. Теперь, при наличии метода функции распределения, можно рассмотреть еще несколько примеров. Пусть X - непрерывная случайная величина с определенной плотностью вероятности.

Какова функция плотности вероятности от x2? Если посмотреть или построить график функции (сверху и справа) у = х2, можно отметить, что она является возрастающей X и 0

В последнем примере большую осторожность использовали для индексирования кумулятивных функций и плотности вероятности либо с помощью X, либо с Y, чтобы указать, к какой случайной переменной они принадлежали. Например, при нахождении кумулятивной функции распределения Y получили X. Если необходимо найти случайную величину X и ее плотность, то ее просто нужно дифференцировать.

Техника смены переменных

Пусть X - непрерывная случайная величина заданная функцией распределения с общим знаменателем f (x). В этом случае, если поместить значение y в X = v (Y), то получится значение x, например v (y). Теперь, нужно получить функцию распределения непрерывной случайной величины Y. Где первое и второе равенство имеет место из определения кумулятивной Y. Третье равенство выполняется потому, что части функции, для которой u (X) ≤ y, также верно, что X ≤ v (Y). И последнее выполняется для определения вероятности в непрерывной случайной величине X. Теперь нужно взять производную от FY (y), кумулятивной функции распределения Y, чтобы получить плотность вероятности Y.

Обобщение для функции уменьшения

Пусть X - непрерывная случайная величина с общим f (x), определенная над c1

Для решения этого вопроса можно собирать количественные данные и использовать эмпирическую кумулятивную функцию распределения. Обладая этой информацией и апеллируя ею, нужно комбинировать образцы средств, стандартные отклонения, медиаданные и так далее.

Аналогично даже довольно простая вероятностная модель может иметь огромное количество результатов. Например, если перевернуть монету 332 раза. Тогда число получаемых результатов от переворотов больше, чем у google (10100) - число, но не менее 100 квинтиллионов раз выше элементарных частиц в известной вселенной. Не интересен анализ, который дает ответ на каждый возможный результат. Потребуется более простая концепция, такая ​​как количество головок или самый длинный ход хвостов. Чтобы сосредоточить внимание на вопросах, представляющих интерес, принимается определенный результат. Определение в данном случае следующее: случайная величина является вещественной функцией с вероятностным пространством.

Диапазон S случайной величины иногда называют пространством состояний. Таким образом, если X - рассматриваемое значение, то так N = X2, exp ↵X, X2 + 1, tan2 X, bXc и так далее. Последнее из них, округляя X до ближайшего целого числа, называют функцией пола.

Функции распределения

Как только определена интересующая функция распределения случайной величины х, вопрос обычно становится следующим: «Каковы шансы, что X попадает в какое-то подмножество значений B?». Например, B = {нечетные числа}, B = {больше 1} или B = {между 2 и 7}, чтобы указать эти результаты, которые имеют X, значение случайной величины, в подмножестве А. Таким образом, в приведенном выше примере можно описать события следующим образом.

{X - нечетное число}, {X больше 1} = {X> 1}, {X находится между 2 и 7} = {2

Случайные переменные и функции распределения

Таким образом, можно вычислить вероятность того, что функция распределения случайной величины x примет значения в интервале путем вычитания. Необходимо подумать о включении или исключении конечных точек.

Будем называть случайную переменную дискретной, если она имеет конечное или счетное бесконечное пространство состояний. Таким образом, X - число головок на трех независимых флипсах смещенной монеты, которая поднимается с вероятностью p. Нужно найти кумулятивную функцию распределения дискретной случайной величины FX для X. Пусть X - количество пиков в коллекции из трех карт. То Y = X3 через FX. FX начинается с 0, заканчивается на 1 и не уменьшается с увеличением значений x. Кумулятивная FX функция распределения дискретной случайной величины X является постоянной, за исключением прыжков. При скачке FX является непрерывной. Доказать утверждение о правильной непрерывности функции распределения из свойства вероятности можно с помощью определения. Звучит оно так: постоянная случайная величина имеет кумулятивную FX, которая дифференцируема.

Чтобы показать, как это может произойти, можно привести пример: мишень с единичным радиусом. Предположительно. дротик равномерно распределяется на указанную область. Для некоторого λ> 0. Таким образом, функции распределения непрерывных случайных величин плавно увеличиваются. FX обладает свойствами функции распределения.

Человек ждет автобуса на остановке, пока тот не прибудет. Решив для себя, что откажется, когда ожидание достигнет 20 минут. Здесь необходимо найти кумулятивную функцию распределения для T. Время, когда человек еще будет находиться на автовокзале или не уйдет. Несмотря на то, что кумулятивная функция распределения определена для каждой случайной величины. Все равно достаточно часто будут использоваться другие характеристики: масса для дискретной переменной и функция плотности распределения случайной величины. Обычно выводится значение через одно из этих двух значений.

Массовые функции

Эти значения рассматриваются следующими свойствами, которые имеют общий (массовый характер). Первое основано на том, что вероятности не отрицательны. Второе следует из наблюдения, что набор для всех x=2S, пространство состояний для X, образует разбиение вероятностной свободы X. Пример: броски необъективной монеты, результаты которой независимы. Можно продолжать выполнять определенные действия, пока не получится бросок голов. Пусть X обозначает случайную величину, которая дает количество хвостов перед первой головой. А p обозначает вероятность в любом заданном действии.

Итак, массовая функция вероятности имеет следующие характерные признаки. Поскольку члены образуют численную последовательность, X называется геометрической случайной величиной. Геометрическая схема c, cr, cr2,. , crn имеет сумму. И, следовательно, sn имеет предел при n 1. В этом случае бесконечная сумма является пределом.

Функция массы выше образует геометрическую последовательность с отношением. Следовательно, натуральных чисел a и b. Разность значений в функции распределения равна значению массовой функции.

Рассматриваемые значения плотности имеют определение: X - случайная величина, распределение FX которой имеет производную. FX, удовлетворяющая Z xFX (x) = fX (t) dt-1, называется функцией плотности вероятности. А X называется непрерывной случайной величиной. В основной теореме исчисления функция плотности является производной распределения. Можно вычислить вероятности путем вычисления определенных интегралов.

Поскольку собираются данные по нескольким наблюдениям, то должно рассматриваться более одной случайной величины за раз, чтобы моделировать экспериментальные процедуры. Следовательно, множество этих значений и их совместное распределение для двух переменных X1 и X2 означает просмотр событий. Для дискретных случайных величин определяются совместные вероятностные массовые функции. Для непрерывных рассматриваются fX1, X2, где совместная плотность вероятности удовлетворяется.

Независимые случайные переменные

Две случайные величины X1 и X2 независимы, если любые два связанных с ними события такие же. В словах вероятность того, что два события {X1 2 B1} и {X2 2 B2} происходят одновременно, y равно произведению переменных указанных выше, что каждая из них происходит индивидуально. Для независимых дискретных случайных величин имеется совместная вероятностная массовая функция, которая является произведением предельного объема ионов. Для непрерывных случайных величин являющихся независимыми, совместная функция плотности вероятности - произведение значений предельной плотности. В заключение рассматриваются n независимые наблюдения x1, x2,. , xn, возникающие из неизвестной плотности или массовой функции f. Например, неизвестный параметр в функциях для экспоненциальной случайной величины, описывающей время ожидания автобуса.

Имитация случайных переменных

Основная цель этой теоретической области - предоставить инструменты, необходимые для разработки умозаключительных процедур, основанных на обоснованных принципах статистической науки. Таким образом, одним из очень важных вариантов применения программного обеспечения является способность генерировать псевдоданные для имитации фактический информации. Это дает возможность тестировать и совершенствовать методы анализа перед необходимостью использования их в реальных базах. Это требуется для того, чтобы исследовали свойства данных посредством моделирования. Для многих часто используемых семейств случайных величин R предоставляет команды для их создания. Для других обстоятельств понадобятся методы моделирования последовательности независимых случайных величин, которые имеют общее распределение.

Дискретные случайные переменные и образец Command. Команда sample используется для создания простых и стратифицированных случайных выборок. В результате, если вводится последовательность x, sample (x, 40) выбирает 40 записей из x таким образом, что все варианты размера 40 имеют одинаковую вероятность. Это использует команду R по умолчанию для выборки без замены. Можно использовать также для моделирования дискретных случайных величин. Для этого нужно предоставить пространство состояний в векторе x и массовой функции f. Вызов для replace = TRUE указывает, что сэмплирование происходит с заменой. Затем, чтобы дать образец из n независимых случайных величин, имеющих общую массовую функцию f, используется образец (x, n, replace = TRUE, prob = f).

Определено, что 1 является наименьшим представленным значением, а 4 является наибольшим из всех. Если команда prob = f опущена, то образец будет выбирать равномерно из значений в векторе x. Проверить симуляцию против массовой функции, которая генерировала данные, можно обратив внимание на знак двойного равенства, ==. И пересчитав наблюдения, которые принимают каждое возможное значение для x. Можно сделать таблицу. Повторить это для 1000 и сравнить моделирование с соответствующей функцией массы.

Иллюстрирование трансформации вероятности

Сначала смоделировать однородные функции распределения случайных величин u1, u2,. , un на интервале . Около 10 % чисел должно находиться в пределах . Это соответствует 10 % симуляций на интервале для случайной величины с показанной функцией распределения FX. Точно так же около 10 % случайных чисел должно находиться в интервале . Это соответствует 10 % симуляций на интервале случайной величины с функцией распределения FX. Эти значения на x ось может быть получена из взятия обратной от FX. Если X - непрерывная случайная величина с плотностью fX, положительной всюду в своей области, то функция распределения строго возрастает. В этом случае FX имеет обратную функцию FX-1, известную как функция квантиля. FX (x) u только тогда, когда x FX-1 (u). Преобразование вероятности следует из анализа случайной переменной U = FX (X).

FX имеет диапазон от 0 до 1. Он не может принимать значения ниже 0 или выше 1. Для значений u между 0 и 1. Если можно моделировать U, то необходимо имитировать случайную величину с распределением FX через функцию квантиля. Взять производную, чтобы увидеть, что плотность u варьируется в пределах 1. Поскольку случайная величина U имеет постоянную плотность по интервалу своих возможных значений, она называется равномерной на отрезке . Он моделируется в R с помощью команды runif. Идентичность называется вероятностным преобразованием. Видно, как оно работает в примере с дротильной доской. X между 0 и 1, функция распределения u = FX (x) = x2, и, следовательно, функция квантиля x = FX-1 (u). Можно моделировать независимые наблюдения расстояния от центра панели дротика, и создавая при этом равномерные случайные величины U1, U2,. , Un. Функция распределения и эмпирическая основаны на 100 симуляциях распределения дартс-доски. Для экспоненциальной случайной величины, предположительно u = FX (x) = 1 - exp (- x), и, следовательно, x = - 1 ln (1 - u). Иногда логика состоит из эквивалентных утверждений. В этом случае нужно объединить две части аргумента. Тождество с пересечением аналогично для всех 2 {S i i} S, вместо некоторого значения. Объединение Ci равно пространству состояний S и каждая пара взаимно исключена. Поскольку Bi - разбита на три аксиомы. Каждая проверка основана на соответствующей вероятности P. Для любого подмножества. Используя тождество, чтобы убедиться, что ответ не зависит от того, включены ли конечные точки интервала.

Экспоненциальная функция и ее переменные

Для каждого результата во всех событиях в конечном счете используется второе свойство непрерывности вероятностей, которое считается аксиоматическим. Закон распределения функции случайной величины здесь показывает, что каждой свое решение и ответ.

Универсальным способом задания закона распределения, пригодным как для дискретных, так и для непрерывных случайных величин, является функция распределения.

Функцией распределения случайной величины X называется функция F (x ), определяющая для каждого значения x вероятность того, что случайная величина X примет значение меньшее, чем x , то есть

F (x ) = P (X < x ).

Основные свойства функции распределения F (x ) :

1. Так как по определению F (x ) равна вероятности события, все возможные значения функции распределения принадлежат отрезку :

0 £ F (x ) £ 1.

2. Если , то , то есть F (x ) - неубывающая функция своего аргумента.

3. Вероятность того, что случайная величина примет значение, принадлежащее полуинтервалу [a , b ), равна приращению функции распределения на этом интервале:

P (a £ X < b ) = F (b ) - F (a ).

4. Если все возможные значения случайной величины принадлежат отрезку [a , b ], то

F (x ) = 0, при x £ a ; F (x ) = 1, при x > b .

Функция распределения дискретных случайных величин может быть определена по формуле

. (15)

Если известен ряд распределения дискретной случайной величины, легко вычислить и построить ее функцию распределения. Продемонстрируем, как это делается на примере 23.

Пример 25. Вычислить и построить функцию распределения для дискретной случайной величины, закон распределения которой, имеет вид:

x i 0,1 1,2 2,3 4,5
p i 0,1 0,2 0,6 0,1

Решение . Определим значения функции F (x ) = P (X < x ) для всех возможных значений x :

при x Î (- ¥; 0,1] нет ни одного значения случайной величины X , меньшего данных значений x , то есть нет ни одного слагаемого в сумме (15):

F (x ) = 0;

при x Î (0,1; 1,2] только одно возможное значение (X = 0,1) меньше рассматриваемых значений x . То есть при x Î (0,1; 1,2] F (x ) = P (X = 0,1) = 0,1;

при x Î (1,2; 2,3] два значения (X = 0,1 и X = 1,2) меньше данных значений x , следовательно, F (x ) = P (X = 0,1) + P (X = 1,2) = 0,1 + 0,2 = 0,3;

при x Î (2,3; 4,5] три значения (X = 0,1, X = 1,2 и X = 2,3) меньше данных значений x , следовательно, F (x ) = P (X = 0,1) + P (X = 1,2) + P (X = 2,3) = 0,1 + 0,2 + 0,6 = 0,9 ;

при x Î (4,5, ¥) все возможные значения случайной величины X будут меньше данных значений x , и F (x ) = P (X = 0,1) + P (X = 1,2) + P (X = 2,3) +

+ P (X = 4,5) = 0,1 + 0,2 + 0,6 + 0,1 = 1.

Таким образом ,

График функции F (x ) изображен на рисунке 8.

В общем случае, функция распределения F (x ) дискретной случайной величины X есть разрывная ступенчатая функция, непрерывная слева, скачки которой происходят в точках, соответствующих возможным значениям х 1 , х 2 , … случайной величины X и равны вероятностям p 1 , p 2 , … этих значений.


Функция распределения непрерывных случайных величин . Теперь можно дать более точное определение непрерывных случайных величин: случайная величина X называется непрерывной , если ее функция распределения F (x ) при всех значениях x непрерывна и, кроме того, имеет производную всюду, за исключением, может быть, отдельных точек.

Из непрерывности функции F (x ) следует, что вероятность каждого отдельного значения непрерывной случайной величины равна нулю .

Так как вероятность каждого отдельного значения непрерывной случайной величины равна 0, свойство 3 функции распределения для непрерывной случайной величины будет иметь вид

P (a £ X < b ) = P (a £ X £ b ) = P (a < X £ b ) = P (a < X < b ) = F (b ) - F (a ).

Пример 26. Вероятности поражения цели для каждого из двух стрелков соответственно равны: 0,7; 0,6. Случайная величина X - число промахов, при условии, что каждый стрелок сделал по одному выстрелу. Составить ряд распределения случайной величины X , построить столбцовую диаграмму и функцию распределения.

Решение. Возможные значения данной случайной величины X : 0, 1, 2. Условие задачи можно рассматривать как серию из n = 2 независимых испытаний. В данном случае для вычисления вероятностей возможных значений случайной величины X можно воспользоваться теоремами сложения вероятностей несовместных событий и умножения вероятностей независимых событий:

Обозначим события:

A i = {i -й стрелок поразил мишень}, i = 1, 2.

Согласно условию, вероятность события A 1 P (A 1) = 0,7, вероятность события A 2 - P (A 2) = 0,6 . Тогда вероятности противоположных событий: , .

Определим все элементарные события данного случайного эксперимента и соответствующие вероятности:

Элементарные события События Вероятности
Итого

(Проверим, что ).

Ряд распределения данной случайной величины X имеет вид

x i Итого
p i 0,42 0,46 0,12

Столбцовая диаграмма, соответствующая этому ряду распределения, приведена на рисунке 9.

Вычислим функцию распределения данной случайной величины:

:

при x Î (- ¥, 0] ;

при x Î (0, 1] ;

при x Î (1, 2] ;

при x Î (2, +¥);

Итак, функция распределения рассматриваемой случайной величины имеет вид:

График функции F (x ) приведён на рисунке 10.

Функция плотности распределения вероятностей непрерывной случайной величины.

Плотностью распределения вероятностей непрерывной случайной величины X в точке x называется производная ее функции распределения в этой точке:

f (x ) = F ¢(x ).

По своему смыслу значения функции f (x ) пропорциональны вероятности того, что исследуемая случайная величина примет значение где-то в непосредственной близости от точки x .

Функция плотности распределения f (x ), как и функция распределения F (x ), является одной из форм задания закона распределения, но она применима только для непрерывных случайных величин. Функцию плотности распределения вероятностей f (x ) еще называют дифференциальной функцией распределения , тогда как функцию распределения F (x ) называют, соответственно, интегральной функцией распределения .

График функции плотности распределения f (x ) называется кривой распределения .

Рассмотрим свойства, которыми обладает функция плотности распределения непрерывной случайной величины.

Свойство 1. Плотность распределения вероятностей - неотрицательная функция:

f (x ) ³ 0

(геометрически: кривая распределения лежит не ниже оси абсцисс).

Свойство 2. Вероятность попадания значения случайной величины на участок от a до b определяется по формуле

;

(геометрически: эта вероятность равна площади криволинейной трапеции, ограниченной кривой f (x ), осью Ох и прямыми x = a и x = b).

Свойство 3.

(геометрически : площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице).

В частности, если все возможные значения случайной величины принадлежат отрезку [a , b ], то

Свойство 4. Функция распределения F (x ) может быть найдена по известной функции плотности распределения следующим образом:

.

Пример 27. Непрерывная случайная величина задана функцией распределения

Определить дифференциальную функцию плотности распределения.

Решение . Определим дифференциальную функцию плотности распределения

Пример 28. Является ли плотностью распределения некоторой случайной величины каждая из следующих функций?

Вопросы для самоконтроля

1. Что называется случайной величиной?

2. Какие величины называются дискретными? непрерывными?

3. Что называется законом распределения случайной величины?

4. Какими способами может быть задан закон распределения дискретной случай-ной величины? непрерывной?

5. Что характеризует функция распределения F(x) случайной величины?

6. Как определить вероятность попадания значения случайной величины в некоторый интервал с помощью функции распределения?

7. Что характеризует функция плотности распределения случайной величины? Укажите ее вероятностный смысл.

8. Для каких величин определена функция плотности распределения?

9. Может ли функция плотности распределения принимать отрицательные зна-чения?

10. Как связаны между собой функции F(x) и f (x )?

11. Какие случайные величины называются непрерывными?

12. Чему равна площадь фигуры, ограниченной кривой распределения и осью абсцисс?

13. Как определить вероятность попадания значения непрерывной случайной ве-личины в некоторый интервал с помощью функции плотности распределения?



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ