Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

  • 29. Цель задачи и основные напровления осуществления гпн
  • 30. Приоритетные направления развития органов гпн
  • 33. Основные показатели пожарной опасности веществ и материалов.
  • 34. Причины и условия образования горючей среды в аппаратах с газами.
  • 35. Причины и условия образования горючей среды в аппаратах с жидкостями.
  • 39.Причины и условия возникновения горения при проведении технологических процессов.
  • 42.Назначения, структура, задачи го страны и противопожарной службы го.
  • 43. Современное состояние и перспективы развития оружия массового поражения (омп): ядерного, химического и биологического оружия.
  • Техническая характеристика лестницы-палки
  • Техническая характеристика лестницы-штурмовки
  • Техническая характеристика выдвижной лестницы л-60
  • 56. Огнетушители. Назначение, виды, устройство, область применения. Углекислотные огнетушители
  • Пенные огнетушители
  • Порошковые огнетушители
  • Огнетушитель порошковый самосрабатывающий (осп)
  • Аэрозольные генераторы «Пурга»
  • Правила работы с огнетушителем
  • Правила работы с порошковыми огнетушителями
  • 59. Пожарные автомобили. Классификация пожарных автомобилей по назначению.
  • 60. Общие сведения об основных и специальных пожарных автомобилях.
  • 61. Технические характеристики основных, специальных и вспомогательных пожарных автомобилей.
  • 62. Табели положенности пожарного оборудования для автоцистерн и автонасосов.
  • 64.Всасывающие рукава, их назначение. Типы рукавов. Конструктивные элементы рукавов. Использование, техническое обслуживание, методы испытаний, ремонт и хранение всасывающих рукавов.
  • 3.2. Содержание зданий и помещений
  • 77.Пожарная опасность и основные меры обеспечения пожарной безопасности зданий различного назначения.
  • 79. Основными задачами Государственной противопожарной службы явля­ются:
  • 81. Классификация пожарных машин.
  • 82. Отделение на пожарной автоцистерне или пожарном автонасосе как первичное подразделение пожарной охраны.
  • 83.Караул как основное тактическое подразделение пожарной охраны.
  • 84. Понятие о тактических возможностях караула гпс.
  • 87. Схемы Боевого развертывания на пожарной автоцистерне и пожарном автонасосе.
  • 88.Взаимодействие отделений в составе караула.
  • 89. Общее понятие о разведке пожара, ее цель и задачи. Состав группы разведки. Обязанности личного состава, ведущего разведку.
  • 91. Спасение людей как вид боевых действий.
  • 92.Факторы, оказывающие поражающее действие на людей в условиях пожара и при ликвидации последствий чс.
  • 93.Мероприятия,снижающие воздействие на людей опасных факторов пожара. Порядок, пути, способы и средства спасания людей на пожаре и при ликвидации последствий чс.
  • 94. Особенности проведения спасательных работ на различных объектах.
  • 95.Задачи пожарного при спасении людей. Действия пожарного при проведении спасательных работ основными способами и средствами.
  • 99. Особенности боевого развертывания при подаче стволов на высоту.
  • 100. Особенности боевого развертывания при тушении пожара в условиях низких температур воздуха. Боевые действия по выпуску дыма и снижению температуры на пожаре.
  • 101. Общая классификация пожаров,способы и основные приемы их тушения.
  • 104. Особенности работы ствольщика при недостатке воды, сильном ветре,в условиях низких температур.
  • 108. Выполнение защитных мероприятий. Борьба с излишне проливаемой водой.
  • 109. Состав участников тушения пожаров. Обязанности, права и ответственность участников тушения пожара (ствольщика, бойца-пожарного, газодымозащитника, связного).
  • 111. Сбор и возвращение в подразделение. Действия пожарного при сборе и возвращении с места пожара в подразделение.
  • 112. Меры безопасности при выезде и следовании к месту вызова(пожара).
  • 113. Меры безопасности при проведении разведки пожара. Продвижение в задымленных помещениях.
  • 114. Меры безопасности при проведении спасательных работ.
  • 121. Принципиальная схема и принцип работы дыхательного апперата со сжатым кислородом.
  • 126. Воздухораспределительная система противогаза, ее составные части. Назначение, устройство регенеративного патрона, состав химического поглотителя и порядок снаряжения им патрона.
  • 127. Воздухораспределительная система противогаза.Назначение, устройство дыхательного мишки с избыточным клапаном, принцип работы и регулировка избыточного клапана.
  • 128. Назначение, устройство, принцип действия и регулировка звукового сигнала.
  • 130. Назначение, устройство принцип действия запорного вентеля воздушного балона дыхательного аппарата на сжатом воздухе.
  • 131. Назначение, устройство принцип действия редуктора дыхательного аппарата на сжатом воздухе.
  • 132. Назначение, устройство и принцип действия легочного автомата дыхательного аппарата на сжатом воздухе.
  • 133. Организация работ по расследованию пожаров. Участие пожарных специалистов в расследовании пожаров.
  • 134. Техническое обеспечение работ по расследованию пожаров. Испытательные пожарные лаборатории. Основные положения расследования пожара.
  • 135 . Проведение проверок по факту пожаров
  • 136.Основы первой медицинской помощи. Основные алгоритмы спасательных действий. Само- и взаимопомощь при несчастных случаях на пожаре.
  • 137. Виды и характер травм. Выбор средств и способов помощи.
  • 138.Основные признаки угрожающих жизни состояний (угж). Основные приемы поддержания жизни у пострадавших на пожаре до прибытия медицинской помощи
  • 33. Основные показатели пожарной опасности веществ и материалов.

    опасные факторы пожаров:

      открытый огонь и искры.

      повышенная температура окруж. Среды

      тактичные продукты горения.

      дым снижение концентрации кислорода

      падающие части отдельных конструкции агрегатов установок.6.действие взрывной волны.

    Процесс горения может возникнуть при наличии 3-х основных составляющих:

      Окислитель.

      горючее вещество.

      источник зажигания.

    При отсутствии хотя бы одного из выше перечеслиных горение невозможно.

    в пределах от нижнего до верхнего концетрационного придела распространения пламени.

    34. Причины и условия образования горючей среды в аппаратах с газами.

    горючая среда- это смесь паров или газов с кислородом воздуха.

    Образование горючий среды в аппаратах с газами. Аппараты с газом работают под избыточным давлением поэтому образование горючий среды возможно при порожении аппаратов или если в состав горючего газа входит окислитель.

    35. Причины и условия образования горючей среды в аппаратах с жидкостями.

    образование горючий среды в аппаратах жидкости.

    Для аппаратов с жидкостями горючая среда образуется при наличии свободного объема в аппарате если концентрация паров находится....... 36. Аппараты с дыхательными устройствами. Виды «дыхания» при эксплуатации резервуаров с нефтепродуктами.

    37 .причины и условия образования горючей среды в аппаратах с пылями.

    образование горючий среды в аппаратах пылями.Пылью называются твердые частицы размером менее 850. Пыль бывает 2-ух видов 1.аэрозоль-пыль в воздухе2. Аэрозоль- пыль осевная. Для аппаратов с пылями характернотолько нкпр.

    38.Классификация производственных источников зажигания(инициаторов горения)

    тепловые проявления –проявления связаные с эксплуатацией технологических установокогневого действия:1. Открытый огонь2. Высоконагретые конструктивные элементы установок3. Газообразные продукты сгорания4. Топочные искры.

    Тепловые проявления связанные с проведением огневых работ. 1.открытый огонь.2.искры в виде брызг расплавленногог металла 3.высоконагретые поверхности оборудования и конструкций.

    Тепловые проявления механической энергии. 1. Разогрев тел при трении.2. искры возникающие при соударении твердых тел.3. разогрев веществ при сжатии.

    Тепловые проявления электрической энергии 1. Искровые разряды статестического электричества.2. тепловые проявления свызаные с нарушениям работы электрооборудования.3. прямые удары молнии ее вторичные проявления.

    39.Причины и условия возникновения горения при проведении технологических процессов.

    постоянно действующие необходимые для осуществления технологического процесса(огневые печи электронагревательные устройства и т.д) наличие потенциальных источников связано с нарушением противопожарного режима производства с неисправностями и авариями аппаратов.по природе механизма возникновения внешнии источники зажигания делят на группы: 1.тепловые проявления механической энергии 2. Тепловые проявления электрической энергии 3. Тепловые проявления химической реакции. 4. Излучение. 40. Основные мероприятия и технические решения,направленные на предупреждение образования горючей среды внутри технологического оборудования.

    Чтобы предупредить несоответствие между подачей веществ в аппарат и их расходом, предусматривают:

    Автоматические системы контроля за давлением и блокировки (прекращение подачи продуктов путем отключения насосов, компрессоров);

    Автоматические счетчики-дозаторы количества поступающих в аппараты веществ;

    Автоматические регуляторы давления; сигнализаторы предельного уровня жидкости (для сжиженных газов);

    Приборы контроля за давлением и уровнем; переливные трубы.

    Для предупреждения образования динамических воздействий на стенки аппаратов и трубопроводов в периоды пуска и остановки, а также при переходе с одного режима на другой обеспечивают плавное изменение давления. При этом темп увеличения или снижения давления не должен превышать норму, предусмотренную цеховой инструкцией.

    Для предупреждения гидравлических ударов предусматривают следующие мероприятия:

    Медленное (плавное) изменение давления в аппаратах и трубопроводах в периоды пуска и остановки;

    Применение в качестве запорной арматуры задвижек вентильного типа вместо шиберных заслонок и пробковых кранов;

    Сглаживание пульсации давления путем установки на линиях газовых колпаков (ресиверов);

    Использование насосов центробежного действия (если это допускает технология) вместо поршневых (плунжерных) компрессоров;

    Установку обратных клапанов на трубопроводной линии непосредственно за аппаратом, из которого при нарушении технологического режима может возникнуть обратный поток жидкости или газа;

    Устранение опасности попадания в цилиндры компрессоров жидкостей путем установки сепараторов-масловлагоотделителей, специальных клапанов, пропускающих только газовую фазу без жидкости, устройств, предупреждающих конденсацию.

    Меры борьбы с вибрацией аппаратов и трубопроводов должны быть направлены на устранение или уменьшение действия внешних или внутренних возмущающих сил (источников вибрации). На практике это достигается следующими мероприятиями:

    Заменой, если это возможно по условиям технологии, поршневых насосов и компрессоров на центробежные насосы и газодувки;

    Применением устройств для сглаживания пульсации давления (газовых колпаков или ресиверов) в системах, где замена поршневых насосов и компрессоров невозможна;

    Устройством под источником вибрации массивных фундаментов, поглощающих механические колебания, изолированно от фундаментов несущих строительных конструкций зданий и сооружений;

    Установкой источника вибрации на различного рода эластичных прокладках, пружинах которые обеспечивают гашение механических колебаний;

    Систематическим контролем за вибрацией и при необходимости устранением причин вибрации (центровка и балансировка валов вращающихся элементов машин и агрегатов, обеспечение надежного крепления источников вибрации и трубопроводов).

    Предупреждение внешних механических ударов в условиях производства обеспечивается:

    Размещение технологических аппаратов в безопасном месте, в стороне от цеховых транспортных путей;

    Прокладкой трубопроводов с горючими жидкостями и газами выше мостовых и других кранов или ниже их- в закрытых каналах;

    Соблюдением режима работы транспортных систем и сроков их планово-предупредительных ремонтов.

    Для снижения интенсивности эрозионного износа на практике применяют следующие мероприятия:

    Выбирают материал для аппаратов и трубопроводов, устойчивый к данному виду эрозии;

    Увеличивают поверхностную износоустойчивость стенки путем снижения шероховатости ее поверхности, повышения поверхностной твердости материала, созданием прочного защитного слоя футеровки;

    Уменьшают турбулентность потока и механическое воздействие струи путем выполнения плавных поворотов и переходов трубопроводов и снижения их количества, применения успокоителей, отражателей и рассекателей потоков и струй;

    Обеспечивают очистку газов и жидкостей от твердых примесей (частиц);

    Осуществляют систематический контроль за толщиной стенки, не допуская ее уменьшения ниже нормы.

    Для снижения опасного действия высоких температур на материал стенок аппаратов и трубопроводов выполняются следующие мероприятия: уменьшается воздействие внешних источников тепла (солнечной радиации и пожара) устройством теплоизоляции, систем орошения, паровых завес, экранов, противопожарных разрывов; создаются условия для равномерного нагревания теплообменной поверхности у аппаратов огневого действия (автоматическим регулированием температурного режима), для скорости циркуляции нагреваемого продукта (очисткой теплообменной поверхности от отложений).

    Для предупреждения разрушающего действия низких температур:

    Предъявляют повышенные требования к качеству сварных швов на технологическом оборудовании;

    Предусматривают защиту аппаратов и трубопроводов, расположенных на открытых площадках, от переохлаждения теплоизоляцией, внутренним обогревом с помощью встроенных змеевиков- пароподогревателей;

    Снижают рабочие нагрузки на стенки аппаратов;

    Устраняют сопутствующие причины, усиливающие опасное действие низких температур (гидравлических ударов, вибраций, резкого изменения рабочего давления в аппарате).

    Весьма важно выбрать материал для изготовления технологического оборудования с учетом максимально возможного переохлаждения стенок (при низких температурах применяют легированные стали, специальные сплавы, а иногда и цветные металлы, которые обладают повышенной ударной вязкостью).

    Защиту технологического оборудования от химической коррозии обеспечивают: применением жаростойких сталей с легирующими добавками, которые способствуют образованию на поверхности металлов химически устойчивых защитных пленок; специальных жаростойких покрытий (сплавов железо - алюминий, железо - хром, смесью металла с окислами или с керамикой); созданием защитной газовой среды, которая в зависимости от природы металла не должна содержать окислителей (для стали) или восстановителей (для меди и ее сплавов). Часто для этих целей применяют инертные газы - азот и аргон.

    Необходим автоматический контроль и регулирование температурного режима в аппаратах с поддержанием оптимальной рабочей температуры, снижающей интенсивность протекания хим. коррозии.

    41.Критерии,заложенные в систему категорирования наружных установок по пожарной опасности. Основные положения, заложенные в систему категорирования помещения и зданий по взрывопожарной и пожарной опасности.

    Характеристика веществ и материалов и условий их хранения на производстве

    Примечание

    А взрывопо- жароопас- ная

    Горючие газы, ЛВЖ с температурой вспыш­ки не более 28 С в таком количестве, что могут образовать взрывоопасные паровоздушные смеси, при воспламенении которых развивается расчетное избыточ­ное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что избыточное расчетное давление взрыва в поме­щении превышает 5 кПа.

    Б взрывопо- жароопас- ная

    Горючие пыли или волокна, ЛВЖ с темпе­ратурой вспышки более 28 о С, ГЖ в таком количестве, что могут образовать взрывоопасные паровоздушные или пылевоздушные смеси, при воспламенении которых разви­вается избыточное расчетное давление взрыва в помещении, превышающее 5 кПа.

    В1 - В4 пожароо- пасные

    Горючие и трудногорючие жидкости, ве­щества и материалы (в том числе пыли и волокна), вещества и материалы, способ­ные при взаимодействии с водой, кисло­родом воздуха или друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии и обраща­ются не относятся к категории А или Б.

    Негорючие вещества и материалы в горячем, раскаленном или расплавленном сос­тоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени. Горючие газы, жидкости и твердые вещества, которые снижаются или утилизируются в качестве топлива.

    Негорючие вещества и материалы в холодном состоянии.

    Понятие пожарной опасности складывается не только из склонности вещества к горению как окислительному процессу, но и зависит от состояния внешней среды, в которой это вещество (материал, объект) находится. Пожарная опасность определяется не только способностью вещества воспламеняться, но и интенсивностью процесса горения и сопутствующих горению явлений (дымообразование, токсичность), а также, возможностью прекращения этого процесса. Для оценки степени пожарной опасности веществ необходимо знать количественные параметры процессов их горения. Однако при нахождении количественных параметров возникают определенные трудности, так как эти показатели не являются постоянными. Они зависят от природы горючего вещества, его агрегатного состояния, концентрации горючего и окислителя, температуры, условий тепловыделения и теплоотвода и т. д. В большинстве случаев на характеристики горения оказывают решающее влияние чисто физические процессы и явления: процессы массо- и теплопередачи, геометрия и пространственное расположение горючих объектов, аэродинамические условия, энергия источника зажигания, время его воздействия.

    Перечисленные обстоятельства, которые оказывают влияние на параметры воспламенения и горения, являются причиной существования множества методов оценки пожарной опасности.

    Пожарную опасность веществ нельзя охарактеризовать каким-то одним показателем, а только определённым набором, отражающим взрыво- и пожароопасность вещества на разных стадиях развития процесса горения. Число этих показателей зависит также от агрегатного состояния вещества. Поскольку все совокупности изменения и комбинаций внешних факторов учесть нельзя, то система оценки пожароопасных свойств, принятая в настоящее время, унифицирована именно по показателям, характеризующим свойства горючих материалов, окислительной среды и средств пожаротушения, определяемым в нормальных условиях. При иных условиях, например, при повышенных температурах, давлении и т. д., те же параметры пожарной опасности оцениваются дополнительно, учитывая в экспериментальных и расчётных методах заданные начальные условия. Практически любой из существующих методов оценки того или другого показателя пожарной опасности позволяет учитывать влияние только некоторых факторов на степень пожарной опасности, и поэтому методик его определения оказывается несколько. Примером служит определение концентрационных пределов воспламенения, температуры вспышки в приборах закрытого и открытого типа, различные способы нахождения температуры самовоспламенения и т. д. В других методиках оценивают показатели пожарной опасности независимо от реальных внешних условий (например, калориметрические измерения). Более полное представление о пожарной опасности могут дать натурные крупномасштабные испытания, но и они не отражают всего многообразия ситуаций, в которых может оказаться материал при воспламенении и горении.

    Наиболее общим показателем пожарной опасности является горючесть материала или вещества, независимо от его агрегатного состояния. Согласно этому показателю, все материалы (вещества) можно разделить на три группы: негорючие, горючие и трудногорючие. Этот показатель характеризуется качественно и количественно. Качественная классификация основывается на способности к горению при воздействии источника зажигания и после его удаления.

    Негорючими считаются вещества, неспособные гореть при последовательном нагревании вплоть до температуры 900 ºС. Тем не менее некоторые из них являются пожароопасными. Наиболее распространёнными группами негорючих, но пожароопасных веществ являются следующие:

    § окислители (перманганат калия, азотная кислота, кислород и т. д.);

    § вещества, реагирующие с водой (негашеная известь СаО );

    § вещества, при нагревании которых в закрытых объемах и сосудах происходит повышение давления, например, сжатые и сжиженные газы, а также термически не устойчивые вещества, которые при разложении выделяют газы;

    § вещества, выделяющие горючие газы при реакциях с водой (например, карбид кальция);

    § вещества, способные к взрывчатым превращениям без участия кислорода воздуха.

    Трудногорючие вещества при нагревании способны воспламеняться при воздействии источника зажигания, но после его удаления самостоятельно не горят.

    Горючие вещества способны самовоспламеняться, самовозгораться и самостоятельно гореть после удаления источника зажигания. Их разделяют на легко- и трудновоспламеняющиеся. Трудногорючие и горючие вещества имеют область воспламенения, характеризуются температурными показателями пожарной опасности, скоростью горения, для их тушения применяются огнетушащие вещества и т. д.

    Число и вид показателей для оценки пожароопасных свойств трудногорючих и горючих веществ определяется в зависимости от их агрегатного состояния. У жидкостей и твердых веществ пожароопасных показателей больше, чем у газов. Эти дополнительные показатели, по существу, характеризуют процессы испарения и выделения летучих, а поэтому связаны с температурами при нагревании жидкостей и твердых веществ. Например, для воспламенения и устойчивого горения необходимо, чтобы поверхность жидкости в достаточном количестве «питала» пламя летучими продуктами, а скорость испарения жидкости связана с её температурой, поэтому вводят понятие температуры вспышки и воспламенения. То же относится и к твердым веществам. Вместе с тем для твердых и жидких трудногорючих и горючих веществ и материалов некоторые показатели, применяемые для газов, теряют смысл, так как не могут быть реализованы. Например, понятие верхнего концентрационного предела воспламенения неприменимо для жидкостей, находящихся в открытых резервуарах, твердых горючих − на открытом воздухе. В табл. 4.1 приведены показатели пожаро- и взрывоопасных свойств веществ, принятые в нашей стране. В основу классификации положен принцип деления материалов по агрегатному состоянию.

    Для большинства горючих веществ в качестве критериев их пожаро- и взрывоопасных свойств выбирают характеристики, которые дают представление о безопасных условиях их эксплуатации, хранения, транспортировки.

    Таблица 4.1

    Показатели пожарной безопасности веществ и материалов

    Показатели Агрегатное состояние вещества
    газ жидкость твердое
    Группа горючести + + +
    Температура вспышки - + +
    Температура воспламенения - + +
    НКПВ + + +
    ВКПВ + + -
    ТПВ - + -
    Температура самонагревания - - +
    Температурные условия теплового самовозгорания - - +
    Минимальная энергия зажигания + - + (пыли)
    Кислородный индекс - + -
    Скорость выгорания - - +
    Коэффициент дымообразования + + +
    Удельная скорость дымообразования + + +
    Токсичность продуктов горения + + +
    Минимальное взрывоопасное содержание кислорода + + +
    Флегматизирующая концентрация + + +

    Окончание табл. 4.1

    Показатели взрывопожароопасности веществ и материалов могут быть определены экспериментальным или расчётным путем. В основу теоретических расчётных методов положены термодинамические параметры веществ: теплоты образования, сгорания, испарения, температуры кипения, а также константы химических реакций в пламени, характеристики диффузионных процессов и параметры теплопередачи. На практике использование перечисленных параметров в расчётных формулах ограничено в связи со сложностью их взаимосвязи с показателями пожарной опасности. Существующие эмпирические методы, как правило, учитывают физико-химические и термодинамические свойства веществ, но вводят упрощающие предложения, так как в большинстве случаев невозможно найти прямой взаимосвязи между этими свойствами и показателями пожарной опасности. Поэтому эмпирические методы не являются точными, а их корректность устанавливается путем сопоставления результатов расчета с данными прямых экспериментов. Так обстоит дело с расчётом концентрационных пределов воспламенения, температурой самовоспламенения, вспышки и т. д.

    Расчётные методы определения показателей пожарной опасности позволяют значительно сократить объём эксперимента, выявить недостоверные величины в эксперименте, а также помогают в тех случаях, когда специалисты не располагают соответствующим лабораторным оборудованием.

    Для оценки пожароопасных свойств веществ все показатели можно разделить на несколько групп, характеризующих различные этапы и стороны развития и прекращения горения.

    Первая группа на основании расчёта или эксперимента решает вопрос о горючести: негорючее, трудногорючее или горючее вещество.

    Вторая группа показателей характеризует способность вещества к самовоспламенению и зажиганию от внешних источников: температура самовоспламенения, вспышки, энергия зажигания, температурные условия самовозгорания, кислородный индекс, минимальное взрывоопасное содержание кислорода, значение концентрационных и температурных пределов горения (воспламенения), критический гасящий диаметр и т. д.

    В третью группу входят показатели, характеризующие способность вещества к распространению пламени (скорость выгорания и скорость распространения пламени), и показатели, косвенно характеризующие процесс горения (коэффициент дымообразования, удельная скорость дымообразования, токсичность продуктов горения).

    Четвертая группа показателей относится к средствам тушения: концентрация флегматизатора, минимальная концентрация средств объёмного тушения, характер взаимодействия с водопенными средствами тушения.

    Процесс возникновения горения подразделяется на несколько видов.

    Вспышка − быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

    Возгорание − возникновение горения под воздействием источника зажигания. Воспламенение − возгорание, сопровождающееся появлением пламени.

    Самовозгорание − явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения вещества при отсутствии источника зажигания. Различают несколько видов самовозгорания:

    § химическое – от воздействия на горючие вещества кислорода, воздуха, воды или взаимодействия веществ;

    § микробиологическое − происходит при определенной влажности и температуре в растительных продуктах (самовозгорание зерна);

    § тепловое − вследствие долговременного воздействия незначительных источников тепла.

    Самовоспламенение − самовозгорание, сопровождается появлением пламени.

    Взрыв − процесс чрезвычайно быстрого, под влиянием внешнего источника воспламенения, химического превращения вещества, сопровождающегося выделением газов и большого количества тепла, нагревающего эти газы до высокой температуры, в результате чего газы совершают работу.

    Взрывная способность горючих газов, паров и пыли в воздухе сохраняется в определенных интервалах их концентраций. Существуют нижние и верхние концентрационные и температурные пределы распространения пламени.

    Нижний (верхний) концентрационный предел распространения пламени (НКПРП) − минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при которой возможно распространение пламени по смеси на любое расстояние от источника зажигания. Невозможность воспламенения горючей смеси при концентрации ниже НКПРП объясняется малым количеством горючего вещества и избытком воздуха. Чем меньше коэффициент избытка воздуха, тем больше скорость горения и выше давление паров при взрыве. Верхний концентрационный предел распространения пламени характеризуется избытком горючего и малым количеством воздуха. Чем ниже нижний концентрационный предел и больше концентрационная область распространения пламени, тем большую пожарную опасность представляют горючие вещества.

    В первом случае взрыв не происходит из-за недостатка горючего вещества, во втором − из-за недостатка воздуха (кислорода), необходимого для окисления горючего вещества.

    Температура самовоспламенения − характеризует минимальную температуру вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

    Температура вспышки ( )− наименьшая температура горючей жидкости, при которой в условиях специальных испытаний над её поверхностью образуются пары, способные вспыхнуть в воздухе при поднесении к ним внешнего источника зажигания (пламени или нагретого до высокой температуры тела). Устойчивое горение при этом не устанавливается вследствие малой скорости испарения горючей жидкости. Температура вспышки показывает, при какой температуре вещество подготовлено к воспламенению и становится огнеопасным в открытом сосуде.

    В зависимости от температуры вспышки горючие жидкости подразделяются:

    § на легковоспламеняющиеся (ЛВЖ) с температурой вспышки не свыше 61 °С в закрытом тигле или не свыше 66 °С в открытом тигле;

    § горючие (ГЖ) с температурой вспышки паров выше 61 и 66 °С.

    ЛВЖ, в свою очередь, делятся на три группы:

    § особо опасные ЛВЖ − имеющие температуру вспышки от – 18 °С и ниже в закрытом тигле или – 13 °С и ниже – в открытом;

    § постоянно опасные ЛВЖ − имеющие температуру вспышки от
    –18 ° до +23 °С в закрытом тигле или от – 13 ° до +27 °С − в открытом;

    § опасные при повышенной температуре ЛВЖ. К данному разряду относятся жидкости с температурой вспышки от +23 ° до +61 °С включительно в закрытом тигле или от +27 ° до +66 °С − в открытом.

    Температура воспламенения ( ) − наименьшая температура вещества, при которой в условиях специальных испытаний оно выделяет горючие пары и газы с такой скоростью, что при воздействии на них источника зажигания наблюдается способность воспламениться при поднесении внешнего источника воспламенения. Разница между температурой вспышки и воспламенения для ЛВЖ составляет 1−2 °С, для ГЖ −
    до 10−15 °С и более.

    Горение сопровождается выделением тепла, продуктов сгорания и свечением. Для устойчивого горения необходимо, чтобы теплообразование при этом процессе было больше теплоотдачи в окружающую среду. Если в результате горения образуются газы, то горение сопровождается пламенем.

    Процесс воспламенения горючих газов и жидкостей без поднесения к ним открытого огня, а только под влиянием внешнего воздействия тепла называется самовоспламенением .

    Температурные пределы воспламенения − температуры, при которых насыщенные пары вещества образуют в данной окислительной среде концентрации, равные соответственно нижнему и верхнему концентрационным пределам воспламенения жидкостей.

    Горючие вещества могут быть в трёх агрегатных состояниях: жидком, твердом и газообразном . Большинство горючих веществ независимо от агрегатного состояния при нагревании образует газообразные продукты, которые при смешении с воздухом, содержащим определенное количество кислорода, образуют горючую среду. Горючая среда может образоваться при тонкодисперсном распылении твердых и жидких веществ. Из горючих газов и пыли образуются горючие смеси при любой температуре, в то время как твердые вещества и жидкости могут образовать горючие смеси только при определённых температурах.

    В производственных условиях может иметь место образование смесей горючих газов или паров в любых количественных соотношениях. Однако взрывоопасными эти смеси могут быть только тогда, когда концентрация горючего газа или пара находится между границами воспламеняемых концентраций.

    Минимальная концентрация горючих газов и паров в воздухе, при которой они способны загораться и распространять пламя, называется
    нижним концентрационным пределом воспламенения (НКПВ).

    Максимальная концентрация горючих газов и паров, при которой еще возможно распространение пламени, называется верхним концентрационным пределом воспламенения (ВКПВ).

    Указанные пределы зависят от температуры газов и паров: так при увеличении температуры на 100 ºС величина нижних пределов воспламенения уменьшается на 8−10 %, верхних − увеличивается на 12−15 %.

    Пожарная опасность вещества тем больше, чем ниже нижний и выше верхний пределы воспламенения и чем ниже температура самовоспламенения.

    Контрольные вопросы

    1. Чем определяются виды горения?

    2. Как турбулентность газового потока влияет на процесс горения?

    3. Какая величина используется в качестве количественной характеристики процесса горения твердых материалов?

    4. Чем определяется критическое условие?

    5. Каким образом определяется условие пожарной безопасности при тепловом самовозгорании?

    6. Что такое температура вспышки?


    Похожая информация.


    Горение газов. В технологических процессах при применении горю­чих газов и паров могут образовываться их смеси с окислителями. При этом концентрация горючего вещества в смесях может изменяться от долей процента до 100%. Однако не при любой концентрации эти смеси становятся взрыво- и пожароопасными.

    Представленный график иллюстрирует условия горения в замкнутом объеме. Смеси, в которых концентрация горючего вещества меньше С н, при горении в замкнутом объеме (рис. 4.6) не создают в нем повышен­ного давления. Объясняется это тем, что при концентрации горючего меньше С н в смеси имеется большой избыток окислителя (кислорода), на нагревание которого затрачивается значительная часть энергии. По­этому энергия, которая выделяется при горении в локальной области вокруг источника зажигания (заштрихованная область на рисунке), оказывается недостаточной, чтобы разогреть следующий слой до тем­пературы самовоспламенения. Процесс горения локализуется вокруг


    источника зажигания и не распространяется по горючей смеси. Только при концентрации, равной С н, начинается процесс послойного распро­странения горения по всей горючей смеси во всем объеме сосуда. На кривой, характеризующей зависимость давления в замкнутом объеме от концентрации горючего компонента в смеси с воздухом, это соответ­ствует точке 1 (см. рис. 4.6). Такая концентрация названа нижним кон­центрационным пределом распространения пламени (НКПР). Это минимальная концентрация горючего газа или пара в смеси с окислителем, при которой возможно распространение пламени по смеси на любое расстояние от исто чника зажигания. В справочной литературе встреча­ется синоним НКПВ (нижний концентрационный предел воспламене­ния). Термин НКПВ неточен, так как при концентрации С г меньше С н, как следует из определения, не происходит воспламенения, а оно есть всегда и только при достижении С г = С н начинается распространение пламени по горючей среде. Поэтому термин НКПР более точен.

    Горючие смеси, соответствующие по составу НКПР, характеризуют­ся минимальной скоростью распространения пламени в объеме, срав­нительно низкой температурой горения (около 1550 К) и небольшим давлением (примерно 0,3 МПа), создаваемым в замкнутом объеме.

    При концентрации горючего в смеси выше НКПР (на кривой за точ­кой 1) горение происходит с большей скоростью, температура в зоне ре­акции растет и давление повышается. Это объясняется тем, что по мере увеличения содержания горючего в смеси избыток окислителя уменьша­ется. И тепло, выделившееся в результате химической реакции, в меньшей степени расходуется на нагревание не участвующего в реакции окислите­ля. Максимальное избыточное давление в замкнутом объеме наблюдается при концентрации приблизительно соответствующей стехиометрической С г =С стех (на кривой точка 2). За точкой 2 (см. рис. 4.6) в смеси появляется избыток горючего вещества, который снижает температуру горения и, следовательно, давление начинает снижаться и при концентрации С г >>С стех горение локализуется вокруг источника зажигания (кривая дав­ления падает на ось абсцисс). С в - это верхний концентрационный предел распространения пламени (ВКПР). ВКПР - это та максимальная концен­трация горючего газа или пара в смеси с окислителем, при которой еще возможно распространение пламени от источника зажигания.

    Диапазон концентраций между НКПР и ВКПР называют областью распространения пламени. Область распространения пламени у различ­ных газо- и паровоздушных смесей неодинакова. Наибольшее значение она имеет у таких веществ, как окись этилена С 2 Н 4 0 (3-80%об.), аце­тилен С 2 Н 2 (2-81 %об.), ацетилен водород Н 2 (4-75%об.) и др. В до­статочно узком диапазоне концентраций взрывоопасны пары бензина (0,8-5,2%об.), керосина (1,4-7,5%об.), пропана (2,1-9,5%об.) и др. Однако для оценки пожарной опасности горючей смеси важен не толь­ко размер области распространения пламени, но и абсолютная вели­чина НКПР. Чем меньше НКПР и чем шире область распространения пламени, тем большую опасность представляет горючая смесь.

    Если концентрация горючего газа или пара в смеси с окислителем ниже НКПР, то такие смеси считаются безопасными. В диапазоне кон­центраций С н - С в смесь считается взрывоопасной, так как при горении развивается избыточное давление, способное разрушить оборудование, здание, травмировать персонал. Концентрация горючих газов и паров выше ВКПР является пожароопасной.

    Знание областей безопасных и пожароопасных концентраций дает возможность в процессе переработки и хранения горючих газов и паров поддерживать такой технологический режим, при котором концентра­ция горючего была бы ниже нижнего или выше верхнего концентраци­онных пределов распространения пламени.

    Максимум давления на кривой в точке 2теоретически соответству­ет стехиометрическим соотношениям горючего и окислителя, хотя практически наибольшее давление при горении наблюдается у смесей с концентрацией горючего компонента, немного отличающейся от стехиометрической концентрации.

    Точке 2 на кривой соответствует величина, названная максималь­ным давлением взрыва. Максимальное давление взрыва (Р макс) - это наибольшее давление, которое возникает при го рение смеси в замкнутом объеме, _выражается в кПа. Максимальное давление взрыва - весьма важный показатель пожарной опасности горючих смесей. Эта величина используется при категорировании производственных помещений по взрывопожарной и пожарной опасности, в расчетах взрывоустойчивости технологических аппаратов, предохранительных мембран, оболочек взрывозащищенного электрооборудования. В последнем случае в до­полнение к максимальному давлению взрыва используется еще один показатель, косвенно характеризующий энергию горючей смеси - без­опасный экспериментальный максимальный зазор (БЭМЗ, мм). БЭМЗ - это максимальный зазор между фланцами шириной 25 мм сферической оболочки объемом 20 см 3 , через который не происходит передача взрыва из оболочки в окружающую среду при любой концентрации горючего в воздухе (рис. 4.7). Все промышленные газы и пары в соответствии с ГОСТ 121,011-78 подразделяются натри категории (табл. 4.4).

    Таким образом, чем меньше величина фланцевого зазора, через ко­торый не происходит проскок пламени в окружающее пространство, тем смесь более взрывоопасна.

    Наиболее важными показателями пожарной опасности газов являются: температура самовоспламенения, максимальное давление взрыва, минимальное взрывоопасное-содержание кислорода МВСК, минимальная энергия зажигания(Между реакцией окисления и началом процесса горения есть не­который температурный и временной интервал. Это говорит о том, что не всяким источником зажигания можно пройти участок температур от начальной температуры (t 0) до температуры самовоспламенения (t св).Источник зажигания должен иметь такую энергию, которая будет до­статочной для воспламенения горючей среды. Эта энергия называется минимальной энергией зажигания W min - это наименьшее значение энер­гии электрической искры, которая способна воспламенить наиболее легко воспламеняемую смесь газа, пара или пыли с воздухом.

    Процесс возникновения горения подразделяется на несколько видов и характеризуется таким показателем пожарной опасности как температура.

    Вспышка – быстрое сгорание горючей смеси, не сопровождающиеся образованием сжатых газов.

    Температурой вспышки называется самая низкая температура горючего вещества, при которой над поверхностью его образуются пары, способные вспыхивать в воздухе от источника зажигания, но скорость их образования еще недостаточна для последующего горения.

    Возгорание – возникновение горения под воздействием источника зажигания.

    Воспламенение – это возгорание, сопровождающееся появлением пламени.

    Температурой воспламенения называется температура горючего вещества, при которой оно выделяет горючие пары и газы с такой скоростью, что после их воспламенения от источника зажигания возникает устойчивое горение.

    Самовозгорание – это явление резкого увеличения скорости экзотермических реакций (с выделением тепла), приводящих к возникновению горения вещества при отсутствии источника зажигания.

    Температурой самовозгорания называется самая низкая температура вещества, при которой возникает его самовозгорание.

    Самовоспламенение – самовозгорание, сопровождающееся появлением пламени.

    Температурой самовоспламенения называется самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций заканчивающееся возникновением пламенного горения.

    Температурные показатели пожарной опасности веществ зависят от природы вещества, атмосферного давления и процентного содержания кислорода в воздухе.

    Взрывом - называют мгновенное разложение и сгорание вещества, при котором выделяется большое количество газов и паров, создающих огромное давление на окружающую среду.

    К взрывоопасным веществам относятся:

    Боеприпасы, дымные и бездымные пороха, пиротехнические средства, окислители, баллоны со сжиженными горючими газами, жидкий кислород, неорганические вещества (перекись натрия, водорода и калия, азотная кислота и др.), белый фосфор;

    Негорючие вещества, которые при смешении с водой способны выделять газы, образующие с воздухом взрывоопасную смесь (карбид кальция);

    Горючие жидкости с температурой вспышки паров ниже 28 0 С , а также от 28 0 С до 45 0 С .

    К пожароопасным веществам относятся:

    горючие жидкости с температурой вспышки от 45 0 С до 120 0 С ;

    горючие материалы, способные самовоспламеняться при температуре от 100 0 С до 200 0 С ;

    вещества, способные к самовозгоранию при продолжительном хранении их на воздухе (торф, каменный уголь, свежескошенное сено);

    горючие газы.

    Основной задачей предотвращения пожаров и взрывов является устранение причин, вызывающих образование пожаровзрывоопасных смесей и сред при хранении и применении вооружения и техники. Важное значение имеет знание особенностей материалов и веществ, хранящихся в сооружениях и правил пожарной безопасности при обращении и ними.

    3. Основные мероприятия по предупреждению пожаров и взрывов

    3.1 Организационные мероприятия, обеспечивающие пожарную

    безопасность

    В РФ пожарная безопасность регламентируется Правилами пожарной безопасности в РФ.

    Пожарная безопасность объекта регламентируется ССБТ, СНиП, межотраслевыми и отраслевыми стандартами и правилами пожарной безопасности, инструкциями по обеспечению пожарной безопасности на отдельных объектах.

    В ВС и РВСН регламентируется руководством и положением о ППЗ.

    Пожарная безопасность обеспечивается:

    системой предотвращения пожара;

    системой пожарной защиты.

    Система предотвращения пожара должна разрабатываться по каждому объекту, из расчета, что нормативная вероятность возникновения пожара принимается равной не 0,000001 в год на отдельный пожароопасный узел (элемент) данного объекта.

    Система пожарной защиты должна разрабатываться по каждому объекту из расчета, что нормативная вероятность воздействия опасных факторов пожара на людей принимается равной не 0,000001 в год в расчете на отдельного человека.

    ССБТ установлены требования к той и другой системам.

    В ВС и РВСН с учетом Правил и требований пожарной безопасности разработана система организационных и технических мероприятий по обеспечению пожарной безопасности.

    1 Установление системы ответственности за пожаровзрывобезопасность.

    2. Организация противопожарной службы.

    3. Разработка инструкций о мерах пожарной безопасности.

    4. Обучение личного состава войсковых частей мерам предуп­реждения и ликвидации пожаров.

    5.Организация и контроль проведения огневых работ.

    6.Надзор за состоянием противопожарной защиты в частях.

    Технические мероприятия, обеспечивающие пожарную безо­пасность

    1. Проектирование и строительство зданий и их оборудование с учетом требований пожарозрывобезопасности.

    2. Проектирование, изготовление вооружения с учетом требова­ний пожаровзрывобезопасности.

    3. Разработка, изготовление и эксплуатация средств тушения пожаров и средств сигнализации.

    4. Разработка пожаровзрывоопасности технологии работ.

    5. Контроль взрывоопасных концентрации паров и газов с по­мощью специальных систем.

    В статье рассмотрена оценка пожарной опасности различных веществ и материалов.
    Пожарной опасностью называется возможность возникновения или развития пожара, заключенная в каком-либо веществе, состоянии или процессе.
    Пожароопасные вещества , по способности к горению, подразделяются на горючие, трудногорючие и негорючие.По агрегатному состоянию все вещества и материалы под­разделяются на твердые, жидкие и газообразные. Твердые вещества в зависимости от состава и строе­ния ведут себя при нагревании различно. Некоторые из них (сера, каучук и стеарин) при этом плавятся и испаряются.

    Дру­гие же, как древесина, торф, каменный уголь и бумага, разла­гаются с образованием газообразных продуктов и твердого ос­татка (угля). Встречаются вещества, которые при нагревании не плавятся и не разлагаются (кокс, антрацит и древесный уголь).

    Как известно, горят не сами твердые вещества, а газообраз­ные и парообразные продукты, выделяющиеся при разложении и испарении в процессе нагревания.

    Таким образом, большинство горючих веществ, независимо от их начального агрегатного состояния, при нагревании пере­ходят в газообразные продукты. Соприкасаясь с воздухом, они образуют горючие смеси, представляющие соответствующую пожарную опасность . Для воспламенения таких смесей не требуется мощного и длительно действующего источника воспламе­нения. Они воспламеняются даже от искры.
    В процессе эксплуатацию каждое судно выполняет установленный для него вид работы: вылов и обработку рыбы, транспортирование нефтепродуктов, промысловое снабжение судов и др. Круг работ, выполняемых промысловыми судами, очень широк. Это, в свою очередь, приводит к тому, что на промысловом судне находится большое количество различных веществ (котельное и дизельное топливо, машинное масло, рыбий жир и др.) и материалов, применяе­мых при постройке судов (черные и цветные металлы, пластмассы, теплоизоляция, древесина и т. д.).

    Данные вещества и материалы обладают такими свойствами, как способность к возгоранию и самовозгоранию, выделению взрывоопас­ных паров и т. д. Поэтому при проектировании судов тщательно изучают возможность возникновения пожара в том или ином месте судна, возможность его развития и распространения по всему судну и, самое главное, возможность борьбы с пожаром.

    Для разработки конструктивных средств защиты судов и органи­зационно-технических мероприятий, направленных на обеспечение пожарной безопасности силами судового экипажа, необходимо дать оценку пожарной опасности веществ и материалов, находящихся на судне.

    Пожарная опасность веществ и материалов характеризуется:

    температурой воспламенения, т. е. температурой, при которой вещество выделяет горячие пары или газы с такой скоростью, что после воспламенения их от внешнего источника зажигания процесс горения продолжается;

    температурой самовоспламенения, т. е. температурой, при которой происходит резкое увеличение скорости реакции окисления, приво­дящее к возникновению пламени;

    склонностью к самовоспламенению, которая характеризует спо­собность ряда веществ и материалов самовозгораться при нагревании до сравнительно небольших температур или контакте с другими веществами, а также при воздействии теплоты, выделяемой микроор­ганизмами в процессе их жизнедеятельности (например, самовозгора­ние рыбной муки).

    По степени горючести все применяемые на судах вещества и материалы классифицируют на несгораемые, трудновозгораемые, трудновоспламеняемые (самозатухающие) и сгораемые.

    Для оценки степени возгораемости материалы подвергают испы­таниям методом калориметрии, при котором определяют показатель возгораемости К:

    где q т.о — теплота, выделяемая образцом в процессе горения, Дж; q и — теплота, подведен­ная к образцу от постоянного источника поджигания, Дж..

    Негорючие материалы имеют К? 0,1. Горючие материалы имеют температуру воспламенения ниже 750° С (К > 2,1).

    По результатам испытаний на негорючесть материалы оцениваются следующим образом: негорючие материалы, которые при нагревании до 750° С не горят и не выделяют горючих газов в количестве, доста­точном для их самовоспламенения; горючие материалы, которые в процессе испытаний при нагревании до той же температуры горят или выделяют горючие газы в количестве, достаточном для их самовоспла­менения.

    При оценке пожарной опасности жидкостей основными характе­ристиками принято считать группу горючести, температуру вспышки, температуру воспламенения и другие характеристики.

    Воспламеняющиеся жидкости подразделяют на следующие разряды:

    I — жидкости, имеющие температуру вспышки паров ниже 23° С;

    II — жидкости, имеющие температуру вспышки паров 23 — 60° С;;
    III- жидкости, имеющие температуру вспышки паров выше 60° С.
    Легковоспламеняющиеся жидкости (ЛВЖ) делят в зависимости от температуры вспышки на следующие категории:

    II- постоянно опасные с температурой вспышки — 18…23? С в закрытом тигле;

    III — опасные при повышенной температуре воздуха с температурой вспышки 23- 60° С в закрытом тигле.

    Все ЛВЖ также подразделяют на не смешивающиеся (А) и смеши­вающиеся (Б) с водой.

    Температурой вспышки называется наименьшая температура горючего вещества, при которой в условиях специальных испытаний над его поверхностью образуются пары или газы, способные вспыхи­вать в воздухе от внешнего источника зажигания. Температура вспыш­ки является показателем, ориентировочно определяющим темпера­турные условия, при которых горючее вещество становится огне­опасным.

    При оценке пожарной опасности газов определяют область воспла­менения в воздухе, температуру самовоспламенения, минимальную энергию зажигания, минимальное взрывоопасное содержание кисло­рода, нормальную скорость горения и другие показатели.

    При оценке пожарной опасности твердых материалов определяют группу возгораемости, температуру воспламенения. У веществ с температурой плавления ниже 300? С дополнительно определяют температуру вспышки и температурные пределы воспламенения паров в воздухе.

    Взрывоопасной концентрации на судне могут достигать пары топлива, нефтепродуктов и аммиака, а также угольная пыль. Опреде­ленную опасность в отношении самовозгорания представляет рыбная мука. Пыль горючих (например, угольная) и некоторых негорючих веществ (например, алюминия и цинка) может в смеси с воздухом образовывать взрывоопасные концентрации. Взвешенная в воздухе пыль называется аэрозолем, осаждающаяся на судовых конструк­циях — аэрогелем. Наиболее взрывоопасна пыль, взвешенная в возду­хе, но аэрогель представляет опасность с точки зрения возникновения вторичного взрыва. У аэрогеля температура самовоспламенения ниже. Этим объясняется то обстоятельство, что искры механического проис­хождения (от удара) воспламеняют осевшую, а не взвешенную пыль. Однако возникшее горение осевшей пыли в дальнейшем может восп­ламенить аэрозоль и вызвать взрыв.

    В основу классификации взрывоопасных смесей положена их способность передавать взрыв через фланцевые зазоры в оболочке оборудования — так называемую щелевую защиту. Сущность этой защиты заключается в том, что при воспламенении в оболочке взрыв­чатой смеси пламя, проходя щель, должно самопогаситься, а продукты горения охладиться ниже температуры самовоспламенения взры­воопасной окружающей среды.

    Фланцевые зазоры, исключающие передачу взрыва из оболочки в окружающую взрывоопасную среду, называют безопасными. Однако принимают допустимые зазоры, меньше безопасных на коэффициент 2-2,5. Величина безопасного зазора для различных взрывчатых смесей зависит от ширины фланцев и физико-химических свойств взры­воопасной смеси.

    Классификация опасных грузов согласно Правилам пожарной безопасности на судах флота рыбной промышленности РФ и рыболо­вецких колхозов учитывает только взрыво — и пожароопасные грузы, которые могут перевозиться или находиться на этих судах. Эти грузы в соответствии с Правилами морской перевозки опасных грузов (МОПОГ) подразделяют на следующие классы:

    1 — взрывоопасные вещества (ВВ);

    2 — сжатые, сжиженные и растворенные под давлением газы (СГ);

    3 — легковоспламеняющиеся жидкости (ЛВЖ);

    4 — легковоспламеняющиеся твердые вещества (ТВ), самовозгорающиеся вещества (СВ) и вещества, выделяющие легковоспламеняю­щиеся газы при взаимодействии с водой (ВГВ);

    5 — окисляющие вещества;

    6 — ядовитые и инфекционные вещества;

    7 — радиоактивные вещества;

    8 — едкие и коррозионные вещества;

    9 — прочие опасные вещества.

    К грузам класса 1 относят взрывоопасные вещества и предметы, снаряженные ими, способные при соответствующем воздействии на них дать взрыв, а также средства взрывания, содержащие гремучую ртуть и другие химические соединения, очень чувствительные к меха­ническим и другим воздействиям и способные к немедленному взры­ванию (капсюли-детонаторы, электродетонаторы и др.). Эти вещества требуют особых мер предосторожности при погрузке, выгрузке и перевозке на морских судах.

    Вещества класса 2 представляют собой газы, перевозимые в сжа­том, сжиженном или растворенном виде, которые всегда находятся под давлением и требуют особо прочной и герметичной упаковки. Некоторые газы перевозят в жидком состоянии при очень низкой температуре. К ним относят вещества, которые отвечают хотя бы одному из следующих условий:

    избыточное давление в сосуде при температуре 20° С равно или выше 98,1 кПа;

    абсолютное давление паров при температуре 50? С выше 294,2 кПа;

    критическая температура ниже 50° С.

    Вышеуказанные «Правила…» учитывают следующие категории пожа­роопасных веществ этого класса:

    легковоспламеняющиеся и ядовитые газы (аммиак и др.);

    легковоспламеняющиеся газы (пропан, бутан, ацетилен и др.);

    поддерживающие горение газы (сжиженный воздух, сжатый кислород и др.).

    К классу 3 относятся растворы горючих газов в жидкостях, жид­кости, содержащие твердые вещества в растворе и не относящиеся по своим свойствам к другим классам.

    ЛВЖ класса 3 подразделяют на три категории:

    температура вспышки ниже 18? С (автомобильный бензин, эфир, ацетон и др.);

    температура вспышки от 18 до 23° С (бензин-растворитель, нит­роэмали, древесный, метиловый и технический спирт и др.);

    температура вспышки от 23 до 61° С (керосин, нефтяные масла, дизельное топливо марок ДА, ДЗ, ДЛ, Л, 3, мазут, скипидар и др.).

    Нефтепродукты, в зависимости от степени их опасности, подразде­ляют на три группы: I — температура вспышки ниже 28 °С; II — от 28 до 65 °С; III — от 65 °С и выше.

    Вещества класса 4 подразделяют на следующие категории:

    легковоспламеняющиеся твердые вещества (кино- и фотопленка на нитроцеллюлозной основе, парафинированные спички, цинковые твердые белила, гофротара и др.);

    самовозгорающиеся вещества (пирофорное топливо), джутовые мешки, промасленная ветошь, мука кормовая рыбная и из морских млекопитающих и ракообразных, рыбные отходы, каменный и бурый уголь и др.);

    вещества, выделяющие газы при взаимодействии с водой.

    Все вещества этого класса являются опасными в пожарном отноше­нии, а особенно опасны склонные самопроизвольно нагреваться и воспламеняться при обычных условиях.

    При транспортировании рыбной муки необходимо иметь документ, подтверждающий ее влажность в пределах 6-12 % и жирность 12-18 %. При иных показателях влаги и жира и температуре рыбной муки выше 38? С может произойти самовозгорание, поэтому при ее перевозке и хранении должны строго соблюдаться меры пожарной безопасности. Вещества, самовоспламеняющиеся при взаимодействии с влажным воздухом или водой, следует перевозить только в герметически укупоренной таре, а некоторые вещества — с соответствующей жид­костью или инертными газами.



    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ