Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Поскольку твердое тело представляет собой частный случай системы материальных точек, то кинетическая энергия тела при вращении вокруг неподвижной оси Z будет равна сумме кинетических энергий всех его материальных точек, то есть

Все материальные точки твердого тела вращаются в этом случае по окружностям с радиусами и с одинаковыми угловыми скоростями . Линейная скорость каждой материальной точки твердого тела равна . Кинетическая энергия твердого тела примет вид

Сумма в правой части этого выражения в соответствии с (4.4) представляет собой момент инерции этого тела относительно данной оси вращения. Поэтому формула для расчета кинетической энергии вращающегося относительно неподвижной оси твердого тела примет окончательный вид:

. (4.21)

Здесь учтено, что

Вычисление кинетической энергии твердого тела в случае произвольного движения значительно усложняется. Рассмотрим плоское движение, когда траектории всех материальных точек тела лежат в параллельных плоскостях. Скорость каждой материальной точки твердого тела, согласно (1.44), представим в виде

,

где в качестве мгновенной оси вращения выберем ось, проходящую через центр инерции тела перпендикулярно плоскости траектории какой-либо точки тела. В этом случае в последнем выражении представляет собой скорость центра инерции тела, - радиусы окружностей, по которым вращаются точки тела с угловой скоростью вокруг оси, проходящей через центр его инерции. Так как при таком движении ^, то вектор, равный , лежит в плоскости траектории точки.

На основании сказанного выше кинетическая энергия тела при его плоском движении равна

.

Возводя выражение, стоящее в круглых скобках, в квадрат и вынося за знак суммы постоянные для всех точек тела величины, получим

Здесь учтено, что ^.

Рассмотрим каждое слагаемое в правой части последнего выражения отдельно. Первое слагаемое в силу очевидного равенства равно

Второе слагаемое равно нулю, так как сумма определяет радиус-вектор центра инерции (3.5), который в данном случае лежит на оси вращения. Последнее слагаемое с учетом (4.4) примет вид . Теперь, окончательно, кинетическая энергия при произвольном, но плоском движении твердого тела может быть представлена в виде суммы двух слагаемых:

, (4.23)

где первое слагаемое представляет собой кинетическую энергию материальной точки с массой, равной массе тела и движущейся со скоростью, которую имеет центр масс тела;

второе слагаемое представляет собой кинетическую энергию тела, вращающегося вокруг оси (движущейся со скоростью ), проходящей через его центр инерции.



Выводы: Итак, кинетическая энергия твердого тела при его вращении вокруг неподвижной оси может быть вычислена с помощью одного из соотношений (4.21), а в случае плоского движения с помощью (4.23).

Контрольные вопросы.

4.4. В каких случаях (4.23) переходит в (4.21)?

4.5. Как будет выглядеть формула для кинетической энергии тела при его плоском движении, если мгновенная ось вращения не проходит через центр инерции? Каков при этом смысл входящих в формулу величин?

4.6. Покажите, что работа внутренних сил при вращении твердого тела равна нулю.

Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i-й точки , Ri– расстояние до оси вращения. Следовательно,

Сопоставив и можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.

В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью vc и вращательного с угловой скоростью ω вокруг мгновенной оси, проходящей через центр инерции. Тогда полная кинетическая энергия этого тела

Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Основной закон динамики вращательного движения.

Динамика вращательного движения

Основной закон динамики вращательного движения:

или M=Je , где М - момент силы M=[ r · F ] , J - момент инерции -момент импульса тела.

если М(внешн)=0 - закон сохранения момента импульса. - кинетическая энергия вращающегося тела.

работа при вращательном движении.

Закон сохранения момента импульса.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку A, p=mv - импульс материальной точки (рис. 1); L - псевдовектор, направление которого совпадает с направлением поступательного движения правого винта при его вращении от r к р.

Модуль вектора момента импульса

где α - угол между векторами r и р, l - плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая точка тела движется по окружности постоянного радиуса ri со скоростью vi . Скорость vi и импульс mivi перпендикулярны этому радиусу, т. е. радиус является плечом вектора mivi . Значит, мы можем записать, что момент импульса отдельной частицы равен

и направлен по оси в сторону, определяемую правилом правого винта.

Монет импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу vi = ωri, получим

Таким образом, момент импульса твердого тела относительно оси равен моменту инерции тела относительно той же оси, умноженному на угловую скорость. Продифференцируем уравнение (2) по времени:

Эта формула - еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство

В замкнутой системе момент внешних сил М=0 и откуда

Выражение (4) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения момента импульса также как и закон сохранения энергии является фундаментальным законом природы. Он связан со свойством симметрии пространства - его изотропностью, т. е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Здесь мы продемонстрируем закон сохранения момента импульса с помощью скамьи Жуковского. Человек, сидящий на скамье, вращающаяся вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 2), вращается внешним механизмом с угловой скоростью ω1. Если человек прижмет гантели к телу, то момент инерции системы уменьшится. Но момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения ω2 увеличивается. Аналогичным образом, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, с целью уменьшить свой момент инерции и тем самым увеличить угловую скорость вращения.

Давление в жидкости и газе.

Молекулы газа, совершая хаотическое, хаотическое движение, не связаны или довольно слабо связаны силами взаимодействия, из-за чего движутся практически свободно и в результате соударений разлетаются во все стороны, при этом заполняя весь предоставленный им объем, т. е. объем газа определяется объемом занимаемого газом сосуда.

А жидкость же, имея определенный объем, принимает форму того сосуда, в который она заключена. Но в отличие от газов в жидкостях среднее расстояние между молекулами в среднем сохраняется постоянным, поэтому жидкость обладает практически неизменным объемом.

Свойства жидкостей и газов во многом сильно отличаются, но в нескольких механических явлениях их свойства определяются одинаковыми параметрами и идентичными уравнениями. По этой причине гидроаэромеханика - раздел механики, который изучает равновесие и движение газов и жидкостей, взаимодействие между ними и между обтекаемыми ими твердыми телами, - т.е. применяется единый подход к изучению жидкотей и газов.

В механике жидкости и газы с большой степенью точности рассматриваются как сплошные, непрерывное распределенные в занятой ими части проставранства. У газов плостность от давления зависит существенно. Из опыта установлено. что сжимаемостью жидкости и газа часто можно пренебречь и целесообразно пользоваться единым понятие - несжимаемостью жидкости - жидкости, с всюду одинаковой плотностью, которая не изменяется со течением времени.

Поместим в покоящуюся тонкую пластинку, в результате части жидкости, расположенные по разные стороны от пластины, будут действовать на каждый ее элемент ΔS с силами ΔF, которые будут равны по модулю и направленый перпендикулярно площадке ΔS независимо от ориентации площадки, в ином случае наличие касательных сил привело бы частицы жидкости в движение (рис.1)

Физическая величини, опеределяемая нормальной силой, действующей со стороны жидкости (или газа) на единицу площади, называется давлением p/ жидкости (или газа): p=ΔF/ΔS.

Единица давления - паскаль (Па): 1 Па равен давлению, создаваемому силой 1 Н, которая равномерно распределена по нормальной к ней поверхности площадью 1 м2 (1 Па=1 Н/м2).

Давление при равновесии жидкостей (газов) подчиняется закону Паскаля: давление в любом месте покоящейся жидкости одинаково по воем направлениям, причем давление одинаково передается по всему объему, который занимает покоящаяся жидкость.

Исследуем влияние веса жидкости на распределение давления внутри неподвижной несжимаемой жидкости. При равновесии жидкости давление вдоль любой горизонтальной всегда одинаково, иначе не было бы равновесия. Значит свободная поверхность покоящейся жидкости всегда горизонтальна (притяжение жидкости стенками сосуда не учитываем). Если жидкость несжимаема, то плотность данной жидкости не зависит от давления. Тогда при поперечном сечении S столба жидкости, его высоте h и плотности ρ вес P=ρgSh, при этом давление на нижнее основание: p=P/S=ρgSh/S=ρgh, (1)

т. е. давление линейно изменяется с высотой. Давление ρgh называется гидростатическим давлением.

Согласно формуле (1), сила давления на нижние слои жидкости будет больше, чем на верхние, поэтому на тело, погруженное в жидкость, действует сила, определяемая законом Архимеда: на тело, погруженное в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости (газа): FА=ρgV, где ρ - плотность жидкости, V- объем погруженного в жидкость тела.

Основные динамические характеристики вращательного движения - момент импульса относительно оси вращения z:

и кинетическая энергия

В общем случае, энергия при вращении с угловой скоростью находится по формуле:

, где - тензор инерции .

В термодинамике

Точно по тем же самым рассуждениям, как и в случае поступательного движения, равнораспределение подразумевает, что при тепловом равновесии средняя вращательная энергия каждой частицы одноатомного газа: (3/2)k B T . Аналогично, теорема о равнораспределении позволяет вычислить среднеквадратичную угловую скорость молекул.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Энергия вращательного движения" в других словарях:

    У этого термина существуют и другие значения, см. Энергия (значения). Энергия, Размерность … Википедия

    ДВИЖЕНИЯ - ДВИЖЕНИЯ. Содержание: Геометрия Д....................452 Кинематика Д...................456 Динамика Д....................461 Двигательные механизмы............465 Методы изучения Д. человека.........471 Патология Д. человека............. 474… … Большая медицинская энциклопедия

    Кинетическая энергия энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Более строго, кинетическая энергия есть разность между полной… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    - (франц. marées, нем. Gezeiten, англ. tides) периодические колебания уровня воды вследствие притяжения Луны и Солнца. Общие сведения. П. всего заметнее по берегам океанов. Тотчас после малой воды наибольшего отлива, уровень океана начинает… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность … Википедия

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании возмущающего… … Википедия

Кинетическая энергия вращающегося тела равна сумме кинетических энергий всех частиц тела:

Масса какой-либо частицы, ее линейная (окружная) скорость, пропорциональная расстоянию данной частицы от оси вращения. Подставляя в это выражение и вынося за знак суммы общую для всех частиц угловую скорость о, находим:

Эту формулу для кинетической энергии вращающегося тела можно привести к виду, аналогичному выражению кинетической энергии поступательного движения, если ввести величину так называемого момента инерции тела. Моментом инерции материальной точки называют произведение массы точки на квадрат расстояния ее от оси вращения. Момент инерции тела есть сумма моментов инерции всех материальных точек тела:

Итак, кинетическая энергия вращающегося тела определяется такой формулой:

Формула (2) отличается от формулы, определяющей кинетическую энергию тела при поступательном движении, тем, что вместо массы тела здесь входит момент инерции I и вместо скорости групповая скорость

Большой кинетической энергией вращающегося маховика пользуются в технике, чтобы сохранить равномерность хода машины при внезапно меняющейся нагрузке. Вначале, чтобы привести маховик с большим моментом инерции во вращение, от машины требуется затрата значительной работы, но зато при внезапном включении большой нагрузки машина не останавливается и производит работу за счет запаса кинетической энергии маховика.

Особенно массивные маховые колеса применяют в прокатных станах, приводимых в действие электромотором. Вот описание одного из таких колес: «Колесо имеет в диаметре 3,5 м и весит При нормальной скорости 600 об/мин запас кинетической энергии колеса таков, что в момент проката колесо дает стану мощность в 20 000 л. с. Трение в подшипниках сведено до минимума сказкой под давлением, и во избежание вредного действия центробежных сил инерции колесо уравновешено так, что груз в помещенный на окружности колеса, выводит его из состояния покоя».

Приведем (без выполнения вычислений) значения моментов инерции некоторых тел (предполагается, что каждое из этих тел имеет одинаковую во всех своих участках плотность).

Момент инерции тонкого кольца относительно оси, проходящей через его центр и перпендикулярной к его плоскости (рис. 55):

Момент инерции круглого диска (или цилиндра) относительно оси, проходящей через его центр и перпендикулярной к его плоскости (полярный момент инерции диска; рис. 56):

Момент инерции тонкого круглого диска относительно оси, совпадающей с его диаметром (экваториальный момент инерции диска; рис. 57):

Момент инерции шара относительно оси, проходящей через центр шара:

Момент инерции тонкого сферического слоя радиуса относительно оси, проходящей через центр:

Момент инерции толстого сферического слоя (полого шара, имеющего радиус внешней поверхности и радиус полости ) относительно оси, проходящей через центр:

Вычисление моментов инерции тел производится при помощи интегрального исчисления. Чтобы дать представление о ходе подобных расчетов, найдем момент инерции стержня относительно перпендикулярной к нему оси (рис. 58). Пусть есть сечение стержня, плотность. Выделим элементарно малую часть стержня, имеющую длину и находящуюся на расстоянии х от оси вращения. Тогда ее масса Так как она находится на расстоянии х от оси вращения, то ее момент инерции Интегрируем в пределах от нуля до I:

Момент инерции прямоугольного параллелепипеда относительно оси симметрии (рис. 59)

Момент инерции кольцевого тора (рис. 60)

Рассмотрим, как связана энергия вращения катящегося (без скольжения) по плоскости тела с энергией поступательного движения этого тела,

Энергия поступательного движения катящегося тела равна , где масса тела и скорость поступательного движения. Пусть означает угловую скорость вращения катящегося тела и радиус тела. Легко сообразить, что скорость поступательного движения тела, катящегося без скольжения, равна окружной скорости тела в точках соприкосновения тела с плоскостью (за время когда тело совершает один оборот, центр тяжести тела перемещается на расстояние следовательно,

Таким образом,

Энергия вращения

следовательно,

Подставляя сюда указанные выше значения моментов инерции, находим, что:

а) энергия вращательного движения катящегося обруча равна энергии его поступательного движения;

б) энергия вращения катящегося однородного диска равна половине энергии поступательного движения;

в) энергия вращения катящегося однородного шара составляет энергии поступательного движения.

Зависимость момента инерции от положения оси вращения. Пусть стержень (рис. 61) с центром тяжести в точке С вращается с угловой скоростью (о вокруг оси О, перпендикулярной к плоскости чертежа. Положим, что в течение некоторого промежутка времени он переместился из положения А В в причем центр тяжести описал дугу Это перемещение стержня можно рассматривать так, как если бы стержень сначала поступательно (т. е. оставаясь себе параллельным) переместился в положение и затем повернулся вокруг С в положение Обозначим (расстояние центра тяжести от оси вращения) через а, а угол через При движении стержня из положения А В в положение перемещение каждой его частицы одинаково с перемещением центра тяжести, т. е. оно равно или Чтобы получить действительное движение стержня, мы можем предположить, что оба указанных движения совершаются одновременно. В соответствии с этим кинетическую энергию стержня, вращающегося с угловой скоростью вокруг оси, проходящей через О, можно разложить на две части.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ