Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

При линейном типе связи между двумя изучаемыми признаками кроме расчета корреляций применяется расчет коэффициента регрессии.

В случае прямолинейной корреляционной связи каждому из изменений одного признака соответствует вполне определенное изменение другого признака. Однако коэффициент корреляции показывает эту связь лишь в относительных величинах - в долях единицы. С помощью же регрессионного анализа эту величину связи получают в именованных единицах. Та величина, на которую в среднем изменяется первый признак при изменении второго на единицу измерения, называется коэффициентом регрессии.

В отличие от корреляционного регрессионный анализ дает более широкую информацию, поскольку вычислением двух коэффициентов регрессии Rx/y и Rу/х возможно определить как зависимость первого признака от второго, так и второго от первого. Выражение регрессионной связи с помощью уравнения позволяет по определенному значению одного признака установить значение другого признака.

Коэффициент регрессии R представляет собой произведение коэффициента корреляции на отношение квадратических отклонений, вычисленных для каждого признака. Рассчитывается он по формуле

где, R - коэффициент регрессии; SХ - среднее квадратическое отклонение первого признака, который изменяется в связи с изменением второго; SУ - среднее квадратическое отклонение второго признака в связи с изменением которого изменяется первый признак; r - коэффициент корреляции между этими признаками; х - функция; у -аргумент.

По этой формуле определяется величина значения х при изменении у на единицу измерения. При необходимости обратного расчета можно найти величину у при изменении х на единицу измерения по формуле:


В этом случае активная роль в изменении одного признака по отношению к другому меняется, по сравнению с предыдущей формулой аргумент становится функцией и наоборот. Величины SX и SY принимаются в именованном выражении.

Между значениями г и R имеется четкая взаимосвязь, выражающаяся в том, что произведение регрессии х по у на регрессию у по х равно квадрату коэффициента корреляции, т. е.

Rx/y * Ry/x = r2

Это свидетельствует, что коэффициент корреляции представляет собой среднюю геометрическую из обоих значений коэффициентов регрессии данной выборки. Данная формула может быть использована для проверки правильности расчетов.

При обработке цифрового материала на счетных машинах могут применяться развернутые формулы коэффициента регрессии:

R или


Для коэффициента регрессии может быть рассчитана его ошибка репрезентативности. Ошибка коэффициента регрессии равна ошибке коэффициента корреляции, умноженной на отношение квадратических отношений:

Критерий достоверности коэффициента регрессии вычисляется по обычной формуле:

в итоге он равен критерию достоверности коэффициента корреляции:

Достоверность величины tR устанавливается по таблице Стьюдента при  = n - 2, где n - число пар наблюдений.

Криволинейная регрессия.

РЕГРЕССИЯ, КРИВОЛИНЕЙНАЯ . Любая нелинейная регрессия, в которой уравнение регрессии для изменений в одной переменной (у) как функции t изменений в другой (х) является квадратичным, кубическим или уравнение более высокого порядка. Хотя математически всегда возможно получить уравнение регрессии, которое будет соответствовать каждой "загогулине" кривой, большинство этих пертурбаций возникает в результате ошибок в составлении выборки или измерении, и такое "совершенное" соответствие ничего не дает. Не всегда легко определить, соответствует ли криволинейная регрессия набору данных, хотя существуют статистические тесты для определения того, значительно ли увеличивает каждая более высокая степень уравнения степ совпадения этого набора данных.

Аппроксимация кривой выполняется тем же путем с использованием метода наименьших квадратов, что и выравнивание по прямой линии. Линия регрессии должна удовлетворять условию минимума суммы квадратов расстояний до каждой точки корреляционного поля. В данном случае в уравнении (1) у представляет собой расчетное значение функции, определенное при помощи уравнения выбранной криволинейной связи по фактическим значениям х j. Например, если для аппроксимации связи выбрана парабола второго порядка, то y = а + b x + cx2, (14) .а разность между точкой, лежащей на кривой, и данной точкой корреляционного поля при соответствующем аргументе можно записать аналогично уравнению (3) в виде yj = yj (a + bx + cx2) (15) При этом сумма квадратов расстояний от каждой точки корреляционного поля до новой линии регрессии в случае параболы второго порядка будет иметь вид: S 2 = yj 2 = 2 (16) Исходя из условия минимума этой суммы, частные производные S 2 по а, b и с приравниваются к нулю. Выполнив необходимые преобразования, получим систему трех уравнений с тремя неизвестными для определения a, b и с. , y = m a + b x + c x 2 yx = a x + b x 2 + c x 2. yx2 = a x 2 + b x 3 + c x4 . (17). Решая систему уравнений относительно a, b и с, находим численные значения коэффициентов регрессии. Величины y, x, x2, yx, yx2, x3, x4.находятся непосредственно по данным производственных измерений. Оценкой тесноты связи при криволинейной зависимости служит теоретическое корреляционное отношение xу, представляющее собой корень квадратный из соотношения двух дисперсий: среднего квадрата р2 отклонений расчетных значений y" j функции по найденному уравнению регрессии от среднеарифметического значения Y величины y к среднему квадрату отклонений y2 фактических значений функции y j от ее среднеарифметического значения: xу = { р2 / y2 } 1/2 = { (y" j - Y)2 / (y j - Y)2 } 1/2 (18) Квадрат корреляционного отношения xу2 показывает долю полной изменчивости зависимой переменной у, обусловленную изменчивостью аргумента х. Этот показатель называется коэффициентом детерминации. В отлично от коэффициента корреляции величина корреляционного отношения может принимать только положительные значения от 0 до 1. При полном отсутствии связи корреляционное отношение равно нулю, при наличии функциональной связи оно равно единице, а при наличии регрессионной связи различной тесноты корреляционное отношение принимает значения между нулем и единицей. Выбор типа кривой имеет большое значение в регрессионном анализе, поскольку от вида выбранной взаимосвязи зависит точность аппроксимации и статистические оценки тесноты связи. Наиболее простой метод выбора типа кривой состоит в построении корреляционных полей и в подборе соответствующих типов регрессионных уравнений по расположению точек на этих полях. Методы регрессионного анализа позволяют отыскивать численные значения коэффициентов регрессии для сложных видов взаимосвязи параметров, описываемых, например, полиномами высоких степеней. Часто вид кривой может быть определен на основе физической сущности рассматриваемого процесса или явления. Полиномы высоких степеней имеет смысл применять для описания быстро меняющихся процессов в том случае, если пределы колебания параметров этих процессов значительные. Применительно к исследованиям металлургического процесса достаточно использовать кривые низших порядков, например параболу второго порядка. Эта кривая может иметь один экстремум, что, как показала практика, вполне достаточно для описания различных характеристик металлургического процесса. Результаты расчетов параметров парной корреляционной взаимосвязи были бы достоверны н представляли бы практическую ценность в том случае, если бы используемая информация была получена для условий широких пределов колебаний аргумента при постоянстве всех прочих параметров процесса. Следовательно, методы исследования парной корреляционной взаимосвязи параметров могут быть использованы для решения практических задач лишь тогда, когда существует уверенность в отсутствии других серьезных влияний на функцию, кроме анализируемого аргумента. В производственных условиях вести процесс таким образом продолжительное время невозможно. Однако если иметь информацию об основных параметрах процесса, влияющих на его результаты, то математическим путем можно исключить влияние этих параметров и выделить в “чистом виде” взаимосвязь интересующей нас функции и аргумента. Такая связь называется частной, или индивидуальной. Для ее определения используется метод множественной регрессии.

Корреляционное отношение.

Корреляционное отношение и индекс корреляции - это числовые характеристики, тесно связанные понятием случайной величины, а точнее с системой случайных величин. Поэтому для введения и определения их значения и роли необходимо пояснить понятие системы случайных величин и некоторые свойства присущие им.

Два или более случайные величины, описывающих некоторое явление называют системой или комплексом случайных величин.

Систему нескольких случайных величин X, Y, Z, …, W принято обозначать через (X, Y, Z, …, W).

Например, точка на плоскости описывается не одной координатой, а двумя, а в пространстве - даже тремя.

Свойства системы нескольких случайных величин не исчерпываются свойствами отдельных случайных величин, входящих в систему, а включают также взаимные связи (зависимости) между случайными величинами. Поэтому при изучении системы случайных величин следует обращать внимание на характер и степень зависимости. Эта зависимость может быть более или менее ярко выраженной, более или менее тесной. А в других случаях случайные величины оказаться практически независимыми.

Случайная величина Y называется независимой от случайной величины Х, если закон распределения случайной величины Y не зависит от того какое значение приняла величина Х.

Следует отметить, что зависимость и независимость случайных величин есть всегда явление взаимное: если Y не зависит от Х, то и величина Х не зависит от Y. Учитывая это, можно привести следующее определение независимости случайных величин.

Случайные величины Х и Y называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. В противном случае величины Х и Y называются зависимыми.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Понятие "зависимости" случайных величин, которым пользуются в теории вероятностей, несколько отличается от обычного понятия "зависимости" величин, которым пользуются в математике. Так, математик под "зависимостью" подразумевает только один тип зависимости - полную, жесткую, так называемую функциональную зависимость. Две величины Х и Y называются функционально зависимыми, если, зная значение одного из них, можно точно определить значение другой.

В теории вероятностей встречаются несколько с иным типом зависимости - вероятностной зависимостью. Если величина Y связана с величиной Х вероятностной зависимостью, то, зная значение Х, нельзя точно указать значение Y, а можно указать её закон распределения, зависящий от того, какое значение приняла величина Х.

Вероятностная зависимость может быть более или менее тесной; по мере увеличения тесноты вероятностной зависимости она все более приближается к функциональной. Т.о., функциональную зависимость можно рассматривать как крайний, предельный случай наиболее тесной вероятностной зависимости. Другой крайний случай - полная независимость случайных величин. Между этими двумя крайними случаями лежат все градации вероятностной зависимости - от самой сильной до самой слабой.

Вероятностная зависимость между случайными величинами часто встречается на практике. Если случайные величины Х и Y находятся в вероятностной зависимости, то это не означает, что с изменением величины Х величина Y изменяется вполне определенным образом; это лишь означает, что с изменением величины Х величина Y имеет тенденцию также изменяться (возрастать или убывать при возрастании Х). Эта тенденция соблюдается лишь в общих чертах, а в каждом отдельном случае возможны отступления от неё.

Коэффициент регрессии - абсолютная величина, на которую в среднем изменяется величина одного признака при изменении другого связанного с ним признака на установленную единицу измерения. Определение регрессии. Связь между у и x определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе — обратная). Модель линейной регрессии является часто используемой и наиболее изученной в эконометрике.

1.4. Ошибка аппроксимации.Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя. Таким образом, коэффициенты регрессии ха­рактеризуют степень значимости отдельных факторов для повышения уровня результативного показателя.

Коэффициент регрессии

Рассмотрим теперь задачу 1 из заданий по анализу регрессии, приведенную на с. 300-301. Один из математических результатов теории линейной регрессии говорит, что оценка N, является несмещенной оценкой с минимальной дисперсией в классе всех линейных несмещенных оценок. Например, можно рассчитать число простудных заболеваний в среднем при определенных значениях среднемесячной температуры воздуха в осенне-зимний период.

Линия регрессии и уравнение регрессии

Сигма регрессии используется при построении шкалы регрессии, которая отражает отклонение величин результативного признака от среднего его значения, отложенного на линии регрессии. 1, х2, х3 и соответствующих им средних значений у1, у2 у3, а также наименьших (у - σrу/х)и наибольших (у + σrу/х) значений (у) построить шкалу регрессии. Вывод. Таким образом, шкала регрессии в пределах расчетных величин массы тела позволяет определить ее при любом другом значении роста или оценить индивидуальное развитие ребенка.

В матричной форме уравнение регрессии (УР) записывается в виде: Y=BX+U{\displaystyle Y=BX+U}, где U{\displaystyle U} - матрица ошибок. Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия. И для выбросов, и для «влиятельных» наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется, и называем это вариацией, которая обусловлена или объясняется регрессией. Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным. Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Причины существования случайной ошибки: 1. Невключение в регрессионную модель значимых объясняющих переменных; 2. Агрегирование переменных. Система нормальных уравнений. В нашем примере связь прямая. Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.

Сравнение коэффициентов корреляции и регрессии

С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов. Если расчетное значение с lang=EN-US>n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.

Коэффициенты регрессии и их интерпретация

В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов. Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот.

Что такое регрессия?

2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).

Если проведена предвари­тельная стандартизация факторных показателей, то b0 равняется сред­нему значению результативного показателя в совокупности. Конкретные значения коэффициен­тов регрессии определяют по эмпирическим данным согласно методу наименьших квадратов (в результате решения систем нормальных урав­нений).

Линейное уравнение регрессии имеет вид y = bx + a + ε Здесь ε — случайная ошибка (отклонение, возмущение). Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве регрессии. Подставив в уравнение регрессии соответствующие значения x, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции .
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения ε i для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям x i и y i можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где e i – наблюдаемые значения (оценки) ошибок ε i , а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов).
Система нормальных уравнений.

Для наших данных система уравнений имеет вид:

10a + 356b = 49
356a + 2135b = 9485

Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 68.16, a = 11.17

Уравнение регрессии :
y = 68.16 x - 11.17

1. Параметры уравнения регрессии.
Выборочные средние.



Выборочные дисперсии.


Среднеквадратическое отклонение

1.1. Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока :
0.1 < r xy < 0.3: слабая;
0.3 < r xy < 0.5: умеренная;
0.5 < r xy < 0.7: заметная;
0.7 < r xy < 0.9: высокая;
0.9 < r xy < 1: весьма высокая;
В нашем примере связь между признаком Y фактором X весьма высокая и прямая.

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 68.16 x -11.17
Коэффициентам уравнения линейной регрессии можно придать экономический смысл. Коэффициент уравнения регрессии показывает, на сколько ед. изменится результат при изменении фактора на 1 ед.
Коэффициент b = 68.16 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 68.16.
Коэффициент a = -11.17 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений x , то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения x , можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и x определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь прямая.

1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета - коэффициенты. Коэффициент эластичности находится по формуле:


Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
В нашем примере коэффициент эластичности больше 1. Следовательно, при изменении Х на 1%, Y изменится более чем на 1%. Другими словами - Х существенно влияет на Y.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего Y на 0.9796 среднеквадратичного отклонения этого показателя.

1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.


Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве регрессии.

1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.98 2 = 0.9596
т.е. в 95.96 % случаев изменения x приводят к изменению у. Другими словами - точность подбора уравнения регрессии - высокая. Остальные 4.04 % изменения Y объясняются факторами, не учтенными в модели.

x y x 2 y 2 x y y(x) (y i -y cp) 2 (y-y(x)) 2 (x i -x cp) 2 |y - y x |:y
0.371 15.6 0.1376 243.36 5.79 14.11 780.89 2.21 0.1864 0.0953
0.399 19.9 0.1592 396.01 7.94 16.02 559.06 15.04 0.163 0.1949
0.502 22.7 0.252 515.29 11.4 23.04 434.49 0.1176 0.0905 0.0151
0.572 34.2 0.3272 1169.64 19.56 27.81 87.32 40.78 0.0533 0.1867
0.607 44.5 .3684 1980.25 27.01 30.2 0.9131 204.49 0.0383 0.3214
0.655 26.8 0.429 718.24 17.55 33.47 280.38 44.51 0.0218 0.2489
0.763 35.7 0.5822 1274.49 27.24 40.83 61.54 26.35 0.0016 0.1438
0.873 30.6 0.7621 936.36 26.71 48.33 167.56 314.39 0.0049 0.5794
2.48 161.9 6.17 26211.61 402 158.07 14008.04 14.66 2.82 0.0236
7.23 391.9 9.18 33445.25 545.2 391.9 16380.18 662.54 3.38 1.81

2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=7 находим t крит:
t крит = (7;0.05) = 1.895
где m = 1 - количество объясняющих переменных.
Если t набл > t критич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку t набл > t крит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:


S 2 y = 94.6484 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).
S y = 9.7287 - стандартная ошибка оценки (стандартная ошибка регрессии).
S a - стандартное отклонение случайной величины a.


S b - стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя. (a + bx p ± ε)
где

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 1 (-11.17 + 68.16*1 ± 6.4554)
(50.53;63.44)

Индивидуальные доверительные интервалы для Y при данном значении X .
(a + bx i ± ε)
где

x i y = -11.17 + 68.16x i ε i y min y max
0.371 14.11 19.91 -5.8 34.02
0.399 16.02 19.85 -3.83 35.87
0.502 23.04 19.67 3.38 42.71
0.572 27.81 19.57 8.24 47.38
0.607 30.2 19.53 10.67 49.73
0.655 33.47 19.49 13.98 52.96
0.763 40.83 19.44 21.4 60.27
0.873 48.33 19.45 28.88 67.78
2.48 158.07 25.72 132.36 183.79

С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.

2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H 0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H 1 не равно) на уровне значимости α=0.05.
t крит = (7;0.05) = 1.895


Поскольку 12.8866 > 1.895, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).


Поскольку 2.0914 > 1.895, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).

Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b - t крит S b ; b + t крит S b)
(68.1618 - 1.895 5.2894; 68.1618 + 1.895 5.2894)
(58.1385;78.1852)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a - t a)
(-11.1744 - 1.895 5.3429; -11.1744 + 1.895 5.3429)
(-21.2992;-1.0496)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.

2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с lang=EN-US>n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:


где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=7, Fkp = 5.59
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).

Проверка на наличие автокорреляции остатков .
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция , нежели отрицательная автокорреляция . В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию , можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности : выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.

Обнаружение автокорреляции

1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения e i с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения e i (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скоре всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости e i от e i-1 .

Критерий Дарбина-Уотсона .
Этот критерий является наиболее известным для обнаружения автокорреляции.
При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой. При этом проверяется некоррелированность соседних величин e i .

y y(x) e i = y-y(x) e 2 (e i - e i-1) 2
15.6 14.11 1.49 2.21 0
19.9 16.02 3.88 15.04 5.72
22.7 23.04 -0.3429 0.1176 17.81
34.2 27.81 6.39 40.78 45.28
44.5 30.2 14.3 204.49 62.64
26.8 33.47 -6.67 44.51 439.82
35.7 40.83 -5.13 26.35 2.37
30.6 48.33 -17.73 314.39 158.7
161.9 158.07 3.83 14.66 464.81
662.54 1197.14

Для анализа коррелированности отклонений используют статистику Дарбина-Уотсона:

Критические значения d 1 и d 2 определяются на основе специальных таблиц для требуемого уровня значимости α, числа наблюдений n = 9 и количества объясняющих переменных m=1.
Автокорреляция отсутствует, если выполняется следующее условие:
d 1 < DW и d 2 < DW < 4 - d 2 .
Не обращаясь к таблицам, можно пользоваться приблизительным правилом и считать, что автокорреляция остатков отсутствует, если 1.5 < DW < 2.5. Для более надежного вывода целесообразно обращаться к табличным значениям.

Вычисление коэффициентов уравнения регрессии

Систему уравнений (7.8) на основе имеющихся ЭД однозначно решить невозможно, так как количество неизвестных всегда больше количества уравнений. Для преодоления этой проблемы нужны дополнительные допущения. Здравый смысл подсказывает: желательно выбрать коэффициенты полинома так, чтобы обеспечить минимум ошибки аппроксимации ЭД. Могут применяться различные меры для оценки ошибок аппроксимации. В качестве такой меры нашла широкое применение среднеквадратическая ошибка. На ее основе разработан специальный метод оценки коэффициентов уравнений регрессии – метод наименьших квадратов (МНК). Этот метод позволяет получить оценки максимального правдоподобия неизвестных коэффициентов уравнения регрессии при нормальном распределения вариант, но его можно применять и при любом другом распределении факторов.

В основе МНК лежат следующие положения:

· значения величин ошибок и факторов независимы, а значит, и некоррелированы, т.е. предполагается, что механизмы порождения помехи не связаны с механизмом формирования значений факторов;

· математическое ожидание ошибки ε должно быть равно нулю (постоянная составляющая входит в коэффициент a 0 ), иначе говоря, ошибка является центрированной величиной;

· выборочная оценка дисперсии ошибки должна быть минимальна.

Рассмотрим применение МНК применительно к линейной регрессии стандартизованных величин. Для центрированных величин u j коэффициент a 0 равен нулю, тогда уравнения линейной регрессии

. (7.9)

Здесь введен специальный знак "^", обозначающий значения показателя, рассчитанные по уравнению регрессии, в отличие от значений, полученных по результатам наблюдений.

По МНК определяются такие значения коэффициентов уравнения регрессии, которые обеспечивают безусловный минимум выражению

Минимум находится приравниванием нулю всех частных производных выражения (7.10), взятых по неизвестным коэффициентам, и решением системы уравнений

(7.11)

Последовательно проведя преобразования и используя введенные ранее оценки коэффициентов корреляции

. (7.12)

Итак, получено т –1 линейных уравнений, что позволяет однозначно вычислить значения a 2 , a 3 , …, a т .

Если же линейная модель неточна или параметры измеряются неточно, то и в этом случае МНК позволяет найти такие значения коэффициентов, при которых линейная модель наилучшим образом описывает реальный объект в смысле выбранного критерия среднеквадратического отклонения.

Когда имеется только один параметр, уравнение линейной регрессии примет вид

Коэффициент a 2 находится из уравнения

Тогда, учитывая, что r 2,2 = 1, искомый коэффициент

a 2 = r y ,2 . (7.13)

Соотношение (7.13) подтверждает ранее высказанное утверждение, что коэффициент корреляции является мерой линейной связи двух стандартизованных параметров.

Подставив найденное значение коэффициента a 2 в выражение для w , с учетом свойств центрированных и нормированных величин, получим минимальное значение этой функции, равное 1– r 2 y ,2 . Величину 1– r 2 y,2 называют остаточной дисперсией случайной величины y относительно случайной величины u 2 . Она характеризует ошибку, которая получается при замене показателя функцией от параметра υ= a 2 u 2 . Только при |r y,2 | = 1 остаточная дисперсия равна нулю, и, следовательно, не возникает ошибки при аппроксимации показателя линейной функцией.

Переходя от центрированных и нормированных значений показателя и параметра

можно получить для исходных величин

Это уравнение также линейно относительно коэффициента корреляции. Нетрудно заметить, что центрирование и нормирование для линейной регрессии позволяет понизить на единицу размерность системы уравнений, т.е. упростить решение задачи определения коэффициентов, а самим коэффициентам придать ясный смысл.

Применение МНК для нелинейных функций практически ничем не отличается от рассмотренной схемы (только коэффициент a0 в исходном уравнении не равен нулю).

Например, пусть необходимо определить коэффициенты параболической регрессии

Выборочная дисперсия ошибки

На ее основе можно получить следующую систему уравнений

После преобразований система уравнений примет вид

Учитывая свойства моментов стандартизованных величин, запишем

Определение коэффициентов нелинейной регрессии основано на решении системы линейных уравнений. Для этого можно применять универсальные пакеты численных методов или специализированные пакеты обработки статистических данных.

С ростом степени уравнения регрессии возрастает и степень моментов распределения параметров, используемых для определения коэффициентов. Так, для определения коэффициентов уравнения регрессии второй степени используются моменты распределения параметров до четвертой степени включительно. Известно, что точность и достоверность оценки моментов по ограниченной выборке ЭД резко снижается с ростом их порядка. Применение в уравнениях регрессии полиномов степени выше второй нецелесообразно.

Качество полученного уравнения регрессии оценивают по степени близости между результатами наблюдений за показателем и предсказанными по уравнению регрессии значениями в заданных точках пространства параметров. Если результаты близки, то задачу регрессионного анализа можно считать решенной. В противном случае следует изменить уравнение регрессии (выбрать другую степень полинома или вообще другой тип уравнения) и повторить расчеты по оценке параметров.

При наличии нескольких показателей задача регрессионного анализа решается независимо для каждого из них.

Анализируя сущность уравнения регрессии, следует отметить следующие положения. Рассмотренный подход не обеспечивает раздельной (независимой) оценки коэффициентов – изменение значения одного коэффициента влечет изменение значений других. Полученные коэффициенты не следует рассматривать как вклад соответствующего параметра в значение показателя. Уравнение регрессии является всего лишь хорошим аналитическим описанием имеющихся ЭД, а не законом, описывающим взаимосвязи параметров и показателя. Это уравнение применяют для расчета значений показателя в заданном диапазоне изменения параметров. Оно ограниченно пригодно для расчета вне этого диапазона, т.е. его можно применять для решения задач интерполяции и в ограниченной степени для экстраполяции.



Главной причиной неточности прогноза является не столько неопределенность экстраполяции линии регрессии, сколько значительная вариация показателя за счет неучтенных в модели факторов. Ограничением возможности прогнозирования служит условие стабильности неучтенных в модели параметров и характера влияния учтенных факторов модели. Если резко меняется внешняя среда, то составленное уравнение регрессии потеряет свой смысл. Нельзя подставлять в уравнение регрессии такие значения факторов, которые значительно отличаются от представленных в ЭД. Рекомендуется не выходить за пределы одной трети размаха вариации параметра как за максимальное, так и за минимальное значения фактора.

Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения параметра, является точечным. Вероятность реализации такого прогноза ничтожна мала. Целесообразно определить доверительный интервал прогноза. Для индивидуальных значений показателя интервал должен учитывать ошибки в положении линии регрессии и отклонения индивидуальных значений от этой линии. Средняя ошибка прогноза показателя y для фактора х составит

где – средняя ошибка положения линии регрессии в генеральной совокупности при x = x k ;

– оценка дисперсии отклонения показателя от линии регрессии в генеральной совокупности;

x k – ожидаемое значение фактора.

Доверительные границы прогноза, например, для уравнения регрессии (7.14), определяются выражением

Отрицательная величина свободного члена а 0 в уравнении регрессии для исходных переменных означает, что область существования показателя не включает нулевых значений параметров. Если же а 0 > 0 , то область существования показателя включает нулевые значения параметров, а сам коэффициент характеризует среднее значение показателя при отсутствии воздействий параметров.

Задача 7.2. Построить уравнение регрессии для пропускной способности канала по выборке, заданной в табл. 7.1.

Решение. Применительно к указанной выборке построение аналитической зависимости в основной своей части выполнено в рамках корреляционного анализа: пропускная способность зависит только от параметра "соотношение сигнал/шум". Остается подставить в выражение (7.14) вычисленные ранее значения параметров. Уравнение для пропускной способности примет вид

ŷ = 26,47– 0,93×41,68×5,39/6,04+0,93×5,39/6,03×х = – 8,121+0,830х .

Результаты расчетов представлены в табл. 7.5.

Таблица 7.5

N пп Пропускная способность канала Соотношение сигнал/шум Значение функции Погрешность
Y X ŷ ε
26.37 41.98 26.72 -0.35
28.00 43.83 28.25 -0.25
27/83 42.83 27.42 0.41
31.67 47.28 31.12 0.55
23.50 38.75 24.04 -0.54
21.04 35.12 21.03 0.01
16.94 32.07 18.49 -1.55
37.56 54.25 36.90 0.66
18.84 32.70 19.02 -0.18
25.77 40.51 25.50 0.27
33.52 49.78 33.19 0.33
28.21 43.84 28.26 -0.05
28.76 44.03


Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ