Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

в произвольной среде. Максвелла уравнения сформулированы Дж. К. Максвеллом в 60-х годах 19 века на основе обобщения эмпирических законов электрических и магнитных явлений. Опираясь на эти законы и развивая плодотворную идею М. Фарадея о том, что взаимодействия между электрически заряженными телами осуществляются посредством электромагнитного поля , Максвелл создал теорию электромагнитных процессов, математически выражаемую Максвелла уравнения Современная форма Максвелла уравнения дана немецким физиком Г. Герцем и английским физиком О. Хевисайдом .

Максвелла уравнения связывают величины, характеризующие электромагнитное поле, с его источниками, то есть с распределением в пространстве электрических зарядов и токов. В пустоте электромагнитное поле характеризуется двумя векторными величинами, зависящими от пространственных координат и времени: напряжённостью электрического поля Е и магнитной индукцией В . Эти величины определяют силы, действующие со стороны поля на заряды и токи, распределение которых в пространстве задаётся плотностью заряда r (зарядом в единице объёма) и плотностью тока j (зарядом, переносимым в единицу времени через единичную площадку, перпендикулярную направлению движения зарядов). Для описания электромагнитных процессов в материальной среде (в веществе), кроме векторов Е и В , вводятся вспомогательные векторные величины, зависящие от состояния и свойств среды: электрическая индукция D и напряжённость магнитного поля Н .

Максвелла уравнения позволяют определить основные характеристики поля (Е, В, D и Н ) в каждой точке пространства в любой момент времени, если известны источники поля j и r как функции координат и времени. Максвелла уравнения могут быть записаны в интегральной или в дифференциальной форме (ниже они даны в абсолютной системе единиц Гаусса; см. СГС система единиц ).

Максвелла уравнения в интегральной форме определяют по заданным зарядам и токам не сами векторы поля Е, В, D, Н в отдельных точках пространства, а некоторые интегральные величины, зависящие от распределения этих характеристик поля: циркуляцию векторов Е и Н вдоль произвольных замкнутых контуров и потоки векторов D и через произвольные замкнутые поверхности.

Первое Максвелла уравнения является обобщением на переменные поля эмпирического Ампера закона о возбуждении магнитного поля электрическими токами. Максвелл высказал гипотезу, что магнитное поле порождается не только токами, текущими в проводниках, но и переменными электрическими полями в диэлектриках или вакууме. Величина, пропорциональная скорости изменения электрического поля во времени, была названа Максвеллом током смещения. Ток смещения возбуждает магнитное поле по тому же закону, что и ток проводимости (позднее это было подтверждено экспериментально). Полный ток, равный сумме тока проводимости и тока смещения, всегда является замкнутым.

Первое Максвелла уравнения имеет вид:

то есть циркуляция вектора напряжённости магнитного поля вдоль замкнутого контура L (сумма скалярных произведений вектора Н в данной точке контура на бесконечно малый отрезок dl контура) определяется полным током через произвольную поверхность j n - проекция плотности тока проводимости j на нормаль к бесконечно малой площадке ds , являющейся частью поверхности S, - проекция плотности тока смещения на ту же нормаль, а с = 3×10 10 см/сек - постоянная, равная скорости распространения электромагнитных взаимодействий в вакууме.

Второе Максвелла уравнения является математической формулировкой закона электромагнитной индукции Фарадея (см. Индукция электромагнитная ) записывается в виде:

, (1, б)

то есть циркуляция вектора напряжённости электрического поля вдоль замкнутого контура L (эдс индукции) определяется скоростью изменения потока вектора магнитной индукции через поверхность S , ограниченную данным контуром. Здесь n - проекция на нормаль к площадке ds вектора магнитной индукции В ; знак минус соответствует Ленца правилу для направления индукционного тока.

Третье Максвелла уравнения выражает опытные данные об отсутствии магнитных зарядов, аналогичных электрическим (магнитное поле порождается только токами):

то есть поток вектора магнитной индукции через произвольную замкнутую поверхность S равен нулю.

Четвёртое Максвелла уравнения (обычно называемое Гаусса теоремой ) представляет собой обобщение закона взаимодействия неподвижных электрических зарядов - Кулона закона :

, (1, г)

то есть поток вектора электрической индукции через произвольную замкнутую поверхность S определяется электрическим зарядом, находящимся внутри этой поверхности (в объёме , ограниченном данной поверхностью).

Если считать, что векторы электромагнитного поля (Е, В, D, Н ) являются непрерывными функциями координат, то, рассматривая циркуляцию векторов Н и Е по бесконечно малым контурам и потоки векторов и D через поверхности, ограничивающие бесконечно малые объёмы, можно от интегральных соотношений (1, а - г) перейти к системе дифференциальных уравнений, справедливых в каждой точке пространства, то есть получить дифференциальную форму Максвелла уравнения (обычно более удобную для решения различных задач):

rot,

Здесь rot и div - дифференциальные операторы ротор (см. Вихрь ) и дивергенция , действующие на векторы Н , Е , и D . Физический смысл уравнений (2) тот же, что и уравнений (1).

Максвелла уравнения в форме (1) или (2) не образуют полной замкнутой системы, позволяющей рассчитывать электромагнитные процессы при наличии материальной среды. Необходимо их дополнить соотношениями, связывающими векторы Е, Н, D, В и j , которые не являются независимыми. Связь между этими векторами определяется свойствами среды и её состоянием, причём D и j выражаются через Е , а - через Н :

D = D (E ), = (Н ), j = j (E ). (3)

Эти три уравнения называются уравнениями состояния, или материальными уравнениями; они описывают электромагнитные свойства среды и для каждой конкретной среды имеют определённую форму. В вакууме D ºЕ и º Н . Совокупность уравнений поля (2) и уравнений состояния (3) образуют полную систему уравнений.

Макроскопические Максвелла уравнения описывают среду феноменологически, не рассматривая сложного механизма взаимодействия электромагнитного поля с заряженными частицами среды. Максвелла уравнения могут быть получены из Лоренца - Максвелла уравнений для микроскопических полей и определённых представлений о строении вещества путём усреднения микрополей по малым пространственно-временным интервалам. Таким способом получаются как основные уравнения поля (2), так и конкретная форма уравнений состояния (3), причём вид уравнений поля не зависит от свойств среды.

Уравнения состояния в общем случае очень сложны, так как векторы D , и j в данной точке пространства в данный момент времени могут зависеть от полей Е и Н во всех точках среды во все предшествующие моменты времени. В некоторых средах векторы D и могут быть отличными от нуля при Е и равных нулю (сегнетоэлектрики и ферромагнетики ). Однако для большинства изотропных сред, вплоть до весьма значительных полей, уравнения состояния имеют простую линейную форму:

D = eE , = mH , j = sE + j c тр. (4)

Здесь e (x, у, z ) - диэлектрическая проницаемость , а m (x, у, z ) - магнитная проницаемость среды, характеризующие соответственно её электрические и магнитные свойства (в выбранной системе единиц для вакуума e = m = 1); величина s(x, у, z ) называется удельной электропроводностью; j cтр - плотность так называемых сторонних токов, то есть токов, поддерживаемых любыми силами, кроме сил электрического поля (например, магнитным полем, диффузией и т. д.). В феноменологической теории Максвелла макроскопические характеристики электромагнитных свойств среды e, m и s должны быть найдены экспериментально. В микроскопической теории Лоренца - Максвелла они могут быть рассчитаны.

Проницаемости e и m фактически определяют тот вклад в электромагнитное поле, который вносят так называемые связанные заряды, входящие в состав электрически нейтральных атомов и молекул вещества. Экспериментальное определение e, m, s позволяет рассчитывать электромагнитное поле в среде, не решая трудную вспомогательную задачу о распределении связанных зарядов и соответствующих им токов в веществе. Плотность заряда r и плотность тока j в Максвелла уравнения - это плотности свободных зарядов и токов, причём вспомогательные векторы Н и D вводятся так, чтобы циркуляция вектора Н определялась только движением свободных зарядов, а поток вектора D - плотностью распределения этих зарядов в пространстве.

Если электромагнитное поле рассматривается в двух граничащих средах, то на поверхности их раздела векторы поля могут претерпевать разрывы (скачки); в этом случае уравнения (2) должны быть дополнены граничными условиями:

[nH ] 2 - [nH ] 1 = ,

[nE ] 2 - [nE ] 1 = 0, (5)

(nD ) 2 - (nD ) 1 = 4ps,

(nB ) 2 - (nB ) 1 = 0.

Здесь j пов и s - плотности поверхностных тока и заряда, квадратные и круглые скобки - соответственно векторное и скалярное произведения векторов, n - единичный вектор нормали к поверхности раздела в направлении от первой среды ко второй (1®2), а индексы относятся к разным сторонам границы раздела.

Основные уравнения для поля (2) линейны, уравнения же состояния (3) могут быть и нелинейными. Обычно нелинейные эффекты обнаруживаются в достаточно сильных полях. В линейных средах [удовлетворяющих соотношениям (4)] и, в частности, в вакууме Максвелла уравнения линейны и, таким образом, оказывается справедливым суперпозиции принцип : при наложении полей они не оказывают влияния друг на друга.

Из Максвелла уравнения вытекает ряд законов сохранения. В частности, из уравнений (1, а) и (1, г) можно получить соотношение (так называемое уравнение непрерывности):

, (6)

представляющее собой закон сохранения электрического заряда: полный ток, протекающий за единицу времени через любую замкнутую поверхность S , равен изменению заряда внутри объёма V , ограниченного этой поверхностью. Если ток через поверхность отсутствует, то заряд в объёме остаётся неизменным.

Из Максвелла уравнения следует, что электромагнитное поле обладает энергией и импульсом (количеством движения). Плотность энергии w (энергии единицы объёма поля) равна:

, (7)

Электромагнитная энергия может перемещаться в пространстве. Плотность потока энергии определяется так называемым вектором Пойнтинга

Направление вектора Пойнтинга перпендикулярно как Е , так и Н и совпадает с направлением распространения электромагнитной энергии, а его величина равна энергии, переносимой в единицу времени через единицу поверхности, перпендикулярной к вектору П . Если не происходит превращений электромагнитной энергии в другие формы, то, согласно Максвелла уравнения , изменение энергии в некотором объёме за единицу времени равно потоку электромагнитной энергии через поверхность, ограничивающую этот объём. Если внутри объёма за счёт электромагнитной энергии выделяется тепло, то закон сохранения энергии записывается в форме:

(9)

Где Q - количество теплоты, выделяемой в единицу времени.

Плотность импульса электромагнитного поля g (импульс единицы объёма поля) связана с плотностью потока энергии соотношением:

Существование импульса электромагнитного поля впервые было обнаружено экспериментально в опытах П. Н. Лебедева по измерению давления света (1899).

Как видно из (7), (8) и (10), электромагнитное поле всегда обладает энергией, а поток энергии и электромагнитный импульс отличны от нуля лишь в случае, когда одновременно существуют и электрическое и магнитное поля (причём эти поля не параллельны друг другу).

Максвелла уравнения приводят к фундаментальному выводу о конечности скорости распространения электромагнитных взаимодействий (равной с = 3×10 10 см/сек ). Это означает, что при изменении плотности заряда или тока в некоторой точке пространства порождаемое ими электромагнитное поле в точке наблюдения изменяется не в тот же момент времени, а спустя время t = R/c , где R - расстояние от элемента тока или заряда до точки наблюдения. Вследствие конечной скорости распространения электромагнитных взаимодействий возможно существование электромагнитных волн , частным случаем которых (как впервые показал Максвелл) являются световые волны.

Электромагнитные явления протекают одинаково во всех инерциальных системах отсчёта , то есть удовлетворяют принципу относительности. В соответствии с этим Максвелла уравнения не меняют своей формы при переходе от одной инерциальной системы отсчёта к другой (релятивистски инвариантны). Выполнение принципа относительности для электромагнитных процессов оказалось несовместимым с классическими представлениями о пространстве и времени, потребовало пересмотра этих представлений и привело к созданию специальной теории относительности (А. Эйнштейн , 1905; см. Относительности теория ). Форма Максвелла уравнения остаётся неизменной при переходе к новой инерциальной системе отсчёта, если пространств, координаты и время, векторы поля Е, Н, В, D , плотность тока j и плотность заряда r изменяются в соответствии с Лоренца преобразованиями (выражающими новые, релятивистские представления о пространстве и времени). Релятивистски-инвариантная форма Максвелла уравнения подчёркивает тот факт, что электрическое и магнитное поля образуют единое целое.

Максвелла уравнения описывают огромную область явлений. Они лежат в основе электротехники и радиотехники и играют важнейшую роль в развитии таких актуальных направлений современной физики, как физика плазмы и проблема управляемых термоядерных реакций , магнитная гидродинамика , нелинейная оптика , конструирование ускорителей заряженных частиц , астрофизика и т. д. Максвелла уравнения неприменимы лишь при больших частотах электромагнитных волн, когда становятся существенными квантовые эффекты, то есть когда энергия отдельных квантов электромагнитного поля - фотонов - велика и в процессах участвует сравнительно небольшое число фотонов.

Лит.: Максвелл Дж. К., Избранные сочинения по теории электромагнитного поля, перевод с английского, М., 1952; Тамм И. Е., Основы теории электричества, 7 изд., М., 1957; Калашников С. Г., Электричество, М., 1956 (Общий курс физики, т. 2); Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, (перевод с английского], в. 5, 6, 7, М., 1966; Ландау Л. Д., Лифшиц Е. М., Теория поля, 5 изд., М., 1967 (Теоретическая физика, т. 2); их же, Электродинамика сплошных сред, М., 1959.

Г. Я. Мякишев.

Статья про слово "Максвелла уравнения " в Большой Советской Энциклопедии была прочитана 36718 раз

Система уравнений Максвелла является обобщением основных законов об электрических и электромагнитных явлениях. Она описывает абсолютно все электромагнитные явления. Являясь основой теории электромагнитного поля, эта система уравнений позволяет решать задачи, связанные с отысканием электрических и магнитных полей, создаваемых заданным распределением электрических зарядов и токов. Уравнения Максвелла были отправной точкой для создания общей теории относительности Эйнштейна. В теории Максвелла раскрывается электромагнитная природа света. Уравнения сформулированы Дж. Максвеллом в шестидесятых годах 19 века на основе обобщения эмпирических законов и развития идей ученых, исследовавших электромагнитные явления до него (Законы Кулона, Био – Савара, Ампера и, в особенности, исследования Фарадея). Сам Максвелл записал 20 уравнений с 20 неизвестными в дифференциальной форме, которые позднее были преобразованы. Современная форма Максвелла дана немецким физиком Г. Герцем и английским физиком О. Хевисайдом. Запишем уравнения используя систему единиц Гаусса.

Система уравнений Максвелла

В состав системы уравнений Максвелла входят четыре уравнения.

Первое уравнение:

Это Закон Фарадея (Закон электромагнитной индукции).

где -напряженность электрического поля, -вектор магнитной индукции, c – скорость света в вакууме.

Это уравнение говорит, о том, что ротор напряженности электрического поля равен потоку (т.е. скорости изменения во времени) вектора магнитной индукции сквозь этот контур.Уравнение (1.1) представляет собой первое уравнение Максвелла в дифференциальной форме.

Это же уравнение можно записать в интегральной форме, тогда оно примет следующий вид:

где – проекция на нормаль к площадке dS вектора магнитной индукции,

– магнитный поток.

рис. 2.

Циркуляция вектора напряженности электрического поля вдоль замкнутого контура L (ЭДС индукции) определяется скоростью изменения потока вектора магнитной индукции через поверхность, ограниченную данным контуром. Знак минус по правилу Ленца означает направление индукционного тока.

Согласно Максвеллу закон электромагнитной индукции (а это именно он), справедлив для любого замкнутого контура, произвольно выбранного в переменном магнитном поле.

Смысл этого уравнения: Переменное магнитное поле в любой точке пространства создает вихревое электрическое поле.

где -вектор магнитной напряженности, - плотность электрического тока, - вектор электрического смещения.

Данное уравнение Максвелла является обобщением эмпирического закона Био-Савара о том, что магнитные поля возбуждаются электрическими токами. Смысл второго уравнения в том, что источником возникновения вихревого магнитного поля является также переменное электрическое поле, магнитное действие которого характеризуется током смещения. (-плотность тока смещения).

В интегральном виде второе уравнение Максвелла (Теорема о циркуляции магнитного поля) представлено следующим образом:

Циркуляция вектора напряжённости магнитного поля по произвольному контуру равна алгебраической сумме токов проводимости и тока смещения, сцепленных с контуром.

Когда Максвелл вводил уравнения (более ста лет тому назад!), природа электромагнитного поля была не понятна. В настоящее время природа поля выяснена, и стало ясно, что может быть названo «током» лишь формально. По pяду расчетных соображений такое название, не придавая ему прямого физического смысла, целесообразно сохранить, что в электротехнике и делается. По этой же причине вектор D, входящий в выражение для тока смещения, называют вектором электрического смещения.

Помимо первых двух уравнений в систему уравнений Максвелла входит теорема Гаусса-Остроградского для электрического и магнитного полей:

где -плотность электрического заряда.

Что в интегральном виде представляет собой следующее:

где -поток электрического смещения - поток магнитной индукции сквозь замкнутую поверхность, охватывающую свободный заряд q.

Смысл уравнения 3.2. Электрический заряд – источник электрической индукции.

Уравнение 4.2 выражает факт отсутствия свободных магнитных зарядов.

Полная система уравнений Максвелла в дифференциальном виде (характеризует поле в каждой точке пространства):

Полная система уравнений Максвелла в интегральном виде

Полная система уравнений Максвелла в интегральном виде (интегральная форма записи уравнений облегчает их физическую интерпретацию так ка делает их визуально ближе к известным эмпирическим законам):

Систему уравнений Максвелла дополняют «материальными уравнениями», связывающими векторы c величинами, описывающими электрические и магнитные свойства среды.

где – относительная диэлектрическая проницаемость, – относительная магнитная проницаемость, -удельная электропроводность, – электрическая постоянная, – магнитная постоянная. Среда предполагается изотропной, неферрромагнитной, несегнетоэлектрической.

На границе раздела двух сред выполняются граничные условия:

где - поверхностная плотность свободных зарядов, n- единичный вектор нормали к границе раздела, проведенный из среды 2 в 1, единичный вектор, касательный к границе, - проекция вектора плотности поверхностных токов проводимости на единичный вектор.

Данные уравнения выражают непрерывность нормальных составляющих вектора магнитной индукции и скачок нормальных составляющих вектора смещения. Непрерывность касательных составляющих вектора напряженностей электрического поля на границе раздела и скачок этих составляющих для напряженности магнитного поля.

Примеры решения задач

ПРИМЕР 1

Задание Из системы уравнений Максвелла получить уравнения непрерывности токов и закон сохранения заряда.
Решение Используем уравнение:

Проведем для него операцию дивергенции ( или ). Получим:

из системы уравнений Максвелла знаем, что , (c)

Подставим (с) в (b) получим:

отсюда следует

или в интегральной форме:

Соответственно для замкнутых изолированных областей получим:

Это уравнение непрерывности для тока, содержащее в себе закон сохранения заряда – один из фундаментальных принципов, который подтверждается экспериментом.

Уравнения Максвелла — система дифференциальных уравнений, описывающих электромагнитное поле и его связь сэлектрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца образуют полную систему уравнений классической электродинамики . Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее, влияние не только на все области физики, непосредственно связанные с электромагнетизмом , но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму (одним из ярчайших примеров здесь может служить специальная теория относительности).

Содержание [убрать] 1. История 2. Запись уравнений Максвелла и системы единиц 3. Дифференциальная форма 4. Интегральная форма 5. Сила Лоренца 6. Размерные константы в уравнениях Максвелла 7. Уравнения Максвелла в среде 7.1 Связанные заряды и токи 7.2 Материальные уравнения 7.3 Уравнения в изотропных и однородных средах без дисперсии o 7.4 Граничные условия 8. Законы сохранения 8.1 Уравнение непрерывности o 8.2 Закон сохранения энергии 9. Потенциалы 9.1 Скалярный и векторный потенциалы 9.2 Векторы Герца 9.3 Потенциалы Дебая 9.4 Векторы Римана — Зильберштейна 10. Ковариантная формулировка o 10.1 Четырёхмерные векторы 10.2 Тензор электромагнитного поля o 10.3 Лагранжиан 10.4 Запись при помощи дифференциальных форм 10.5 Общековариантная запись в компонентах 11. Спектральное представление 12. Уравнения без свободных зарядов и токов 12.1 Волновое уравнение 12.2 Уравнение Гельмгольца 13. Некоторые точные решения 13.1 Поле движущегося точечного заряда 13.2 Плоские электромагнитные волны 14. Связь с другими теориями 15. Аксиоматический подход 16. Единственность решений уравнений Максвелла 17. Численное решение уравнений Максвелла 18. Источники 19. Примечания 20. См. также 21. Литература 21.1 Исторические публикации 21.2 История развития 21.3 Общие курсы физики 21.4 Курсы теоретической физики 21.5 Решения уравнений Максвелла 22. Ссылки

История

Уравнения, сформулированные Джеймсом Клерком Максвеллом, возникли на основе ряда важных экспериментальных открытий, которые были сделаны в начале XIX века. В 1820 году Ганс Христиан Эрстед обнаружил, что пропускаемый через проводгальванический ток заставляет отклоняться магнитную стрелку компаса. Это открытие привлекло широкое внимание учёных того времени. В том же 1820 году Био и Савар экспериментально нашли выражение для порождаемой током магнитной индукции (закон Био-Савара ), и Андре Мари Ампер обнаружил, чтовзаимодействие на расстоянии возникает также между двумя проводниками, по которым пропускается ток. Ампер ввёл термин «электродинамический» и выдвинул гипотезу, что природный магнетизм связан с существованием в магните круговых токов.


Влияние тока на магнит, обнаруженное Эрстедом, привело Майкла Фарадея к идее о том, что должно существовать обратное влияние магнита на токи. После длительных экспериментов, в 1831 году, Фарадей открыл, что перемещающийся возле проводника магнит порождает в проводнике электрический ток. Это явление было названо электромагнитной индукцией. Фарадей ввёл понятие «поля сил» — некоторой среды, находящейся между зарядамии токами. Его рассуждения носили качественный характер, однако они оказали огромное влияние на исследования Максвелла.

После открытий Фарадея стало ясно, что старые модели электромагнетизма (Ампер, Пуассон и др.) неполны. Вскоре появилась теория Вебера, основанная на дальнодействии. Однако к этому моменту вся физика, кроме теории тяготения, имела дело только с близкодейственными силами (оптика, термодинамика, механика сплошных сред и др.). Гаусс, Риман и ряд других учёных высказывали догадки, что свет имеет электромагнитную природу, так что теория электромагнитных явлений тоже должна быть близкодейственной. Этот принцип стал существенной особенностью теории Максвелла.

В своём знаменитом «Трактате об электричестве и магнетизме» (1873) Максвелл писал:

"Приступая к изучению труда Фарадея, я установил, что его метод понимания явлений был так же математическим, хотя и не представленным в форме обычных математических символов. Я также нашёл, что этот метод можно выразить в обычной математической форме и таким образом сравнить с методами профессиональных математиков".

Заменяя фарадеевский термин «поле сил» на понятие «напряжённость поля», Максвелл сделал его ключевым объектом своей теории:

Если мы примем эту среду в качестве гипотезы, я считаю, что она должна занимать выдающееся место в наших исследованиях, и что нам следовало бы попытаться сконструировать рациональное представление о всех деталях её действия, что и было моей постоянной целью в этом трактате.

Подобная электродинамическая среда явилась абсолютно новым понятием для ньютоновской физики. Последняя изучала взаимодействие между собой материальных тел. Максвелл же записал уравнения, которым должна подчиняться среда, определяющая взаимодействие зарядов и токов и существующая даже в их отсутствие.

Электрический ток создаёт магнитную индукцию (закон Ампера )

Анализируя известные эксперименты, Максвелл получил систему уравнений для электрического и магнитного полей. В 1855 году в своей самой первой статье «О фарадеевых силовых линиях» («On Faraday’s Lines of Force») он впервые записал в дифференциальной форме систему уравнений электродинамики, но не вводя ещё ток смещения. Такая система уравнений описывала все известные к тому времени экспериментальные данные, но не позволяла связать между собой заряды и токи и предсказатьэлектромагнитные волны. Впервые ток смещения был введён Максвеллом в работе «О физических силовых линиях» («On Physical Lines of Force»), состоящей из четырёх частей и опубликованной в 1861-1862 годах.

Обобщая закон Ампера, Максвелл вводит ток смещения, вероятно, чтобы связать токи и заряды уравнением непрерывности, которое уже было известно для других физических величин. Следовательно, в этой статье фактически была завершена формулировка полной системы уравнений электродинамики. В статье 1864 года «Динамическая теория электромагнитного поля» («A dynamical theory of the electromagnetic field») рассмотрена сформулированная ранее система уравнений из 20 скалярных уравнений для 20 скалярных неизвестных. В этой статье Максвелл впервые сформулировал понятие электромагнитного поля как физической реальности, имеющей собственную энергию и конечное время распространения, определяющее запаздывающий характер электромагнитного взаимодействия.

Переменный поток магнитного поля создаёт электрическое поле (закон Фарадея )

Оказалось, что не только ток, но и изменяющееся со временем электрическое поле (ток смещения) порождаетмагнитное поле. В свою очередь, в силу закона Фарадея, изменяющееся магнитное поле снова порождает электрическое. В результате, в пустом пространстве может распространяться электромагнитная волна. Из уравнений Максвелла следовало, что её скорость равна скорости света, поэтому Максвелл сделал вывод об электромагнитной природе света.

Часть физиков выступила против теории Максвелла (особенно много возражений вызвала концепция тока смещения). Гельмгольц предложил свою теорию, компромиссную по отношению к моделям Вебера и Максвелла, и поручил своему ученику Генриху Герцу провести её экспериментальную проверку. Однако опыты Герца однозначно подтвердили правоту Максвелла.

Максвелл не использовал векторных обозначений и записывал свои уравнения в достаточно громоздком компонентном виде. В своём трактате он, кроме того, частично использовалкватернионную формулировку. Современная форма уравнений Максвелла появилась около 1884 года после работ Хевисайда, Герца и Гиббса. Они не только переписали систему Максвелла в векторном виде, но и симметризовали её, переформулировав в терминах поля, избавившись отэлектрического и магнитного потенциалов, игравших в теории Максвелла существенную роль, поскольку полагали, что эти функции являются лишь ненужными вспомогательными математическими абстракциями. Интересно, что современная физика поддерживает Максвелла, но не разделяет негативное отношение его ранних последователей к потенциалам.Электромагнитный потенциал играет важную роль в квантовой физике и проявляется как физически измеряемая величина в некоторых экспериментах, например, в эффекте Ааронова-Бома.

Система уравнений в формулировке Герца и Хевисайда некоторое время называлась уравнениями Герца-Хевисайда. Эйнштейн в классической статье «К электродинамике движущихся тел» назвал их уравнениями Максвелла-Герца. Иногда в литературе встречается также название уравнения Максвелла-Хевисайда.

Уравнения Максвелла сыграли важную роль при возникновении специальной теории относительности (СТО). Джозеф Лармор (1900 год) и независимо от него Хенрик Лоренц (1904 год) нашли преобразования координат, времени и электромагнитных полей, которые оставляют уравнения Максвелла инвариантными при переходе от одной инерциальной системы отсчёта к другой. Эти преобразования отличались от преобразований Галилея классической механики и, следуя Анри Пуанкаре, стали называться преобразованиями Лоренца. Они стали математическим фундаментом специальной теории относительности.

Распространение электромагнитных волн со скоростью света первоначально интерпретировалось как возмущения некоторой среды, так называемого эфира. Были предприняты многочисленные попытки (см. исторический обзор) обнаружить движение Земли относительно эфира, однако они неизменно давали отрицательный результат. Поэтому Анри Пуанкаре высказал гипотезу о принципиальной невозможности обнаружить подобное движение (принцип относительности). Ему же принадлежит постулат о независимости скорости света от скорости его источника и вывод (вместе с Лоренцем), исходя из сформулированного так принципа относительности, точного видапреобразований Лоренца (при этом были показаны и групповые свойства этих преобразований).

Эти две гипотезы (постулата) легли и в основу статьи Альберта Эйнштейна (1905 год). С их помощью он также вывел преобразования Лоренца и утвердил их общефизический смысл, особо подчеркнув возможность их применения для перехода из любой инерциальной системы отсчета в любую другую инерциальную. Эта работа фактически ознаменовала собой построение специальной теории относительности. В СТО преобразования Лоренца отражают общие свойства пространства и времени, а модель эфира оказывается ненужной. Электромагнитные поля являются самостоятельными объектами, существующими наравне с материальными частицами.

Классическая электродинамика, основанная на уравнениях Максвелла, лежит в основе многочисленных приложений электро- и радиотехники, СВЧ и оптики. До настоящего времени не было обнаружено ни одного эффекта, который потребовал бы видоизменения уравнений. Они оказываются применимы и в квантовой механике, когда рассматривается движение, например, заряженных частиц во внешних электромагнитных полях. Поэтому уравнения Максвелла являются основой микроскопического описания электромагнитных свойств вещества.

Уравнения Максвелла востребованы также в астрофизике и космологии, поскольку многие планетыи звезды обладают магнитным полем. Магнитное поле определяет, в частности, свойства таких объектов, как пульсары и квазары.

На современном уровне понимания все фундаментальные частицы являются квантовыми возбуждениями («квантами») различных полей. Например, фотон — это квант электромагнитного поля, а электрон — квант спинорного поля. Поэтому полевой подход, предложенный Фарадеем и существенно развитый Максвеллом, является основой современной физики фундаментальных частиц, в том числе ее стандартной модели.

Исторически несколько раньше он сыграл важную роль в появлении квантовой механики в формулировке Шрёдингера и вообще открытии квантовых уравнений, описывающих движение частиц, в том числе и релятивистских (уравнение Клейна-Гордона, уравнение Дирака), хотя первоначально аналогия с уравнениями Максвелла здесь виделась скорее лишь в общей идее, тогда как впоследствии оказалось, что она может быть понята как более конкретная и детальная (как это описано выше).

Также полевой подход, в целом восходящий к Фарадею и Максвеллу, стал центральным в теории гравитации (включая ОТО).

Запись уравнений Максвелла и системы единиц

Запись большинства уравнений в физике не зависит от выбора системы единиц. Однако в электродинамике это не так. В зависимости от выбора системы единиц в уравнениях Максвелла возникают различные коэффициенты (константы). Международная система единиц СИ является стандартом в технике и преподавании, однако споры среди физиков о её достоинствах и недостатках по сравнению с конкурирующей симметричной гауссовой системой единиц (СГС) не утихают. Преимущество системы СГС в электродинамике состоит в том, что все поля в ней имеют одну размерность, а уравнения, по мнению многих учёных, записываются проще и естественней.

Поэтому СГС продолжает применяться в научных публикациях по электродинамике и в преподавании теоретической физики, например, в курсе теоретической физики Ландау и Лифшица . Однако для практических применений вводимые в СГС единицы измерений, многие из которых неименованы и неоднозначны, часто неудобны. Система СИ стандартизована и лучше самосогласованна, на этой системе построена вся современная метрология. Кроме того, система СИ обычно используется в курсах общей физики. В связи с этим все соотношения, если они по-разному записываются в системах СИ и СГС, далее приводятся в двух вариантах.

Дифференциальная форма

Уравнения Максвелла представляют собой в векторной записи систему из четырех уравнений, сводящуюся в компонентном представлении к восьми (два векторных уравнения содержат по три компоненты каждое плюс два скалярных) линейных дифференциальных уравнений в частных производных 1-го порядка для 12 компонент четырёх векторных функций ():

Название СГС СИ Примерное словесное выражение
Закон Гаусса Электрический заряд является источником электрической индукции.
Закон Гаусса для магнитного поля Не существуетмагнитных зарядов. [~ 1]
Закон индукции Фарадея Изменение магнитной индукции порождает вихревое электрическое поле. [~ 1]
Теорема о циркуляции магнитного поля Электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Жирным шрифтом в дальнейшем обозначаются векторные величины, курсивом — скалярные.

Введённые обозначения:

— плотность стороннего электрического заряда (в единицах СИ — Кл/м³);

— плотность электрического тока (плотность тока проводимости) (в единицах СИ — А/м²); в простейшем случае - случае тока, порождаемого одним типом носителей заряда, она выражается просто как , где — (средняя) скорость движения этих носителей в окрестности данной точки, ρ 1 - плотность заряда этого типа носителей (она в общем случае не совпадает с ρ); в общем случае это выражение надо усреднить по разным типам носителей;

— скорость света в вакууме (299 792 458 м/с);

— напряжённость электрического поля (в единицах СИ — В/м);

— напряжённость магнитного поля (в единицах СИ — А/м);

— электрическая индукция (в единицах СИ — Кл/м²);

— магнитная индукция (в единицах СИ — Тл = Вб/м² = кг.с −2 .А −1);

— дифференциальный оператор набла, при этом:

Означает ротор вектора,

Означает дивергенцию вектора.

Приведённые выше уравнения Максвелла не составляют ещё полной системы уравненийэлектромагнитного поля, поскольку они не содержат свойств среды, в которой возбужденоэлектромагнитное поле. Соотношения, связывающие величины , , , и и учитывающие индивидуальные свойства среды, называются материальными уравнениями.

Интегральная форма

При решении уравнений Максвелла распределения зарядов и токов часто считаются заданными. С учётом граничных условий и материальных уравнений это позволяет определить напряжённость электрического поля и магнитную индукцию , которые, в свою очередь, определяют силу, действующую на пробный заряд , двигающийся со скоростью .

Эта сила называется силой Лоренца :

СГС СИ

Электрическая составляющая силы направлена по электрическому полю (если ), а магнитная — перпендикулярна скорости заряда и магнитной индукции. Впервые выражение для силы, действующей на заряд в магнитном поле (электрическая компонента была известна), получил в 1889 году Хевисайд за три года до Хендрика Лоренца, который вывел выражение для этой силы в 1892 году.

В более сложных ситуациях в классической и квантовой физике в случае, когда под действием электромагнитных полей свободные заряды перемещаются и изменяют значения полей, необходимо решение самосогласованной системы из уравнений Максвелла и уравнений движения, включающих силы Лоренца. Получение точного аналитического решения такой полной системы сопряжено обычно с большими сложностями.

Размерные константы в уравнениях Максвелла

В гауссовой системе единиц СГС все поля имеют одинаковую размерность, и в уравнениях Максвелла фигурирует единственная фундаментальная константа , имеющая размерностьскорости, которая сейчас называется скоростью света (именно равенство этой константы скорости распространения света дало Максвеллу основания для гипотезы об электромагнитной природе света).

В системе единиц СИ, чтобы связать электрическую индукцию и напряжённость электрического поля в вакууме , вводится электрическая постоянная ε 0 (). Магнитная постоянная является таким же коэффициентом пропорциональности для магнитного поля в вакууме (). Названия электрическая постоянная и магнитная постоянная сейчас стандартизованы. Ранее для этих величин также использовались, соответственно, названия диэлектрическая и магнитная проницаемости вакуума.

Скорость электромагнитного излучения в вакууме (скорость света) в СИ появляется при выводеволнового уравнения:

В системе единиц СИ, в качестве точных размерных констант определены скорость света в вакууме и магнитная постоянная . Через них выражается электрическая постоянная ε 0 .

Принятые значения скорости света, электрической и магнитной постоянных приведены в таблице:

Иногда вводится величина, называемая «волновым сопротивлением», или «импедансом» вакуума:

Ом.

Приближённое значение для получается, если для скорости света принять значение м/c. В системе СГС . Эта величина имеет смысл отношения амплитуд напряжённостей электрического и магнитного полей плоской электромагнитной волны в вакууме.

Уравнения Максвелла в среде

Чтобы получить полную систему уравнений электродинамики, к системе уравнений Максвелла необходимо добавить материальные уравнения, связывающие величины , , , , , в которых учтены индивидуальные свойства среды. Способ получения материальных уравнений дают молекулярные теории поляризации, намагниченности и электропроводности среды, использующие идеализированные модели среды. Применяя к ним уравнения классической иликвантовой механики, а также методы статистической физики, можно установить связь между векторами , , с одной стороны и , с другой стороны.

Связанные заряды и токи

Слева : Совокупность микроскопических диполей в среде образуют один макроскопический дипольный момент и эквивалентны двум заряженным с противоположным знаком пластинам на границе. При этом внутри среды все заряды скомпенсированы;

Справа : Совокупность микроскопических циркулярных токов в среде эквивалентна макроскопическому току, циркулирующему вдоль границы. При этом внутри среды все токи скомпенсированы.

При приложении электрического поля кдиэлектрическому материалу каждая из его молекул превращается в микроскопическийдиполь. При этом положительные ядра атомов немного смещаются в направлении поля, а электронные оболочки в противоположном направлении. Кроме этого, молекулы некоторых веществ изначально имеют дипольный момент. Дипольные молекулы стремятся ориентироваться в направлении поля. Этот эффект называетсяполяризацией диэлектриков. Такое смещение связанных зарядов молекул в объёме эквивалентно появлению некоторого распределения зарядов на поверхности, хотя все молекулы, вовлечённые в процесс поляризации остаются нейтральными (см. рисунок).

Аналогичным образом происходит магнитная поляризация (намагнивание) в материалах, в которых составляющие их атомы и молекулы имеютмагнитные моменты, связанные со спином и орбитальным моментом ядер и электронов. Угловые моменты атомов можно представить в виде циркулярных токов. На границе материала совокупность таких микроскопических токов эквивалентна макроскопическим токам, циркулирующим вдоль поверхности, несмотря на то, что движение зарядов в отдельных магнитных диполях происходит лишь в микромасштабе (связанные токи).

Рассмотренные модели показывают, что хотя внешнее электромагнитное поле действует на отдельные атомы и молекулы, его поведение во многих случаях можно рассматривать упрощённым образом в макроскопическом масштабе, игнорируя детали микроскопической картины.

В среде сторонние электрические и магнитные поля вызывают поляризацию и намагничивание вещества, которые макроскопически описываются соответственно вектором поляризации ивектором намагниченности вещества, а вызваны появлением связанных зарядов и токов . В результате поле в среде оказывается суммой внешних полей и полей, вызванных связанными зарядами и токами.

Поэтому, выражая векторы и через , , и , можно получить математически эквивалентную систему уравнений Максвелла:

СГС СИ

Индексом здесь обозначены свободные заряды и токи. Уравнения Максвелла в такой форме являются фундаментальными, в том смысле, что они не зависят от модели электромагнитного устройства вещества. Разделение зарядов и токов на свободные и связанные позволяет «спрятать» в , , а затем в и, следовательно, в сложный микроскопический характер электромагнитного поля в среде.

Материальные уравнения

Материальные уравнения устанавливают связь между и . При этом учитываются индивидуальные свойства среды. На практике в материальных уравнениях обычно используются экспериментально определяемые коэффициенты (зависящие в общем случае от частоты электромагнитного поля), которые собраны в различных справочниках физических величин.

В слабых электромагнитных полях, сравнительно медленно меняющихся в пространстве и вовремени, в случае изотропных, неферромагнитных и несегнетоэлектрических сред справедливо приближение, в котором поляризуемость и намагниченность линейно зависят от приложенных полей:

СГС СИ

где введены безразмерные константы: — диэлектрическая восприимчивость и —магнитная восприимчивость вещества (в системе единиц СИ эти константы в раз больше, чем в гауссовой системе СГС). Соответственно, материальные уравнения для электрической и магнитной индукций записываются в следующем виде:

СГС СИ

где — относительная диэлектрическая проницаемость, — относительная магнитная проницаемость. Размерные величины ε 0 ε (в единицах СИ — Ф/м) и μ 0 μ (в единицах СИ — Гн/м), возникающие в системе СИ, называются абсолютная диэлектрическая проницаемость иабсолютная магнитная проницаемость соответственно.

В проводниках существует связь между плотностью тока и напряжённостью электрического поля, выражаемая законом Ома :

где — удельная проводимость среды (в единицах СИ — Ом −1 .м −1).

В анизотропной среде ε, и являются тензорами , и . В системе координат главных осей они могут быть описаны диагональными матрицами. В этом случае, связь между напряжённостями полей и индукциями имеют различные коэффициенты по каждой координате.

Например, в системе СИ:

Хотя для широкого класса веществ линейное приближение для слабых полей выполняется с хорошей точностью, в общем случае зависимость между и может быть нелинейной. В этом случае проницаемости среды не являются константами, а зависят от величины поля в данной точке. Кроме того, более сложная связь между и наблюдается в средах с пространственной или временной дисперсиями. В случае пространственной дисперсии токи и заряды в данной точке пространства зависят от величины поля не только в той же точке, но и в соседних точках. В случае временной дисперсии поляризация и намагниченность среды не определяются только величиной поля в данный момент времени, а зависят также от величины полей в предшествующие моменты времени. В самом общем случае нелинейных и неоднородных сред с дисперсией, материальные уравнения в системе СИ принимают интегральный вид:

Аналогичные уравнения получаются в гауссовой системе СГС (если формально положить ε 0 = 1).

Уравнения в изотропных и однородных средах без дисперсии

В изотропных и однородных средах без дисперсии уравнения Максвелла принимают следующий вид :

СГС СИ

В оптическом диапазоне частот вместо диэлектрической проницаемости ε используется показатель преломления (зависящий от длины волны), показывающий отличие скорости распространения монохроматической световой волны в среде от скорости света в вакууме. При этом в оптическом диапазоне диэлектрическая проницаемость обычно заметно меньше чем на низких частотах, а магнитная проницаемость большинства оптических сред практически равна единице. Показатель преломления большинства прозрачных материалов составляет от 1 до 2, достигая 5 у некоторых полупроводников. В вакууме и диэлектрическая, и магнитная проницаемости равны единице: ε = μ = 1.

Поскольку уравнения Максвелла в линейной среде являются линейными относительно полей и свободных зарядов и токов , справедлив принцип суперпозиции:

Если распределения зарядов и токов создают электромагнитное поле с компонентами , а другие распределения создают, соответственно, поле , то суммарное поле, создаваемое источниками , будет равно .

При распространении электромагнитных полей в линейной среде в отсутствие зарядов и токовсумма любых частных решений уравнений будет также удовлетворять уравнениям Максвелла.

Граничные условия

Во многих случаях неоднородную среду можно представить в виде совокупности кусочно-непрерывных однородных областей, разделённых бесконечно тонкими границами. При этом можно решать уравнения Максвелла в каждой области, «сшивая» на границах получающиеся решения. В частности, при рассмотрении решения в конечном объёме необходимо учитывать условия на границах объёма с окружающим бесконечным пространством. Граничные условия получаются из уравнений Максвелла предельным переходом. Для этого проще всего воспользоваться уравнениями Максвелла в интегральной форме.

Выбирая во второй паре уравнений контур интегрирования в виде прямоугольной рамки бесконечно малой высоты, пересекающей границу раздела двух сред, можно получить следующую связь между компонентами поля в двух областях, примыкающих к границе:

СГС СИ
, , , ,

где — единичный вектор нормали к поверхности, направленный из среды 1 в среду 2 и имеющий размерность, обратную длине, — плотность поверхностных свободных токов вдоль границы (то есть не включая связанных токов намагничивания, складывающихся на границе среды из микроскопических молекулярных итп токов). Первое граничное условие можно интерпретировать как непрерывность на границе областей тангенциальных компонент напряжённостей электрического поля (из второго следует, что тангенциальные компоненты напряжённости магнитного поля непрерывны только при отсутствии поверхностных токов на границе).

В электродинамике – это как законы Ньютона в классической механике или как постулаты Эйнштейна в теории относительности. Фундаментальные уравнения, в сущности которых мы сегодня будем разбираться, чтобы не впадать в ступор от одного их упоминания.

Полезная и интересная информация по другим темам – у нас в телеграм .

Уравнения Максвелла – это система уравнений в дифференциальной или интегральной форме, описывающая любые электромагнитные поля, связь между токами и электрическими зарядами в любых средах.

Неохотно принимались и критически воспринимались учеными-современниками Максвелла. Все потому, что эти уравнения не были похожи ни на что из известного людям ранее.

Тем не менее, и по сей день нет никаких сомнений в правильности уравнений Максвелла, они «работают» не только в привычном нам макромире, но и в области квантовой механики.

Уравнения Максвелла совершили настоящий переворот в восприятии людьми научной картины мира. Так, они предвосхитили открытие радиоволн и показали, что свет имеет электромагнитную природу.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

По порядку запишем и поясним все 4 уравнения. Сразу уточним, что записывать их будем в системе СИ.

Современный вид первого уравнения Максвелла таков:

Тут нужно пояснить, что такое дивергенция. Дивергенция – это дифференциальный оператор, определяющий поток какого-то поля через определенную поверхность. Уместным будет сравнение с краном или с трубой. Например, чем больше диаметр носика крана и напор в трубе, тем большим будет поток воды через поверхность, которую представляет собой носик.

В первом уравнении Максвелла E – это векторное электрическое поле, а греческая буква «ро » – суммарный заряд, заключенный внутри замкнутой поверхности.

Так вот, поток электрического поля E через любую замкнутую поверхность зависит от суммарного заряда внутри этой поверхности. Данное уравнение представляет собой закон (теорему) Гаусса .

Третье уравнение Максвелла

Сейчас мы пропустим второе уравнение, так как третье уравнение Максвелла – это тоже закон Гаусса , только уже не для электрического поля, но для магнитного.

Оно имеет вид:

Что это значит? Поток магнитного поля через замкнутую поверхность равен нулю. Если электрические заряды (положительные и отрицательные) вполне могут существовать по отдельности, порождая вокруг себя электрическое поле, то магнитных зарядов в природе просто не существует.

Второе уравнение Максвелла представляет собой ни что иное, как закон Фарадея . Его вид:

Ротор электрического поля (интеграл через замкнутую поверхность) равен скорости изменения магнитного потока, пронизывающего эту поверхность. Чтобы лучше понять, возьмем воду в ванной, которая сливается через отверстие. Вокруг отверстия образуется воронка. Ротор – это сумма (интеграл) векторов скоростей частиц воды, которые вращаются вокруг отверстия.

Как Вы помните, на основе закона Фарадея работают электродвигатели: вращающийся магнит порождает ток в катушке.

Четвертое - самое важное из всех уравнений Максвелла. Именно в нем ученый ввел понятие тока смещения .

Это уравнение еще называется теоремой о циркуляции вектора магнитной индукции. Оно говорит нам о том, что электрический ток и изменение электрического поля порождают вихревое магнитное поле.

Приведем теперь всю систему уравнений и кратко обозначим суть каждого из них:

Первое уравнение: электрический заряд порождает электрическое поле

Второе уравнение: изменяющееся магнитное поле порождает вихревое электрическое поле

Третье уравнение: магнитных зарядов не существует

Четвертое уравнение: электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Решая уравнения Максвелла для свободной электромагнитной волны, мы получим следующую картину ее распространения в пространстве:

Надеемся, эта статья поможет систематизировать знания об уравнениях Максвелла. А если понадобиться решить задачу по электродинамике с применением этих уравнений, можете смело обратиться за помощью в студенческий сервис . Подробное объяснение любого задания и отличная оценка гарантированы.

Четыре уравнения, соответствующие нашим (модифицированным) утверждениям, называются уравнениями Максвелла в интегральной форме .

Выпишем их все рядом еще раз:

Чтобы получить уравнения Максвелла в среде, надо произвести замену:

то есть указать связь (так называемые «материальные» уравнения) между напряженностями и индукциями: и и дополнить систему уравнением закона Ома

Отметим, что приведенными выше простейшими соотношениями можно пользоваться не всегда. Ситуация заметно сложнее в присутствии таких веществ как сегнетоэлектрики, пьезоэлектрики, ферромагнетики, вещества анизотропные и тому подобное. Здесь наша цель показать, как формируется полная система уравнений, позволяющая (с учетом начальных и граничных условий, разумеется) рассчитать электромагнитное поле.

От уравнений в интегральной форме можно с помощью теорем векторного анализа перейти к уравнениям в дифференциальной форме, связывающим значения полей и и их пространственных и временных производных со значениями плотностей заряда и тока. Этими уравнениями мы пользоваться не будем, но все же приведем их хотя бы как часть шутки, опубликованной в одном из журналов в дни юбилея Максвелла:

«И сказал Бог:

И стал свет».

Непонятные значки div (читается «дивергенция ») и rot (читается «ротор ») - это особые операции дифференцирования, выполняемые над векторными полями. Дивергенция - по латыни «расхождение». Эта операция описывает конфигурацию силовых линий типа «ежа», расходящихся из точек, где имеются электрические заряды. Слово «ротор» в переводе не нуждается, оно явно ассоциируется с вращением. Эта операция описывает вихревые поля (кольцеобразные - замкнутые силовые линии) вокруг их источников - токов или других полей, меняющихся во времени.

Четыре интегральных уравнения и четыре дифференциальных эквивалентны. Максвелл показал, что все явления электромагнетизма можно полностью описать этими четырьмя уравнениями, являющимися обобщением экспериментальных фактов.

В приведенной шутке упоминался свет. Действительно, свет - это электромагнитное излучение определенного диапазона частот. Предсказание электромагнитных волн стало одним из величайших достижений теории Максвелла. Представим себе, что заряды и токи отсутствуют. Посмотрим на уравнения Максвелла в дифференциальной форме. Видно, что если поля не статические, но зависят от времени, то имеется вихревое электрическое и магнитные поля (соответствующие роторы отличны от нуля). Распространение полей без зарядов и токов - это и есть электромагнитные волны. И можно углядеть в уравнениях намек на скорость их распространения: туда входит комбинация e 0 m 0 , через которую может быть выражена скорость света в вакууме (см. (6.3))

Но об этом - позже, в следующей части нашего курса.

В заключение же этой части процитируем слова Г. Герца об уравнениях Максвелла:

«Трудно избавиться от чувства, что эти математические формулы живут независимой жизнью и обладают своим собственным интеллектом, что они мудрее, чем мы сами, мудрее даже, чем их первооткрыватели, и что мы извлекаем из них больше, чем было заложено в них первоначально».

Пример использования уравнений Максвелла

Определить величину магнитного поля в зазоре конденсатора как функцию r расстояния от оси симметрии (рис. 9.13)

Рис. 9.13. Конденсатор с круглыми пластинами в процессе зарядки

Решение

Запишем уравнение (9.13) для контура, показанного на Рис. 9.3 штрихованной линией. Интегрируя, получим

Очевидно, что магнитное поле не равно нулю только благодаря наличию меняющегося со временем электрического поля. В свою очередь, изменение электрического поля обусловлено увеличением заряда на обкладках конденсатора. Эту связь получим из соотношений

Окончательно находим



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ