Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Если и некоторому телу сообщить скорость, равную первой космической скорости, то оно не упадет на Землю, а станет искусственным спутником, движущимся по околоземной круговой орбите. Напомним, что эта скорость должна быть перпендикулярна направлению к центру Земли и равна по величине
v I = √{gR} = 7,9 км/с ,
где g = 9,8 м/с 2 − ускорение свободного падения тел у поверхности Земли, R = 6,4 × 10 6 м − радиус Земли.

А может ли тело и вовсе порвать цепи тяготения, «привязывающие» его к Земле? Оказывается, может, но для этого его нужно «бросить» с еще большей скоростью. Минимальную начальную скорость, которую необходимо сообщить телу у поверхности Земли, чтобы оно преодолело земное притяжение, называют второй космической скоростью. Найдем ее значение v II .
 При удалении тела от Земли сила притяжения совершает отрицательную работу, в результате чего кинетическая энергия тела уменьшается. Одновременно с этим уменьшается и сила притяжения. Если кинетическая энергия упадет до нуля до того, как станет равной нулю сила притяжения, тело вернется обратно на Землю. Чтобы этого не произошло, нужно, чтобы кинетическая энергия сохранялась отличной от нуля до тех пор, пока сила притяжения не обратится в нуль. А это может произойти лишь на бесконечно большом расстоянии от Земли.
 Согласно теореме о кинетической энергии, изменение кинетической энергии тела равно работе действующей на тело силы. Для нашего случая можно записать:
0 − mv II 2 /2 = A ,
или
mv II 2 /2 = −A ,
где m − масса брошенного с Земли тела, A − работа силы притяжения.
 Таким образом, для вычисления второй космической скорости нужно найти работу силы притяжения тела к Земле при удалении тела от поверхности Земли на бесконечно большое расстояние. Как это ни удиви-тельно, но работа эта вовсе не бесконечно большая, несмотря на то, что перемещение тела как будто бы бесконечно велико. Причина тому − уменьшение силы притяжения по мере удаления тела от Земли. Чему же равна работа силы притяжения?
 Воспользуемся той особенностью, что работа силы тяготения не зависит от формы траектории движения тела, и рассмотрим самый простой случай − тело удаляется от Земли по линии, проходящей через центр Земли. На приведенном здесь рисунке изображен Земной шар и тело массой m , которое движется вдоль направления, указанного стрелкой.

 Найдем сначала работу А 1 , которую совершает сила притяжения на очень малом участке от произвольной точки N до точки N 1 . Расстояния этих точек до центра Земли обозначим через r и r 1 , соответственно, так что работа А 1 будет равна
A 1 = −F(r 1 − r) = F(r − r 1) .
Но какое значение силы F следует подставить в эту формулу? Ведь оно изменяется от точки к точке: в N оно равно GmM/r 2 (М − масса Земли), в точке N 1 GmM/r 1 2 .
 Очевидно, нужно взять среднее значение этой силы. Так как расстояния r и r 1 , мало отличаются друг от друга, то в качестве среднего можно взять значение силы в некоторой средней точке, например такой, что
r cp 2 = rr 1 .
Тогда получаем
A 1 = GmM(r − r 1)/(rr 1) = GmM(1/r 1 − 1/r) .
 Рассуждая таким же образом, найдем, что на участке N 1 N 2 совершается работа
A 2 = GmM(1/r 2 − 1/r 1) ,
на участке N 2 N 3 работа равна
A 3 = GmM(1/r 3 − 1/r 2) ,
а на участке NN 3 работа равна
A 1 + A 2 + A 2 = GmM(1/r 3 − 1/r) .
 Закономерность ясна: работа силы притяжения при перемещении тела от одной точки к другой определяется разностью обратных расстояний от этих точек до центра Земли. Теперь нетрудно найти и всю работу А при перемещении тела от поверхности Земли (r = R ) на бесконечно большое расстояние (r → ∞ , 1/r = 0 ):
A = GmM(0 − 1/R) = −GmM/R .
 Как видно, эта работа и в самом деле не бесконечно велика.
 Подставив полученное выражение для А в формулу
mv II 2 /2 = −GmM/R ,
найдем значение второй космической скорости:
v II = √{−2A/m} = √{2GM/R} = √{2gR} = 11,2 км/с .
 Отсюда видно, что вторая космическая скорость в √{2} раз больше первой космической скорости:
v II = √{2}v I .
 В проведенных расчетах мы не принимали во внимание то, что наше тело взаимодействует не только с Землей, но и с другими космическими объектами. И в первую очередь − с Солнцем. Получив начальную скорость, равную v II , тело сумеет преодолеть тяготение к Земле, но не станет истинно свободным, а превратится в спутник Солнца. Однако если телу у поверхности Земли сообщить так называемую третью космическую скорость v III = 16,6 км/с , то оно сумеет преодолеть и силу притяжения к Солнцу.
 Смотрите пример

Втора́я косми́ческая ско́рость (параболи́ческая ско́рость, ско́рость освобожде́ния, ско́рость убега́ния) - наименьшая скорость , которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела и покидания замкнутой орбиты вокруг него. Предполагается, что после приобретения телом этой скорости оно более не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с .

Параболической вторая космическая скорость называется потому, что тела, имеющие при старте скорость, в точности равную второй космической, движутся по параболе относительно небесного тела. Однако, если энергии телу придано чуть больше, его траектория перестает быть параболой и становится гиперболой. Если чуть меньше, то она превращается в эллипс . В общем случае все они являются коническими сечениями .

Если тело запущено вертикально вверх со второй космической и более высокой скоростью, оно никогда не остановится и не начнёт падать обратно.

Эту же скорость приобретает у поверхности небесного тела любое космическое тело, которое на бесконечно большом расстоянии покоилось, а затем стало падать.

Вторая космическая скорость впервые была достигнута коcмическим аппаратом СССР 2 января 1959 года (Луна-1).

Вычисление

Для получения формулы второй космической скорости удобно обратить задачу - спросить, какую скорость получит тело на поверхности планеты , если будет падать на неё из бесконечности . Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

m v 2 2 2 − G m M R = 0 , {\displaystyle {\frac {mv_{2}^{2}}{2}}-G{\frac {mM}{R}}=0,} R = h + r {\displaystyle R=h+r}

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния - энергия равна нулю). Здесь m - масса пробного тела, M - масса планеты, r - радиус планеты, h - длина от основания тела до его центра масс (высота над поверхностью планеты), G - гравитационная постоянная , v 2 - вторая космическая скорость.

Решая это уравнение относительно v 2 , получим

v 2 = 2 G M R . {\displaystyle v_{2}={\sqrt {2G{\frac {M}{R}}}}.}

Между первой и второй космическими скоростями существует простое соотношение:

v 2 = 2 v 1 . {\displaystyle v_{2}={\sqrt {2}}v_{1}.}

Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке (например, на поверхности небесного тела):

v 2 2 = − 2 Φ = 2 G M R . {\displaystyle v_{2}^{2}=-2\Phi =2{\frac {GM}{R}}.} Подробности Категория: Человек и небо Опубликовано 11.07.2014 12:37 Просмотров: 9512

Человечество давно стремилось в космос. Но как оторваться от Земли? Что мешало человеку взлететь к звёздам?

Как мы уже знаем, мешало этому земное притяжение, или гравитационная сила Земли - главное препятствие для космических полётов.

Земное притяжение

Все физические тела, находящиеся на Земле, подчиняются действию закона всемирного тяготения . Согласно этому закону все они притягивают друг друга, то есть действуют друг на друга с силой, которая называется гравитационной силой, или силой тяготения .

Величина этой силы прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Так как масса Земли очень велика и значительно превышает массу любого материального тела, находящегося на её поверхности, то сила тяготения Земли значительно больше сил тяготения всех других тел. Можно сказать, что по сравнению с силой тяготения Земли они вообще незаметны.

Земля притягивает к себе абсолютно всё. Какой бы предмет мы ни бросили вверх, под действием силы тяготения он обязательно вернётся на Землю. Вниз падают капли дождя, вода стекает с гор, осыпается листва с деревьев. Любой предмет, который мы уронили, также падает на пол, а не на потолок.

Главное препятствие для полётов в космос

Земное тяготение не даёт возможности летательным аппаратам покинуть Землю. И преодолеть его нелегко. Но человек научился это делать.

Понаблюдаем за мячом, лежащим на столе. Если он скатится со стола, то сила притяжения Земли заставит его упасть на пол. Но если мы возьмём мяч и с силой бросим вдаль, то упадёт он не сразу, а спустя некоторое время, описав траекторию в воздухе. Почему же он смог преодолеть земное притяжение хотя бы на короткое время?

А произошло вот что. Мы приложили к нему силу, тем самым сообщив ускорение, и мяч начал двигаться. И чем большее ускорение получит мяч, тем выше будет его скорость и тем дальше и выше он сможет улететь.

Представим себе установленную на вершине горы пушку, из которой выпущен снаряд А с большой скоростью. Такой снаряд способен пролететь несколько километров. Но, в конце концов, снаряд всё равно упадёт на землю. Его траектория под действием земного притяжения имеет изогнутый вид. Снаряд В вылетает из пушки с большей скоростью. Траектория его полёта более вытянутая, а сам он приземлится намного дальше. Чем большую скорость получает снаряд, тем прямее становится его траектория и тем большее расстояние он пролетает. И, наконец, при определённой скорости траектория снаряда С приобретает форму замкнутой окружности. Снаряд делает один круг вокруг Земли, другой, третий и уже не падает на Землю. Он становится искусственным спутником Земли.

Конечно, пушечные снаряды в космос никто не отправляет. А вот космические аппараты, получившие определённую скорость, спутниками Земли становятся.

Первая космическая скорость

Какую же скорость должен получить космический аппарат, чтобы преодолеть земное притяжение?

Минимальная скорость, которую нужно сообщить объекту, чтобы вывести его на околоземную круговую (геоцентрическую) орбиту, называется первой космической скоростью .

Вычислим значение этой скорости относительно Земли.

На тело, находящееся на орбите, действует сила тяготения, направленная к центру Земли. Она же является центростремительной силой, пытающейся притянуть это тело к Земле. Но тело на Землю не падает, так как действие этой силы уравновешивается другой силой – центробежной, которая пытается вытолкнуть его. Приравнивая формулы этих сил, вычислим первую космическую скорость.

где m – масса объекта, находящегося на орбите;

M – масса Земли;

v 1 – первая космическая скорость;

R – радиус Земли

G – гравитационная постоянная.

M = 5,97·10 24 кг, R = 6 371 км. Следовательно, v 1 ≈ 7,9 км/с

Значение первой земной космической скорости зависит от радиуса и массы Земли и не зависит от массы тела, выводимого на орбиту.

По этой формуле можно вычислить первые космические скорости и для любой другой планеты. Конечно, они отличаются от первой космической скорости Земли, так как небесные тела имеют различные радиусы и массы. К примеру, первая космическая скорость для Луны равна 1680 км/с.

На орбиту искусственный спутник Земли выводит космическая ракета, разгоняющаяся до первой космической скорости и выше и преодолевающая земное притяжение.

Начало космической эры

Первая космическая скорость была достигнута в СССР 4 октября 1957 г. В этот день земляне услышали позывные первого искусственного спутника Земли. Он был запущен на орбиту с помощью космической ракеты, созданной в СССР. Это был металлический шар с усиками-антеннами, весивший всего 83,6 кг. А сама ракета обладала огромной для того времени мощностью. Ведь для того чтобы вывести на орбиту всего 1 дополнительный килограмм веса, вес самой ракеты должен был увеличиться на 250-300 кг. Но усовершенствование конструкций ракеты, двигателей и систем управления позволило вскоре отправить на земную орбиту гораздо более тяжёлые космические аппараты.

Второй космический спутник, запущенный в СССР 3 ноября 1957 г., весил уже 500 кг. На его борту была сложная научная аппаратура и первое живое существо – собака Лайка.

В истории человечества началась космическая эра.

Вторая космическая скорость

Под действием земного притяжения спутник будет двигаться над планетой по круговой орбите горизонтально. Он не упадёт на поверхность Земли, но и не перейдёт на другую, более высокую орбиту. А чтобы он смог это сделать, ему нужно придать другую скорость, которая называется второй космической скоростью . Эту скорость называют параболической , скоростью убегания , скоростью освобождения . Получив такую скорость, тело перестанет быть спутником Земли, покинет её окрестности и станет спутником Солнца.

Если скорость тела при старте с поверхности Земли выше первой космической скорости, но ниже второй, его околоземная орбита будет иметь форму эллипса. А само тело останется на околоземной орбите.

Тело, получившее при старте с Земли скорость, равную второй космической скорости, будет двигаться по траектории, имеющей форму параболы. Но если эта скорость даже немного превысит значение второй космической скорости, его траектория станет гиперболой.

Вторая космическая скорость, как и первая, для разных небесных тел имеет разное значение, так как зависит от массы и радиуса этого тела.

Вычисляется она по формуле:

Между первой и второй космической скорость сохраняется соотношение

Для Земли вторая космическая скорость равна 11,2 км/с.

Впервые ракета, преодолевшая земное притяжение, стартовала 2 января 1959 г. в СССР. Через 34 часа полёта она пересекла орбиту Луны и вышла в межпланетное пространство.

Вторая космическая ракета в сторону Луны была запущена 12 сентября 1959 г. Затем были ракеты, которые достигли поверхности Луны и даже осуществили мягкую посадку.

Впоследствии космические аппараты отправились и к другим планетам.

Министерство образования и науки РФ

Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет экономики и финансов»

Кафедра систем технологий и товароведения

Доклад по курсу концепции современного естествознания на тему «Космические скорости»

Выполнила:

Проверил:

г. Санкт-Петербург

Космические скорости.

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) - это минимальная скорость, при которой какое-либо тело в свободном движении сможет:

v1 - стать спутником небесного тела (то есть способность вращаться по орбите вокруг НТ и не падать на поверхность НТ).

v2 - преодолеть гравитационное притяжение небесного тела.

v3 - покинуть Солнечную систему, преодолев притяжение Солнца.

v4 - покинуть галактику Млечный Путь.

Первая космическая скорость или Круговая скорость V1 - скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты. Иными словами, первая космическая скорость - это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Для вычисления первой космической скорости необходимо рассмотреть равенство центробежной силы и силы тяготения действующих на объект на круговой орбите.

где m - масса объекта, M - масса планеты, G - гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), - первая космическая скорость, R - радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения - так как g = GM/R², то

Вторая космическая скорость (параболическая скорость, скорость убегания) - наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела. Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Вывод формулы:

Для получения формулы второй космической скорости удобно обратить задачу - спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

Запишем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния - энергия равна нулю). Здесь m - масса пробного тела, M - масса планеты, R - радиус планеты, G - гравитационная постоянная, v2 - вторая космическая скорость.

Разрешая относительно v2, получим

Между первой и второй космическими скоростями существует простое соотношение:

Третья космическая скорость - минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы в межзвёздное пространство.

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с. Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу (скорость убывает к нулю асимптотически).

Четвёртая космическая скорость - минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы (для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра). По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное - скрытая масса.

Вторая “земная” космическая скорость – это скорость, которую необходимо сообщить телу относительно Земли, чтобы оно преодолело поле земного тяготения, т.е. оказалось способным удалиться от Земли на бесконечно большое расстояние.

Пренебрегая действием на тело Солнца, Луны, планет, звёзд и т.д. и полагая, что в системе Земля - тело отсутствуют неконсервативные силы (а таковые в действительности имеются - это силы сопротивления атмосферы), мы можем считать эту систему замкнутой и консервативной. В такой системе полная механическая энергия есть величина постоянная.

Если нулевой уровень потенциальной энергии выбрать в бесконечности, то полная механическая энергия тела в любой точке траектории будет равна нулю (по мере удаления тела от Земли кинетическая энергия, сообщенная ему на старте, будет превращаться в потенциальную. В бесконечности, где потенциальная энергия тела равна нулю,

обратится в нуль и кинетическая энергия E к =0. Следовательно, полная энергия E = E п + E к . = 0.)

Приравняв полную энергию тела на старте (на поверхности Земли) и в бесконечности, мы можем вычислить вторую космическую скорость. На старте тело обладает положительной кинетической энергией
иотрицательной потенциальной энергией
,m - масса тела; M з - масса Земли; II - скорость тела на старте (искомая космическая скорость);R з - радиус Земли (предполагаем, что необходимую космическую скорость тело приобретает в непосредственной близости от поверхности Земли).

Полная энергия тела
(12.16)

откуда
(12.17)

Массу Земли можно выразить через ускорение свободного падения g 0 (вблизи поверхности Земли):
.

Подставив это выражение в (12.17), получим окончательно

(12.18)

так как
есть первая космическая скорость.

V. Условия равновесия механической системы.

    Пусть на некоторое тело действуют только консервативная сила. Это значит, что данное тело вместе с телами, с которыми оно взаимодействует, образует замкнутую консервативную систему . Выясним,

при каких условиях рассматриваемое тело будет находиться в состоянии равновесия (сформулируем эти условия с энергетической точки зрения).

    Условия равновесия с точки зрения динамики нам известны: тело находится в равновесии, если его скорость и геометрическая сумма всех действующих на него сил равны нулю:

(12.19)

(12.20)

Пусть консервативная сила, действующая на тело, такова, что потенциальная энергия тела зависит только от одной координаты, например, x . График этой зависимости приведён на рисунке 23. Из связи потенциальной энергии с силой следует, что в состоянии равновесия

производная от потенциальной энергии по x равна нулю.

(12.21)

т.е. в состоянии равновесия тело обладает экстремальным запасом потенциальной энергии. Убедимся в том, что потенциальная энергия в состоянии устойчивого равновесия минимальная , а в состоянии неустойчивого равновесия – максимальная .

3. Устойчивое равновесие системы характеризуется тем, что при отклонении системы из этого состояния возникают силы, возвращающие систему в первоначальное состояние.

При отклонении из состояния неустойчивого равновесия возникают силы, стремящиеся отклонить систему ещёдальше от первоначального положения. Отклоним тело из положения A влево (см. рис.23). При этом появится сила , проекция которой на осьx равна:

(12.22)

Производная
в точке отрицательна (угол
- тупой). Из (12.22) следует, >0; направление силы совпадает с направлением оси x , т.е. сила направления к положению равновесия A . Тело самопроизвольно, без дополнительного воздействия вернётся в положение равновесия. Следовательно, состояние A – состояние устойчивого равновесия. Но в этом состоянии, как видно из графика, потенциальная энергия минимальна.

4. Отклоним тело из положения B также влево. Проекция силы
на осьx :

получается отрицательной (
>0, так как угол
острый).

Это значит, что направление силы
противоположно положительному направлению оси x , т.е. сила
направленаот положения равновесия. Состояние B , в котором потенциальная энергия максимальна, неустойчиво.

Таким образом, в состоянии устойчивого равновесия потенциальная энергия системы минимальна , в состоянии неустойчивого равновесия – максимальна.

Если известно, что потенциальная энергия некоторой системы минимальна, то это ещё не значит, что система находится в равновесии. Необходимо ещё, чтобы в этом состоянии система не обладала кинетической энергией:
(12.23)

Итак, система находится в состоянии устойчивого равновесия, если E к =0, а E п минимальна. Если E к =0, а E п максимальна, то система находится в неустойчивом равновесии.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота обращения
Момент инерции тела человека относительно оси вращения
В вытянутых в стороны руках человек держит две гири массой
каждая. Расстояние между гирями

Сколько оборотов в секунду будет делать скамейка с человеком, если он опустит руки и расстояние между гирями станет равным
Моментом инерции скамейки пренебречь.

Решение. Человек, держащий гири (см. рис.24), составляет вместе со скамейкой изолированную механическую систему, поэтому момент импульса
этой системы должен иметь постоянное значение.

Следовательно, для нашего случая

где и- момент инерции человека и угловая скорость скамейки и человека с вытянутыми руками.и
- момент инерции тела человека и угловая скорость скамейки и человека с опущенными руками. Отсюда
, заменив угловую скорость через частоту(
), получим

Момент инерции системы, рассматриваемой в данной задаче, равен сумме момента инерции тела человека и момента инерции гирь в руках человека, который можно определить по формуле момента инерции материальной точки

Следовательно,

где
масса каждой из гирь,и
первоначальное и конечное расстояние между ними. С учетом сделанных замечаний имеем


Подставляя численные значения величин, найдем

Пример 2. Стержень длиной
и массой
может вращаться вокруг неподвижной оси, проходящей через верхний конец стержня (см. рис.25). В середину стержня ударяет пуля массой
, летящая в горизонтальном направлении со скоростью
, и застревает в стержне.

На какой уголотклонится стержень после удара?

Решение. Удар пули следует рассматривать как неупругий: после удара и пуля, и соответствующая точка стержня будут двигаться с одинаковыми скоростями.

Сначала пуля, ударившись о стержень, за ничтожно малый промежуток времени приводит его в движение с некоторой угловой скоростью и сообщает ему некоторую кинетческую энергию
где
момент инерции стержня относительно оси вращения. Затем стержень поворачивается на некоторый угол, причем его центр тяжести поднимается на некоторую высоту
.

В отклоненном положении стержень будет обладать потенциальной энергией

Потенциальная энергия получена за счет кинетической энергии и равна ей по закону сохранения энергии, т.е.

, откуда

Для определения угловой скорости воспользуемся законом сохранения момента импульса.

В начальный момент удара угловая скорость стержня
и поэтому момент импульса стержня
Пуля коснулась стержня, имея линейную скорость, и начала углубляться в стержень, сообщая ему угловое ускорение и участвуя во вращении стержня около оси.

Начальный импульс пули
где
расстояние точки попадания пули от оси вращения.

В конечный момент удара стержень имел угловую скорость , а пуля – линейную скоростьравную линейной скорости точек стержня, находящихся на расстоянииот оси вращения.

Так как
, то конечный момент импульса пули

Применив закон сохранения момента импульса, можно записать

Подставив числовые значения, получим

После этого находим


ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

    Какая система тел называется замкнутой?

2. Какая система взаимодействующих тел называется консервативной?

    При каких условиях сохраняется импульс отдельного тела?

    Сформулируйте закон сохранения импульса для системы тел.

    Сформулируйте закон сохранения момента импульса (для отдельного тела и системы тел).

    Сформулируйте закон сохранения механической энергии.

    Какие системы называются диссипативными?

    Что называется столкновением тел?

    Какое столкновение называется абсолютно неупругим и какое абсолютно упругим?

10.Какие законы выполняются при абсолютно неупругом и абсолютно упругом столкновениях тел, образующих замкнутую систему?

11.Что такое вторая космическая скорость? Выведите формулу для этой скорости.

    Сформулируйте условия равновесия механической системы.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ