Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Основные уравнения классической электродинамики (система уравнений Максвелла) по праву являются общепризнанными уравнениями и широко применяются в физике, радиофизике и электронике. Однако эти уравнения не были получены из общих физических законов, что не позволяло считать их абсолютно точными, допускало различного рода манипуляции с ними. Тем не менее, эти уравнения точные и выводятся из общих принципов физики и основ векторной алгебры .

1. Вывод закона электромагнитной индукции Фарадея

Закон электромагнитной индукции Фарадея можно получить из уравнения для электромагнитных сил, действующих на точечный электрический заряд :

Такая ситуация возникает в проводнике с электрическим током высокой частоты, когда сила, действующая на электрон со стороны первичного электрического поля изменяется настолько быстро, что оказывается в противофазе с силой инерции электронов.

Сократим заряд в равенстве (2) и применим к обеим частям этого равенства операцию «ротор»:

. (3)

Пусть, например, ось z совпадает с направлением аксиального вектора B , тогда радиус-вектор будет иметь вид: r =xi +yj , где i и j – единичные векторы в направлениях осей координат x и y , соответственно. Радиальный векторr не имеет третьей составляющей вдоль оси z , поэтому второе слагаемое в (3) равно –2(∂B /∂t). Первое же слагаемое в уравнении (3) равно ∂B /∂t. В результате, после преобразования правой части последнего равенства, получаем:

. (4)

То есть из электромагнитного силового уравнения (1) в том случае, когда сила, действующая на электрон со стороны магнитного поля, полностью уравновешивается силой со стороны электрического поля, следует закон электромагнитной индукции Фарадея (4), − одно из основных уравнений электродинамики.

Уравнения (2) – (4) не зависят от того, имеется или отсутствует электрон в данной точке пространства. В результате такой независимости электрического и магнитного полей от электрического заряда уравнение (4) отражает пространственно-временные свойства самих изменяющихся полей, представимых в виде единого электромагнитного поля. При этом закон Фарадея (4) не только представляет собой закон электромагнитной индукции, но является и основным законом взаимного преобразования электрического и магнитного полей, − неотъемлемым свойством электромагнитного поля.

2. Вывод уравнения Максвелла

Прежде, чем приступить к выводу уравнения Максвелла, необходимо дополнить векторную алгебру еще одним векторным оператором.

2.1. Определение векторного оператора, выполняющего действие, обратное векторному преобразованию дифференциального векторного оператора «ротор»

Дифференциальный векторный оператор «ротор» выполняет операцию преобразования векторов в пространстве и операцию дифференцирования, то есть является сложным оператором, осуществляющим сразу два вида действий. Это прямо следует из его определения :

,

где а – вектор, i , j , k – единичные векторы в направлении осей прямоугольной (декартовой) системы координат x , y и z , соответственно. При этом оператор, обратный оператору «ротор», в векторном анализе не определен, хотя каждое из выполняемых им преобразований, в принципе, обратимо.

Геометрическая иллюстрация пространственного преобразования вектора а в вектор rot(a ) , осуществляемая оператором «ротор», показана на Рис. 1.


Рис. 1. Геометрическое представление вектора а и векторного поля, образованного оператором «ротор».

2.2. Определение 1. Если два взаимосвязанных векторных поля, представленные векторами а и b , имеют производные по пространственным переменным x , y , z (в виде rota и rotb )и производные по времени, ¶ а t и ¶ b t , причем производная вектора а по времени ортогональна производным по пространственным переменным вектора b , и наоборот, производная по времени вектора b ортогональна производным по пространственным переменным вектораа , то существует векторный оператор, осуществляющий пространственное преобразование векторного поля, не затрагивающее операцию дифференцирования, который условно назовем оператором «rerot », (противоположно закрученный или «реверсивный ротор») такой, что:

и ; (5)

и . (5*)

2.3. Свойства векторного оператора «реверсивный ротор»

2.3.1. Векторный оператор «реверсивный ротор» действует только на производные вектора.

2.3.2. Векторный оператор «реверсивный ротор» располагается перед производной вектора, на которую он действует.

2.3.3. Константы и числовые коэффициенты при производных вектора могут быть вынесены за пределы действия векторных операторов:

где c - константа.

2.3.4. Векторный оператор «реверсивный ротор» действует на каждое из слагаемых уравнения, содержащего сумму векторных производных:

где c и d - константы.

2.3.5. Результат действия векторного оператора «реверсивный ротор» на ноль есть ноль:

При этом результат действия векторного оператора «реверсивный ротор» на другие константы, в том числе на вектор, согласно пункту 2.3.1, не определен.

2.4. Пример применения оператора «реверсивный ротор»

Применим оператор «реверсивный ротор» к уравнению, содержащему взаимосвязанные векторы a и b :

Если теперь еще раз применить оператор «реверсивный ротор» к вновь образованному равенству (**), то получим:

или

, или окончательно:

. ((*))

Последовательное двойное (или любое четное) применение оператора «реверсивный ротор» приводит к исходному равенству. Этим самым векторный оператор «реверсивный ротор» осуществляет не только взаимное преобразование дифференциальных уравнений взаимосвязанных векторных полей, но и устанавливает эквивалентность этих уравнений.

Геометрически это выглядит так. Оператор «ротор» дифференцирует и как бы закручивает прямолинейное векторное поле, делая его вихревым и ортогональным исходному векторному полю. Векторный оператор «реверсивный ротор» выполняет векторное преобразование, которое как бы раскручивает вихревое поле, закрученное оператором «ротор», превращая его в изменяющееся невихревое поле, представленное производной вектора по времени. Поскольку интегрирование не производится, производная вектора по времени соответствует изменению величины вектора. В результате имеем изменение вектора, величина которого изменяется в единственном направлении, ортогональном пространственным переменным оператора «ротор». И наоборот, векторный оператор «реверсивный ротор» закручивает невихревое изменяющееся векторное поле, представленное производной вектора по времени, превращая его в вихревое пространственное векторное поле, ортогональное исходной производной вектора по времени. Так как направление «кручения» оператора «реверсивный ротор» противоположно направлению вращения, осуществляемому оператором «ротор», то знак вновь образованного вихревого поля выбирается противоположным (отрицательным). То есть векторный оператор «реверсивный ротор» выполняет действие, обратное пространственному преобразованию оператора «ротор» на всем «пространстве» производных векторных полей. В то же время векторный оператор «реверсивный ротор» сам не дифференцирует вектор, на производную которого он действует. Этим самым осуществляется тождественное обратимое векторное преобразование.

Если ввести в векторный анализ интегральный векторный оператор, восстанавливающий не производную вектора, а сам вектор из ротора вектора (условно назовем такой оператор обратным ротором, или «rot -1 »), то такой оператор наряду с обратным векторным преобразованием одновременно должен производить операцию интегрирования.

Однако, в силу неоднозначности математической операции интегрирования, полностью обратный «ротору» оператор rot -1 не осуществляет однозначное обратное векторное преобразование.

2.5. Применение векторного оператора «реверсивный ротор» к физическим полям

При применении векторного оператора «реверсивный ротор» к физическим векторным полям необходимо учитывать изменение размерности правой и левой частей уравнения из-за перестановки переменных x , y , z и t при преобразовании. Обозначим размерность координат – метр (L ), а времени – секунда (T ).

Определение 2. Для физических векторных полей векторный оператор «реверсивный ротор», определяется следующим образом:

и ; (6)

и . (6*)

Обозначая размерное отношение L/T , как константу v , имеющую размерность скорости, [м/с], уравнения (6.4) и (6.4*) можно представить в виде:

и ; (7)
и . (7*)

2.6. Применение оператора «реверсивный ротор» к физическим полям

Применим векторный оператор «реверсивный ротор», определенный уравнениями (7), (7*), к уравнению (4), связывающему реальные физические поля E и B в электродинамике:

;

, что преобразуется к виду:

(8)
>.

Электродинамическая постоянная «v » не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия, 2.99792458Ч 10 8 м/c, которая называется также скоростью света в вакууме.

То есть с помощью векторного преобразования «реверсивный ротор» из уравнения (4), представляющего собой закон электромагнитной индукции Фарадея, естественным образом вытекает одно из основных уравнений электродинамики - уравнение Максвелла (8), которое не следует ни из эксперимента, ни из известных физических законов. Уравнения (4) и (8) являются взаимосвязанными, трансформируемыми друг в друга при помощи векторного преобразования, что соответствует их физической эквивалентности. Поэтому справедливость одного из этих уравнений, установленная в виде физического закона (в данном случае - это закон электромагнитной индукции Фарадея (4)) является достаточным условием для утверждения о справедливости второго уравнения (уравнения Максвелла (8)) в качестве эквивалентного физического закона.

2.7. Трансформация векторных полей

Если исходить из определения оператора «ротор», то действие векторного оператора «обратный ротор», казалось бы, можно представить в виде, показанном на Рис. 2, где предполагается некоторая тождественность векторных полей до и после векторного преобразования дифференциальным векторным оператором «ротор».

Проверим это предположение. Применим оператор «реверсивный ротор» к уравнению:

, откуда следует:

Полученное равенство изменяет направление векторов в исходном определении дифференциального векторного оператора «ротор», что недопустимо.

Поэтому .

Применение векторного оператора «реверсивный ротор» к производным одного и того же векторного поля показывает принципиальное различие между векторным полем до применения, и векторным полем после применения оператора «ротор». Это означает необходимость представлять поле вектора а и поле вектора rot(а ) как трансформируемые друг в друга, но различные векторные поля.

Исходное векторное поле, представленное вектором а , будем считать первичным (причиной), а поле, образованное векторным преобразованием оператора «ротор», будем считать вторичным полем (следствием действия оператора «ротор») и обозначим его, как поле векторов b .


Рис. 2. Результат отождествления векторных полей до и после векторного преобразования «ротор». Направление полей не соответствует исходному определению оператора «ротор», показанному на Рис. 1, — «правый винт» превращается в «левый винт».

Тогда обратное преобразование векторных полей, не затрагивающее операции дифференцирования, во введенных таким образом обозначениях будет иметь вид, показанный на Рис. 3.


Рис. 3. Определение векторного преобразования, обратного операции «ротор», не затрагивающего операции дифференцирования. Разделение векторных полей выполнено по признаку причинно-следственных отношений. Исходное поле представлено вектором а (причина), а поле, образованное операцией «ротор», представлено вектором b (следствие).

В электродинамике в некоторых простейших случаях переход к вращающейся системе отсчета, внутри которой исчезает вращение, приводит к отсутствию сил со стороны магнитного поля, и силовое воздействие может быть представлено только силой со стороны электрического поля. Но из этого никак не следует вывод, что магнитного поля нет или оно всегда может быть заменено электрическим полем. Частный случай векторного поля, взятого в отдельной изолированной системе отсчета, относится только к данной выбранной системе, в которой осуществляется ограниченное по степеням свободы движение электрического заряда.

Поскольку в пространстве существуют и прямолинейные векторные поля, и вращающиеся замкнутые векторные поля, а находиться в двух системах отсчета одновременно невозможно, то в общем случае выбором системы координат нельзя свести одно поле к другому. Источник этих полей один – это электрические заряды. Электрические заряды создают вокруг себя электрическое поле (всесторонне направленное векторное поле), а движение электрических зарядов создает магнитное поле (замкнутое круговое векторное поле). При этом, естественно, прямолинейное движение электрических зарядов создает вокруг них круговое магнитное поле, а круговое движение электрических зарядов (равно как вращение электрически заряженных частиц вокруг собственной оси) создает прямолинейное в пространстве магнитное поле, заключенное в объеме, ограниченном радиусом вращения.

2.8. Скорость распространения электромагнитного взаимодействия

Скорость преобразования векторных полей друг в друга не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия в свободном пространстве (вакууме), 2.99792458Ч 10 8 м/c, и эта величина по праву называется электродинамической постоянной.

Таким образом, изменение электрического и магнитного полей, осуществляемое в трехмерном пространстве, имеет свойство взаимного преобразования векторов, и это свойство в электродинамике осуществляется посредством закона электромагнитной индукции Фарадея. Если считать такое преобразование прямым, то обратное преобразование векторных полей осуществляется при помощи уравнения, полученного Максвеллом интуитивным путем, и которое можно получить при помощи векторного оператора «реверсивный ротор». Взаимное преобразование электрического и магнитного полей, которое осуществляется без источников электрического заряда, представляет собой один из особых видов волнового движения - поперечную электромагнитную волну, которая переносит электромагнитную энергию в свободном пространстве с абсолютной скоростью преобразования полей. Но при этом источником энергии электромагнитной волны всегда являются ускоренно движущиеся электрические заряды.

3. Уравнения источников электромагнитных полей.

Оставшиеся два из четырех основных уравнений системы уравнений Максвелла лишь устанавливают факт наличия в природе электрических зарядов, создающих электрическое поле (теорема Гаусса, которая прямо следует из закона Кулона):

и факт отсутствия в природе магнитных зарядов:

Литература

  1. Сокол-Кутыловский О.Л. Гравитационные и электромагнитные силы. Екатеринбург, 2005.
  2. Сокол-Кутыловский О.Л. Русская физика. Екатеринбург, 2006.
  3. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗОВ (под редакцией Г. Гроше и В. Циглера), М., «Наука», 1980.

Сокол-Кутыловский О.Л., Вывод основных уравнений электродинамики // «Академия Тринитаризма», М., Эл № 77-6567, публ.13648, 11.08.2006


Распространение электромагнитного поля в пространстве - это волновой процесс, описание которого можно получить из уравнений Максвелла. Уравнения Максвелла описывают свойства электромагнитных волн в наиболее общем случае, но их непосредственное использование не всегда удобно. Поэтому для случая линейных и однородных сред можно получить более простые волновые уравнения, из которых следуют все законы геометрической оптики.

1.3.1. Волновые уравнения

В оптике часто рассматривают изменение электрического и магнитного полей независимо друг от друга, и тогда векторный характер поля не является существенным, а электромагнитное поле можно рассматривать и описывать как скалярное (подобно звуковому полю). Скалярная теория значительно проще векторной, и вместе с тем дает возможность достаточно глубоко анализировать распространение световых пучков и процессы образования изображения в оптических системах. В геометрической оптике скалярная теория широко используется именно благодаря тому, что электрическое и магнитное поля в этом случае могут быть описаны независимо друг от друга, а волновые уравнения одинаковы для векторного и скалярного полей.

Рассмотрим вывод волновых уравнений непосредственно из уравнений Максвелла. Возьмем уравнение для ротора электрического поля, определяемого через производную по времени от магнитной индукции:

Векторно домножим это уравнение на :

Учитывая, что (1.5), получим:

Так как дивергенция электрического поля в диэлектрической среде , то в однородной среде , что следует из уравнений Максвелла (4, 5). Тогда получим волновое уравнение для электрической составляющей поля:

(1.3.1)
или

Поскольку , одно векторное уравнение распадается на три скалярных уравнения:

Рассуждая аналогичным образом, можно получить волновое уравнение для магнитной составляющей поля:

(1.3.3)

Поскольку , то это векторное уравнение также распадается на три скалярных уравнения:

Из уравнений Максвелла следует, что каждая из составляющих , , вектора подчиняется абсолютно одному и тому же по форме скалярному уравнению. Поэтому, если требуется знать изменение только какой-нибудь одной из составляющих вектора , мы можем рассматривать векторное поле как скалярное. Перед тем, как окончательно перейти к скалярной теории, следует заметить, что составляющие вектора не являются независимыми функциями, что вытекает из условия . Поэтому, хотя скалярные волновые уравнения являются следствием уравнений Максвелла, обратно перейти от них к уравнениям Максвелла нельзя.

Пусть скалярная величина - это любая из составляющих электрического вектора: ( , или ). Иными словами, это возмущение поля в какой-то точке пространства в какой-то момент времени . Тогда можно записать волновое уравнение в общем виде:

(1.3.5)
где - вторая производная возмущения по пространственным координатам,

Вторая производная возмущения по времени,

Смысл этого уравнения заключается в том, что волна образуется тогда, когда у некоторого возмущения вторая производная по пространственным координатам пропорциональна второй производной по времени.

Можно показать, что скорость распространения волны для диэлектриков связана с электрической и магнитной постоянной среды следующим образом:

Следовательно, скорость распространения волны в пространстве определяется так:

Тогда общий вид волнового уравнения можно записать следующим образом:

Волновое уравнение для одной оси координат:

Отношение скорости света в вакууме к скорости света в среде называется показателем преломления данной среды по отношению к вакууму (index of refraction ):

(1.3.11) где - амплитуда возмущения (функция пространственных координат),
- циклическая частота изменения поля во времени,
- фаза поля (функция пространственных координат).
Рис.1.3.1. Изменение монохроматического поля во времени.

Монохроматическое поле также характеризуется периодом колебаний или частотой :

Причем циклическую частоту можно выразить через частоту :

Гармоническую волну характеризуют также пространственный период - длина волны :

И волновое число :

Излучение с определенной длиной волны обладает соответствующим цветом (рис.1.3.2).


Рис.1.3.2. Спектр видимого излучения.

Постоянными характеристиками, не зависящими от показателя преломления, для монохроматического поля являются: частота , циклическая частота и период колебаний . Длина волны и волновое число меняются в зависимости от показателя преломления, так как меняется скорость распространения света в среде . Итак, частота в среде всегда сохраняется, а длина волны изменяется. Длину волны и волновое число в некоторой среде с показателем преломления можно определить так:

Где - длина волны в вакууме, - волновое число в вакууме.

Иногда при описании монохроматического поля вместо фазы используют другие понятия. Введем в выражение для волнового возмущения волновое число вместо циклической частоты :

Тогда волновое возмущение запишется так:

(1.3.19)

Слово "эйконал" происходит от греческого слова (эйкон - образ). В русском языке этому соответствует слово "икона".

В отличие от фазы поля эйконал более удобная величина для оценки изменения фазы от луча к лучу, так как непосредственно связан с геометрической длиной хода луча.

Оптическая длина луча (optical path difference, OPD ) - это произведение показателя преломления на геометрическую длину пути .

Приращение эйконала равно оптической длине луча:

(1.3.20)

Если фаза изменяется на , то эйконал изменяется на : ;
если фаза изменяется на , то эйконал изменяется на : ;
если фаза изменяется на , то эйконал изменяется на : .

Эйконал имеет огромное значение в теории оптического изображения, так как понятие эйконала позволяет, во-первых, описать весь процесс образования изображения с позиций волновой теории света, а во-вторых, наиболее полно проанализировать искажения передачи изображения оптическими приборами. Теория эйконала, разработанная в XIX веке Петцвалем, Зейделем и Шварцшильдом, явилась важным фундаментальным достижением геометрической оптики, благодаря которому стало возможным создание оптических систем высокого качества. . При сложении полей их комплексные амплитуды складываются, а временной экспоненциальный множитель можно вынести за скобки и не учитывать:

1.3.4. Уравнение Гельмгольца

Если поле монохроматическое, то дифференцирование по времени, сводится к умножению скалярной амплитуды на мнимый множитель . Таким образом, если подставить в волновое уравнение (1.3.18) описание монохроматического поля (1.3.23), то после преобразований мы получим волновое уравнение для монохроматического поля, в которое будет входить только комплексная амплитуда (уравнение Гельмгольца).

Уравнение Гельмгольца (Helmgolz equation ):

Любой колебательный контур излучает энергию. Изменяющееся электрическое поле возбуждает в окружающем пространстве переменное магнитное поле, и наоборот. Математические уравнения, описывающие связь магнитного и электрического полей, были выведены Максвеллом и носят его имя. Запишем уравнения Максвелла в дифференциальной форме для случая, когда отсутствуют электрические заряды () и токи (j = 0 ):

Величины и - электрическая и магнитная постоянные, соответственно, которые связаны со скоростью света в вакууме соотношением

Постоянные и характеризуют электрические и магнитные свойства среды, которую мы будем считать однородной и изотропной.

В отсутствие зарядов и токов невозможно существование статических электрического и магнитного полей. Однако переменное электрическое поле возбуждает магнитное поле, и наоборот, переменное магнитное поле создает электрическое поле. Поэтому имеются решения уравнений Максвелла в вакууме, в отсутствие зарядов и токов, где электрические и магнитные поля оказываются неразрывно связанными друг с другом. В теории Максвелла впервые были объединены два фундаментальных взаимодействия, ранее считавшихся независимыми. Поэтому мы говорим теперь об электромагнитном поле .

Колебательный процесс в контуре сопровождается изменением окружающего его поля. Изменения, происходящие в окружающем пространстве, распространяются от точки к точке с определенной скоростью, то есть колебательный контур излучает в окружающее его пространство энергию электромагнитного поля.

При строго гармоническом изменении во времени векторов и электромагнитная волна называется монохроматической.

Получим из уравнений Максвелла волновые уравнения для векторов и .

Волновое уравнение для электромагнитных волн

Как уже отмечалось в предыдущей части курса, ротор (rot) и дивергенция (div) - это некоторые операции дифференцирования, производимые по определенным правилам над векторами. Ниже мы познакомимся с ними поближе.

Возьмем ротор от обеих частей уравнения

При этом воспользуемся доказываемой в курсе математики формулой:

где - введенный выше лапласиан. Первое слагаемое в правой части равно нулю в силу другого уравнения Максвелла:

Получаем в итоге:

Выразим rotB через электрическое поле с помощью уравнения Максвелла:

и используем это выражение в правой части (2.93). В результате приходим к уравнению:

Учитывая связь

и вводя показатель преломления среды

запишем уравнение для вектора напряженности электрического поля в виде:

Сравнивая с (2.69), убеждаемся, что мы получили волновое уравнение, где v - фазовая скорость света в среде :

Взяв ротор от обеих частей уравнения Максвелла

и действуя аналогичным образом, придем к волновому уравнению для магнитного поля:

Полученные волновые уравнения для и означают, что электромагнитное поле может существовать в виде электромагнитных волн, фазовая скорость которых равна

В отсутствие среды (при ) скорость электромагнитных волн совпадает со скоростью света в вакууме.

Основные свойства электромагнитных волн

Рассмотрим плоскую монохроматическую электромагнитную волну, распространяющуюся вдоль оси х:

Возможность существования таких решений следует из полученных волновых уравнений. Однако напряженности электрического и магнитного полей не являются независимыми друг от друга. Связь между ними можно установить, подставляя решения (2.99) в уравнения Максвелла. Дифференциальную операцию rot , применяемую к некоторому векторному полю А можно символически записать как детерминант:

Подставляя сюда выражения (2.99), зависящие только от координаты x , находим:

Дифференцирование плоских волн по времени дает:

Тогда из уравнений Максвелла следует:

Отсюда следует, во-первых, что электрическое и магнитное поля колеблются в фазе:

Иными словами и в изотропной среде,

Тогда можно выбрать координатные оси так, чтобы вектор был направлен вдоль оси у (рис. 2.27):


Рис. 2.27. Колебания электрического и магнитного полей в плоской электромагнитной волне

В этом случае уравнения (2.103) приобретают вид:

Отсюда следует, что вектор направлен вдоль оси z:

Иначе говоря, векторы электрического и магнитного поля ортогональны друг другу и оба - направлению распространения волны. С учетом этого факта уравнения (2.104) еще более упрощаются:

Отсюда вытекает обычная связь волнового вектора, частоты и скорости:

а также связь амплитуд колебаний полей:

Отметим, что связь (2.107) имеет место не только для максимальных значений (амплитуд) модулей векторов напряженности электрического и магнитного поля волны, но и для текущих - в любой момент времени.

Итак, из уравнений Максвелла следует, что электромагнитные волны распространяются в вакууме со скоростью света. В свое время этот вывод произвел огромное впечатление. Стало ясно, что не только электричество и магнетизм являются разными проявлениями одного и того же взаимодействия. Все световые явления, оптика, также стали предметом теории электромагнетизма. Различия в восприятии человеком электромагнитных волн связаны с их частотой или длиной волны.

Шкала электромагнитных волн представляет собой непрерывную последовательность частот (и длин волн) электромагнитного излучения. Теория электромагнитных волн Максвелла позволяет установить, что в природе существуют электромагнитные волны различных длин, образованные различными вибраторами (источниками). В зависимости от способов получения электромагнитных волн их разделяют на несколько диапазонов частот (или длин волн).

На рис. 2.28 представлена шкала электромагнитных волн.


Рис. 2.28. Шкала электромагнитных волн

Видно, что диапазоны волн различных типов перекрывают друг друга. Следовательно, волны таких длин можно получить различными способами. Принципиальных различий между ними нет, поскольку все они являются электромагнитными волнами, порожденными колеблющимися заряженными частицами.

Уравнения Максвелла приводят также к выводу о поперечности электромагнитных волн в вакууме (и в изотропной среде): векторы напряженности электрического и магнитного полей ортогональны друг другу и направлению распространения волны.

Дополнительная информация

http://www.femto.com.ua/articles/part_1/0560.html – Волновое уравнение. Материал из Физической Энциклопедии.

http://fvl.fizteh.ru/courses/ovchinkin3/ovchinkin3-10.html – Уравнения Максвелла. Видеолекции.

http://elementy.ru/trefil/24 – Уравнения Максвелла. Материал из «Элементов».

http://nuclphys.sinp.msu.ru/enc/e092.htm – Очень кратко об уравнениях Максвелла.

http://telecomclub.org/?q=node/1750 – Уравнения Максвелла и их физический смысл.

http://principact.ru/content/view/188/115/ – Кратко об уравнениях максвелла для электромагнитного поля.

Эффект Доплера для электромагнитных волн

Пусть в некоторой инерциальной системе отсчета К распространяется плоская электромагнитная волна. Фаза волны имеет вид:

Наблюдатель в другой инерциальной системе отсчета К" , движущейся относительно первой со скоростью V вдоль оси x , также наблюдает эту волну, но пользуется другими координатами и временем: t", r". Связь между системами отсчета дается преобразованиями Лоренца:

Подставим эти выражения в выражение для фазы , чтобы получить фазу волны в движущейся системе отсчета:

Это выражение можно записать как

где и - циклическая частота и волновой вектор относительно движущейся системы отсчета. Сравнивая с (2.110), находим преобразования Лоренца для частоты и волнового вектора:

Для электромагнитной волны в вакууме

Пусть направление распространения волны составляет в первой системе отсчета угол с осью х:

Тогда выражение для частоты волны в движущейся системе отсчета принимает вид:

Это и есть формула Доплера для электромагнитных волн .

Если , то наблюдатель удаляется от источника излучения и воспринимаемая им частота волны уменьшается:

Если , то наблюдатель приближается к источнику и частота излучения для него увеличивается:

При скоростях V << с можно пренебречь отклонением квадратного корня в знаменателях от единицы, и мы приходим к формулам, аналогичным формулам (2.85) для эффекта Доплера в звуковой волне.

Отметим существенную особенность эффекта Доплера для электромагнитной волны. Скорость движущейся системы отсчета играет здесь роль относительной скорости наблюдателя и источника. Полученные формулы автоматически удовлетворяют принципу относительности Эйнштейна, и с помощью экспериментов невозможно установить, что именно движется - источник или наблюдатель. Это связано с тем, что для электромагнитных волн отсутствует среда (эфир), которая играла бы ту же роль, что и воздух для звуковой волны.

Заметим также, что для электромагнитных волн имеет место поперечный эффект Доплера . При частота излучения изменяется:

в то время как для звуковых волн движение в направлении, ортогональном распространению волны, не приводило к сдвигу частот. Этот эффект прямо связан с релятивистским замедлением времени в движущейся системе отсчета: наблюдатель на ракете видит увеличение частоты излучения или, в общем случае, ускорение всех процессов, происходящих на Земле.

Найдем теперь фазовую скорость волны

в движущейся системе отсчета. Имеем из преобразований Лоренца для волнового вектора:

Подставим сюда соотношение:

Получаем:

Отсюда находим скорость волны в движущейся системе отсчета:

Мы обнаружили, что скорость волны в движущейся системе отсчета не изменилась и по-прежнему равна скорости света с . Отметим всё же, что, при корректных выкладках, это не могло не получиться, так как инвариантность скорости света (электромагнитных волн) в вакууме есть основной постулат теории относительности уже «заложенный» в использованные нами преобразования Лоренца для координат и времени (3.109).

Пример 1. Фотонная ракета движется со скоростью V = 0.9 с , держа курс на звезду, наблюдавшуюся с Земли в оптическом диапазоне (длина волны мкм ). Найдем длину волны излучения, которую будут наблюдать космонавты.

Длина волны обратно пропорциональна частоте колебаний. Из формулы (2.115) для эффекта Доплера в случае сближения источника света и наблюдателя находим закон преобразования длин волн:

откуда следует результат:

По рис. 2.28 определяем, что для космонавтов излучение звезды сместилось в ультрафиолетовый диапазон.

Энергия и импульс электромагнитного поля

Объемная плотность энергии w электромагнитной волны складывается из объемных плотностей электрического и магнитного полей.

Используем формулу Стокса , согласно которой циркуляция вектора по замкнутому контуру L равна потоку ротора этого вектора через поверхность, опирающуюся на этот контур. Тогда:

Пусть S произвольная неизменная во времени поверхность, ограниченная контуром L. Тогда система уравнений (1.2.7) перепишется так:

Поскольку контур интегрирования в полученных интегралах произволен, равенство нулю интегралов возможно только при равенстве нулю подынтегральных выражений. Тогда:

Уравнения (1.3.2) и есть уравнения Максвелла.

В большей части курса мы будем рассматривать поля, изменяющиеся во времени по гармоническому закону:

Для которых принята комплексная форма записи:

Где комплексная амплитуда. При комплексной форме записи гармонических полей производная по времени заменяется умножением на .

Тогда уравнения Максвелла (1.3.2) для полей, изменяющихся по гармоническому закону, принимают вид:

Найдем решение уравнений Масквелла для простейшего случая распространения электромагнитной волны в вакууме.

В вакууме , . Поэтому для вакуума уравнения Максвелла (1.3.4) принимают вид:

Исключим Из (1.3.5). Для этого применим операцию Rot К обеим частям первого уравнения: . Теперь подставим значение из второго уравнения. В результате получим:

Используем известное соотношение векторной алгебры

Вспомним, что в соответствии с теоремой Гаусса-Остроградского

И учтем, что в вакууме свободных зарядов нет (т. е. ). Подставим (1.3.8) и (1.3.7) в (1.3.6). В результате получаем:

Полученное уравнение носит название Волновое уравнение . Аналогичным образом можно получить волновое уравнение относительно вектора магнитного поля .

Наиболее наглядным решением волнового уравнения является сферическая волна, распространяющаяся вокруг точечного излучателя. Чтобы получить решение для сферической волны, нужно представить оператор Лапласа в уравнении (1.3.9) в сферической системе координат, что приведет к достаточно громоздким математическим выражениям. С целью упрощения математических процедур мы рассмотрим решение волнового уравнения для плоской волны, являющейся функцией одной координаты.

Рис.1.3.1. показана схема расположения силовых линий сферической электромагнитной волны. Рисунок иллюстрирует тот факт, что на больших расстояниях от излучателя электромагнитное поле можно рассматривать как плоскую волну, распространяющуюся вдоль направления, перпендикулярного плоскости постоянной фазы, причем характеристики волны зависят только от одной координаты вдоль направления распространения. Несмотря на то, что в общем случае волна имеет сферическую симметрию, в ограниченной области, обозначенной квадратом, можно говорить о плоской волне, характеристики которой зависят только от одной координаты.

Примем во внимание, что одномерный оператор Лапласа имеет следующий вид:

И получим одномерное волновое уравнение для плоской волны:

Рис.1.3.1. Схема силовых линий напряженности электрического и магнитного полей сферической электромагнитной волны.

Любое дифференциальное уравнение приобретает физический смысл, если заданы граничные условия для его решения. Решение уравнения (1.3.11) получается в виде двух волн, распространяющихся вдоль положительного и отрицательного направлений оси z. Примем в качестве граничных условий утверждение, что в рассматриваемой среде плоская волна может распространяться только в одном направлении. Итак, мы имеем решение уравнения (1.3.11) для плоской волны, распространяющейся вдоль положительного направления оси z:

Фаза волны:

Где K — волновое число (в общем случае волновой вектор).

Фиксированная ориентация вектора напряженности поля вдоль заданной координатной оси носит название Поляризации волны . Соотношение (1.3.12) задает поляризацию напряженности электрического поля вдоль оси Х .

На рис.1.3.2. показано положение плоскости постоянной фазы для двух моментов времени.

Рис.1.3.2. Движение плоскости постоянной фазы.

Для плоскости постоянной фазы (φ = const), которая движется вдоль оси z, ее производная по времени равна нулю:

В соответствии с (1.1.26) получаем:

Где - скорость движения поверхности неизменной фазы или Фазовая скорость.

Подставив (1.3.12) в (1.3.11) получим

И, сократив , получим Дисперсионное уравнение для плоской волны в свободном пространстве :

Или (1.3.16)

Разные знаки в выражении для K соответствуют волнам, распространяющимся вдоль оси Z в разных направлениях. В соответствии с (1.3.14):

В свободном пространстве , где C — скорость света.

Таким образом, из уравнений Максвелла следует, что скорость света в свободном пространстве определяется диэлектрической и магнитной проницаемостями вакуума:

Диэлектрическая и магнитная проницаемость вакуума – это характеристики пространства, связанные со статическими полями. Первая из них характеризует только диэлектрические свойства среды. А вторая – только магнитные свойства. Результат решения уравнений Масквелла, представленный формулой (1.3.18), связывает воедино электростатику, магнитостатику и динамический процесс распространения света.

Действительно, диэлектрическую проницаемость можно получить экспериментально путем измерения силы взаимодействия двух известных зарядов Q1 и Q2 расположенных на расстоянии R друг от друга:

(закон Кулона).

.

Магнитную проницаемость можно получить, измерив силу взаимодействия двух проводников длиной и с током и соответственно, расположенных на расстоянии R друг от друга:

(закон Био-Савара-Лапласа)

Таким образом, из статического эксперимента можно получить численное значение .

Следовательно, уравнения Максвелла позволяют выразить скорость света через характеристики, полученные с помощью статических измерений.

Уравнения Максвелла связывают воедино электрическое поле, магнитное поле и электромагнитные волны (свет). Создание концепции электромагнитного поля и формулировка уравнений, его описывающих, послужили одной из важнейших отправных точек физики XX века.

В технике СВЧ интерес представляет в основном поля, изменяющиеся во времени по гармоническому закону (т.е. носят синусоидальный характер).

Пользуясь комплексным методом, запишем векторы электрического и магнитного полей:

,
, (33)

где – круговая частота
.

Подставим эти выражения в I и II – е уравнения Максвелла

,
.

После дифференцирования имеем:

, (34)

. (35)

Уравнение (34) можно преобразовать к виду:

,

где
– комплексная относительная диэлектрическая проницаемость с учётом потерь в среде.

Отношение мнимой части комплексной относительной диэлектрической проницаемости к действительной представляет тангенс угла диэлектрических потерь
. Таким образом уравнения Максвелла для гармонических колебаний при отсутствии свободных зарядов
имеют вид:

,(36)

, (37)

, (38)

. (39)

В таком виде уравнения Максвелла неудобны и их преобразуют.

Уравнения Максвелла легко сводятся к волновым уравнениям, в которые входит только один из векторов поля. Определяя
из (37) и подставляя его в (36), получаем:

раскроем левую часть используя формулу III:

Введём обозначения
,тогда с учётом
, получим:

. (40)

Такое же уравнение можно получить относительно

. (41)

Уравнения (40) – (41) получили название уранений Гельмгольца. Они описывают распространение волн в пространстве и являются доказательством того, что изменение во времени электрического и магнитного полей приводит к распространению электромагнитных волн в пространстве.

Эти уравнения справедливы для любой системы координат. При использовании прямоугольной системы координат будем иметь:

, (42)

, (43)

где
– едичничные векторы

Если подставить соотношение (42) и (43) в уравнения (40) и (41), то последние распадаются на шесть независимых уравнений:

,
,

, (44)
, (45)

,
,

где
.

В общем случае в прямоугольной ситеме координат для нахождения составляющих поля необходимо решить одно линейное дифференциальное уравнение второго порядка

,

где – одна из составляющих поля, т.е.
. Общее решение этого уравнения имеет вид

, (46)

где
– функция распределения поля в плоскости фронта волны не зависящая от.

Энергетические соотношения в электромагнитном поле. Теорема Умова-Пойнтинга

Одной из важнейших характеристик электромагнитного поля является его энергия. Впервые вопрос об энергии электромагнитного поля был рассмотрен Максвеллом, который показал, что полная энергия поля, заключённого внутри объёма , складывается из энергии электрического поля:

, (47)

и энергии магнитного поля:

. (48)

Таким образом, полная энергия электромагнитного поля равна:

. (49)

В 1874г. проф. Н. А. Умов ввел понятие о потоке энергии, а в 1880г. это понятие было применено Пойнтингом к исследованию электромагнитных волн. Процесс излучения в электродинамике принято характеризовать, определяя в каждой точке пространства вектор Умова-Пойнтинга.

Физически правильные результаты, согласующиеся как с законом сохранения энергии, так и с уравнениями Максвелла, получается в том случае, если выразить вектор Умова-Пойнтинга через мгновенные значения
и
следующим образом:

.

Возьмём первое и второе уравнения Максвелла и умножим первое на , а второе на
и сложим:

,

где .

Таким образом, уравнение (50) можно записать в виде

,

интегрируя по объему и меняя знаки, имеем:

Перейдем от интеграла по объему к интегралу по поверхности

,

или с учетом
получим:

, то
,
,

. (51)

Полученное уравнение выражает закон сохранения энергии в электромагнитном поле (теорему Умова-Пойнтинга.). Левая часть уравнения представляет собой скорость изменения во времени полного запаса энергии электромагнитного поля в рассмотренном объеме
. Первый член правой части есть количество тепла, выделяющегося в проводящих частях объёмаза единицу времени. Второе слагаемое представляет поток вектора Умова-Пойнтинга через поверхность, ограничивающую объем.Вектор
есть плотность потока энергии электромагнитного поля.
Т.к.
, то направление вектора
можно определить по правилу векторного произведения /правилу буравчика/ (рис. 9). В системеСИ вектор
имеет размерность
.

Рисунок 9 – К определению вектора Умова-Пойнтинга



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ