Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Содержание:

В некоторых случаях движение металлических деталей в электрических машинах и устройствах происходит через магнитные поля. В других ситуациях возможны пересечения неподвижных металлических элементов с силовыми линиями магнитного поля, изменяющегося по величине. В результате, внутри металлических деталей происходит индуктирование ЭДС самоиндукции. Под влиянием ЭДС в них образуются вихревые токи Фуко, замыкающиеся в массе и вызывающие образование вихревых токовых контуров.

Физические свойства и определение токов Фуко

К вихревым токам относятся электрические токи, которые возникают , появляющейся в металлической или другой проводящей среде. Эта индукция появляется под воздействием изменяющегося магнитного потока.

В свою очередь вихревые токи способствуют появлению собственных магнитных потоков. В соответствии с , они оказывают противодействие магнитному потоку катушки и делают его слабее. Это приводит к нагреву сердечника и бесполезным тратам электрической энергии.

Данный процесс можно рассмотреть подробнее на примере металлического сердечника. На него помещается катушка, с пропущенным переменным током. Вокруг катушки происходит образование переменного магнитного тока, пересекающего сердечник. Одновременно в нем наводится индуцированная электродвижущая сила, вызывающая, в свою очередь, вихревые токи. Их действие вызывает нагревание сердечника. При незначительном сопротивлении сердечника, наведенные токи могут иметь довольно большое значение и привести к существенному нагреву.

Как уменьшить действие токов Фуко

Действие вихревых токов необходимо снизить, поскольку мощности, бесполезно расходуемые для нагрева сердечника, приводят к снижению КПД электромагнитных устройств. С целью уменьшения этой мощности, в магнитопроводе необходимо увеличить сопротивление. Поэтому для набора сердечников используются отдельные тонкие пластины, толщиной от 0,1 до 0,5 мм. Изоляция пластин между собой осуществляется специальными лаками или окалиной.

Набор магнитопроводов для всей аппаратуры переменного тока и сердечников для устройств постоянного тока также осуществляется из пластин, изолированных между собой. Для их изготовления применяется штампованная листовая электротехническая сталь. Плоскости пластин размещаются параллельно с направлением магнитного потока. Таким образом, сечение сердечника оказывается разделенным, что приводит к ослаблению и уменьшению магнитных потоков. Соответственно, наблюдается снижение ЭДС, индуктируемых этими потоками. Именно они способствуют появлению вихревых токов. Практикуется ввод в материал сердечника специальных добавок, способствующих росту его электрического сопротивления.

В некоторых конструкциях катушек для набора сердечников используется отожженная железная проволока. Расположение железных полосок осуществляется параллельно с линиями магнитного потока. Ограничение вихревых токов, протекающих в перпендикулярных плоскостях с магнитным потоком, выполняется с помощью изолирующих прокладок. Снижение токов Фуко в проводах происходит следующим образом: в состав жгутов входят отдельные жилы, изолированные между собой.

Использование вихревых токов

Несмотря на большое количество отрицательных моментов, токи Фуко нашли свое применение в различных областях. Например, они успешно используются в электрических счетчиках как магнитный тормоз диска.

Токи Фуко применяются во многих технологических операциях, связанных с токами высокой частоты. Без них не обходится изготовление вакуумных устройств и приборов, где требуется тщательная откачка воздуха и газов. Металлическая арматура, помещенная внутрь баллона, содержит остатки газа, удаляющиеся только после заваривания колбы. Полное удаление газов производится высокочастотным генератором, в поле которого помещается прибор.

Вихревые токи (токи Фуко)

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в переменное магнитное поле. Эти токи оказываются замкнутыми в толще проводника и поэтому называются - вихревыми. Их также называют токами Фуко - по имени первого исследователя.

Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему вихревые токи. Например, если между полюсами невключенного электромагнита массивный медный маятник совершает практически незатухающие колебания, то при включении тока он испытывает сильное торможение и очень быстро останавливается. Это объясняется тем, что возникшие токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника. Этот факт используется для успокоения (демпфирования) подвижных частей различных приборов. Если в описанном маятнике сделать радиальные вырезы, то вихревые токи ослабляются и торможение почти отсутствует.

Вихревые токи помимо торможения (как правило, нежелательного эффекта) вызывают нагревание проводников. Поэтому для уменьшения потерь на нагревание якоря генераторов и сердечники трансформаторов делают не сплошными, а изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, и устанавливают их так, чтобы вихревые токи были направлены поперек пластин. Джоулева теплота, выделяемая токами Фуко, используется в индукционных металлургических печах. Индукционная печь представляет собой тигель, помещаемый внутрь катушки, в которой пропускается ток высокой частоты. В металле возникают интенсивные вихревые токи, способные разогреть его до плавления.

Такой способ позволяет плавить металлы в вакууме, в результате чего получаются сверхчистые материалы.

Вихревые токи возникают и в проводах, по которым течет переменный ток. Направление этих токов можно определить по правилу Ленда. На рис. 182, а показано направление вихревых токов при возрастании первичного тока в проводнике, а на рис. 182, б - при его убывании. В обоих случаях направление вихревых токов таково, что они противодействуют изменению первичного тока внутри проводника и способствуют его изменению вблизи поверхности. Таким образом, вследствие возникновения вихревых токов быстропеременный ток оказывается распределенным по сечению провода неравномерно - он как бы вытесняется на поверхность проводника. Это явление получало название скин-эффекта (от англ. skin - кожа) или поверхностного эффекта. Так как токи высокой частоты практически текут в тонком поверхностном слое, то провода для них делаются полыми.

Если сплошные проводники нагревать токами высокой частоты, то в результате скин-эффекта происходит нагревание только их поверхностного сдоя. На этом основан метод поверхностной закалки металлов. Меняя частоту поля, он позволяет производить закалку на любой требуемой глубине.

§ 126. Индуктивность контура. Самоиндукция

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био - Савара - Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре:

где коэффициент пропорциональности L называется индуктивностью контура .

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн - индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

1 Гн=1 Вб/А=1 Вžс/А.

Можно показать, что индуктивность контура в общем случае зависит только отгеометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура - аналогэлектрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды.

Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э. д. с. самоиндукции

Если контур не деформируется и магнитная проницаемость среды не изменяется, то L=const и

. (126.3)

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.

Если ток со временем возрастает, то > 0 и < 0,т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание. Если ток со временем убывает, то <0и > 0, т. е. индукционный токимеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью,приобретаетэлектрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.

§ 127. Токи при размыкании и замыкании цепи

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностьюL. Под действием внешней э. д. с. в цепи течет постоянный ток

В момент времени t=0 отключим источник тока. Ток в катушке индуктивности L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции , препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома , или

Разделив в выражении (127.1) переменные, получим . Интегрируя этоуравнение поI(отI о до I)и t (от 0 до t), находим

гдеt=L/R - постоянная, называемая временем релаксации . Из (127.2) следует, что t есть время, в течение которого силатока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции

препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома,

Введя новую переменную , преобразуем это уравнение к виду

где t - время релаксации.

В момент замыкания (t=0) сила тока I=0 и u=- . Следовательно, интегрируя по u (от- до IR- ) и t (от 0 до t), находим

,

, (127.3)

где - установившийся ток (при t®¥).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации t= L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукциивозникающей при мгновенном увеличении сопротивления цепи постоянного тока от R о до R Предположим, что мы размыкаемконтур, когда в нем течет установившийся ток I о = . При размыкании цепи токизменяется по формуле (127.2). Подставив в нее выражение для I о и t, получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопротивления цепи (R/R о >>1) обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

§ 128. Взаимная индукция

Рассмотрим два неподвижных контура (1 и 2), расположенных достаточно близко друг от друга (рис. 184). Если в контуре 1 течет ток I 1 , то магнитный поток, создаваемый этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), пропорционален I 1 . Обозначим через Ф 21 ту часть потока, которая пронизывает контур 2. Тогда

где L 21 - коэффициент пропорциональности.

Если ток I 1 изменяется, то в контуре 2 индуцируется э.д.с. , которая по закону Фарадея (см. (123.2)) равна и противоположна по знаку скорости изменения магнитного потока Ф 21 , созданного током в первом контуре и пронизывающего второй:

.

Аналогично, при протекании в контуре 2 тока I 2 магнитный поток (его поле изображено на рис. 184 штриховыми линиями) пронизывает первый контур. Если Ф 12 - часть этого потока, пронизывающего контур 1, то

Если ток I 2 изменяется, то в контуре 1 индуцируется э.д.с. , которая равна и противоположна по знаку скорости изменения магнитного потока Ф 12 , созданного током во втором контуре и пронизывающего первый:

.

Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией . Коэффициенты пропорциональности L 21 и L 12 называются взаимной индуктивностью контуров . Расчеты, подтверждаемые опытом, показывают, что L 21 и L 12 равны друг другу, т. е.

. (128.2)

Коэффициенты L 12 и L 21 зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единицы взаимной индуктивности та же, что и для индуктивности, - генри (Гн).

Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 185). Магнитная индукция поля,создаваемого первой катушкой с числом витков N 1 , током I 1 и магнитной проницаемостью m сердечника, согласно (119.2),

где l - длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки .

Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмотку, содержащую N 2 витков,

Поток y создается током I 1 поэтому, согласно (128.1), получаем

(128.3)

Если вычислить магнитный поток, создаваемый катушкой 2 сквозь катушку 1, то для L 12 получим выражение в соответствии с формулой (128.3). Таким образом, взаимнаяиндуктивность двух катушек, намотанных на общий тороидальный сердечник,

.

Трансформаторы

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в практику русским электротехником П. Н. Яблочковым (1847-1894) и русским физиком И. Ф. Усагиным (1855-1919). Принципиальная схема трансформатора показана на рис.186. Первичная и вторичная катушки (обмотки), имеющие соответственно N 1 и N 2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединенык источнику переменного напряжения с э.д.с. , то в ней возникает переменный ток I 1 , создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сердечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. взаимной индукции, а в первичной - э.д.с. самоиндукции. Ток I 1 первичной обмотки определяется согласно закону Ома:

,

где R 1 - сопротивление первичной обмотки. Падение напряжения I 1 R 1 на сопротивлении R 1 при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому

Э.д.с. взаимной индукции, возникающая во вторичной обмотке,

. (129.2)

Сравнивая выражения (129.1) и (129.2), получим, что э.д.с., возникающая во вторичной обмотке, где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе.

Отношение числа витков N 2 /N 1 показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации.

Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:

откуда, учитывая соотношение (129.3), найдем .

Т. е. токи в обмотках обратно пропорциональны числу витков в этих обмотках.

Если N 2 /N 1 > 1, то имеем дело с повышающим трансформатором, увеличивающим переменную э.д.с. и понижающим ток (применяются, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если N 2 /N 1 < 1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, например, при электросварке, так как для нее требуется большой ток при низком напряжении).

Мы рассматривали трансформаторы, имеющие только две обмотки. Однако трансформаторы, используемые в радиоустройствах, имеют 4-5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором. В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Токи Фуко (в честь Фуко, Жан Бернар Леон) -- это вихревые замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока. Вихревые токи являются индукционными токами и образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.

Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786--1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819--1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

В отличие от электрического тока в проводах, текущего по точно определённым путям, вихревые токи замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры. Эти контуры тока взаимодействуют с породившим их магнитным потоком. Согласно правилу Ленца, магнитное поле вихревых токов направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего эти вихревые токи. вихревый ток проводник индукция

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть, замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для подвижных частей гальванометров, сейсмографов и др. Тепловое действие токов Фуко используется в индукционных печах -- в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления. С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Проведем следующий эксперимент:

Берем постоянный магнит (1) в руки и быстро водим (3) его вдоль поверхности листа меди/алюминия (2), ориентируя к последнему один из полюсов магнита, так как показано на Рис.1.

Можно отчетливо ощутить возникающее сопротивление такому быстрому движению. Теперь пустим магнит в свободное скольжение по поверхности наклоненного толстого листа меди/алюминия. Можно заметить, что скольжение магнита сильно тормозится, и даже возникает впечатление, что магнит сильнее прижимается к листу проводника. Аналогичный эксперимент - постоянный магнит бросают в вертикальную трубу из меди или алюминия. Стандартное объяснение - движение магнита тормозят вихревые токи Фуко. Но умалчивается что суммарная масса электронов вовлеченных в вихревое движение во много раз меньше массы постоянного магнита. И потом, что мешает смещаться электронному вихрю вслед за скользящим магнитом? Логично предположить что "свободные" электроны, в электрическом проводнике, фактически не являются свободными. Существует некая сетка электропроводных мостиков меж атомами проводника, по которым движутся электроны. Эта-та сетка и привязывает множество вихрей токов Фуко к кристаллической решетке. Но, эксперимент с заменой сплошного листа проводника на опилки, показывает, что торможение движения постоянного магнита становится незаметным. Т.е. электропроводные "мостики" меж атомами проводника это не локальное явление. "Мостики" проявляют себя в макро-масштабах.

Но продолжим эксперимент с тем, что имеется у нас в руках - быстро водим (3) магнитом (1) вдоль поверхности листа меди/алюминия (2), ориентируя к последнему уже его оба полюса, так как показано на Рис.2.

При этом ощущается тоже сопротивление быстрому движению, что и в первом эксперименте.

Но вот если повернем магнит (1) и будем его быстро двигать (3), перпендикулярно прямой меж полюсами магнита (как показано на Рис.3), то мы уже не обнаружим сопротивление его быстрому движению.

Куда же делись токи Фуко? Никуда они не делись, просто их плоскость стала пересекать плоскость нашего листа меди/алюминия, что вызвало появление на поверхности листа электрического заряда как в банальном униполярном генераторе электрического тока. В нашем же случае электрическая цепь оказалась не замкнута, "вихревой" контур разомкнут… в макро-масштабах. Что опять наводит на мысль существования электропроводных "мостиков" меж атомами проводника в макро-масштабах.

Схематическое изображение возникающих вихревых токов в проводнике при изменении пронизывающего его потока вектора магнитной индукции. I - изменяющийся ток обмотки сердечника, вызывающий переменное во времени магнитное поле.

Таким образом, токи Фуко являются индукционными токами, они образуются либо вследствие изменения во времени магнитного поля, в котором находится проводник, либо в результате движения проводящего тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Токи Фуко замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры. Направления вихревых токов определяются правилом Ленца. Согласно правилу Ленца, магнитное поле вихревого тока направленно так, чтобы противодействовать изменению магнитного потока, индуцирующему эти вихревые токи.

В соответствии с законом Джоуля-Ленца, токи Фуко нагревают проводники, в которых они возникли, что приводит к потерям энергии. Для их уменьшения и снижения эффекта «вытеснения» магнитного поля магнитопроводы изготавливают не из сплошного куска, а из изолированных друг от друга отдельных пластин, заменяют ферромагнитные материалы магнитодиэлектриками и др. Явление нагревания проводников токами Фуко используется для плавки и поверхностной закалки металлов, для обезгаживания элементов арматуры вакуумных приборов и т.д.

Вихревые токи возникают и в самом проводнике, по которому течет переменный ток, что приводит к неравномерному распределению тока по сечению проводника. В моменты увеличения тока в проводнике индукционные вихревые токи направлены у поверхности проводника по первичному току, а у оси проводника - навстречу току. В результате внутри проводника ток уменьшается, а на поверхности увеличивается (ток «вытесняется» на поверхность проводника). Это явление называется электрическим скин-эффектом. Взаимодействие вихревых токов с основным магнитным потоком приводит проводящее тело в движение. Это явление используется в измерительной технике, в машинах переменного тока и т.д.

Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи - токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля-Ленца, большое количество тепла.

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах, для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.

Полезное применение вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск. В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы. Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона. Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.

Вихревые токи находят полезное применение в электрометаллургии при индукционной плавке металлов и поверхностной закалке токами высокой частоты. Металл помещают в переменное магнитное поле, создаваемое током частотой 500 - 2000 Гц. В результате индуктивного разогрева металл плавится, а тигель, в котором он находится, при этом остается холодным. Например, при подведенной мощности 600 кВт тонна металла плавится за 40-50 минут.

Литература

1. Сивухин Д. В.: Общий курс физики, том 3.

2. Савельев И. В.: Курс общей физики, том 2

3. Неразрушающий контроль: справочник.

Размещено на Allbest.ru

...

Подобные документы

    Понятие гравитационного поля как особого вида материи и его основные свойства. Сущность теории вихревых полей. Определение радиуса действия гравитационного поля. Расчет размеров гравитационных полей планет, их сравнение с расстоянием между ними.

    реферат , добавлен 12.03.2014

    Анализ электрических цепей постоянного тока. Расчёт токов с помощью законов Кирхгофа. Расчёт токов методом контурных токов. Расчёт токов методом узлового напряжения. Исходная таблица расчётов токов. Потенциальная диаграмма для контура с двумя ЭДС.

    курсовая работа , добавлен 02.10.2008

    Электродинамическое взаимодействие электрических токов. Открытие магнитного действия тока датским физиком Эрстедом - начало исследований по электромагнетизму. Взаимодействие параллельных токов. Индикаторы магнитного поля. Вектор магнитной индукции.

    презентация , добавлен 28.10.2015

    Процесс формирования и появления магнитного поля. Магнитные свойства веществ. Взаимодействие двух магнитов и явление электромагнитной индукции. Токи Фуко - вихревые индукционные токи, возникающие в массивных проводниках при изменении магнитного потока.

    презентация , добавлен 17.11.2010

    Электромагнитная индукция. Закон Ленца, электродвижущая сила. Методы измерения магнитной индукции и магнитного напряжения. Вихревые токи (токи Фуко). Вращение рамки в магнитном поле. Самоиндукция, ток при замыкании и размыкании цепи. Взаимная индукция.

    курсовая работа , добавлен 25.11.2013

    Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.

    курсовая работа , добавлен 28.09.2014

    Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.

    курсовая работа , добавлен 10.05.2013

    Понятие и принципы распространения токов Фуко, их характерные особенности. Сущность скин-эффекта. Явление самоиндукции и ее ЭДС. Энергия магнитного поля, критерии и порядок ее измерения. Понятие взаимной индукции, факторы и порядок ее возникновения.

    презентация , добавлен 24.09.2013

    Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Определение токов во всех ветвях методом контурных токов. Расчет однофазных цепей переменного тока. Уравнение мгновенного значения тока источника, баланс мощности.

    реферат , добавлен 05.11.2012

    Трехфазная электрическая цепь с лампами накаливания. Определение токов и показаний амперметра. Векторная диаграмма токов и топографическая диаграмма напряжений. Мощность, измеряемая ваттметрами. Моделирование цепи и расчет пускового режима ее работы.

  • 6. Электрический диполь. Напряженность электрического поля на оси диполя.
  • 7. Теорема Остроградского-Гаусса для электрического поля в вакууме:
  • 8. Применение теоремы Остроградского-Гаусса для расчета электрического поля равномерно заряженной бесконечной плоскости.
  • 9. Применение теоремы Остроградского-Гаусса для расчета электрического поля равномерно заряженной бесконечной сферической поверхности.
  • 10. Применение теоремы Остроградского-Гаусса для расчета электрического поля равномерно заряженного шара.
  • 11. Работа сил электростатического поля.
  • 12. Теорема о циркуляции напряженности электрического поля.
  • 14. Связь напряженности и потенциала электрического поля.
  • 15. Типы диэлектриков. Поляризация диэлектриков.
  • 16. Вектор электрического смещения. Теорема Остроградского-Гаусса для электрического поля в диэлектрике.
  • 17. Диэлектрическая проницаемость, диэлектрическая восприимчивость. Поляризованность. Условия на границе раздела диэлектриков.
  • 18. Проводники в электрическом поле. Явление электростатической индукции. Электростатическая защита.
  • Электростатическая индукция в проводниках
  • Электростатическая индукция в диэлектриках
  • 19. Электроемкость уединенного проводника. Конденсаторы.
  • 20. Электроемкость плоского конденсатора.
  • 21. Параллельное и последовательное соединения конденсаторов, вывод емкости.
  • 22. Энергия системы неподвижных точечных зарядов. Энергия заряженного конденсатора.
  • 23. Энергия заряженного уединенного проводника.
  • 24. Энергия электростатического поля.
  • 25. Электрический ток, сила и плотность тока.
  • 26. Закон Ома для однородного участка цепи:
  • 27. Сторонние силы. Электродвижущая сила и напряжение.
  • 28. Закон Ома в дифференциальной форме.
  • 29. Температурная зависимость сопротивления проводников.
  • 30. Работа и мощность тока. Закон Джоуля - Ленца в интегральной и дифференциальной форме.
  • 31. Закон Ома для неоднородного участка цепи.
  • 34. Класическая электронная теория электропроводимости металов и ее обоснование.
  • 37. Термоэлектронная эмиссия. Ток в вакууме. Вторичная электронная эмиссия.
  • 40. Магнитное поле движущегося снаряда.
  • 42. Применение закона Био-Савара-Лапласа для вычисления магнитного поля бесконечного прямолинейного проводника с токомю
  • 48. Эффект Холла. Его применение.
  • 53. Вывод закона фарадея и закона сохранения энергии.
  • 56. Вихревые токи (токи Фуко). Их применение.
  • 58. Взаимная индукция. Вычисление индуктивности тока трансформатора.
  • 60. Вихревые токи.
  • 63. Диа и парамагнетизм
  • 56. Вихревые токи (токи Фуко). Их применение.

    Вихревые токи илитоки Фуко́ (в честьЖ. Б. Л. Фуко ) - вихревые индукционные токи, возникающие впроводниках при изменении пронизывающего ихмагнитного потока .

    Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786-1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустяM. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физикомФуко (1819-1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

    Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии справилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется длядемпфирования подвижных частей гальванометров, сейсмографов и др.

    Тепловое действие токов Фуко используется в индукционных печах - в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.

    С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации .

    Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов , эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появлениеферритов сделало возможным изготовление этих проводников сплошными.

    57. Самоиндукция - явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. При изменении тока в контуре меняется поток магнитной индукции через поверхность, ограниченную этим контуром, в результате чего в нём возбуждается ЭДС самоиндукции. Направление ЭДС оказывается таким, что при увеличении тока в цепи эдс препятствует возрастанию тока, а при уменьшении тока - убыванию. Величина ЭДС пропорциональна скорости изменения силы тока I и индуктивности контура L:

    За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом величина ЭДС самоиндукции может значительно превышать ЭДС источника. Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение самоиндукции при напряжении питающей батареи 12В составляет 7-25кВ.

    При всяком изменении силы тока в проводящем контуре возникает ЭДС самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнования или установления тока в цепи.

    Индукционные токи, возникающие в массивных сплошных проводниках, называются вихревыми токами, или токами Фуко.

    Сила вихревого тока удовлетворяет соотношению (15.5), где - потокосцепление замкнутого контура вихревого

    R - электрическое сопротивление цепи этого тока.

    В массивных проводниках R мало, и токи Фуко могут достигать большой силы даже в не очень быстро меняющихся магнитных полях.

    В соответствии с правилом Ленца токи Фуко выбирают внутри проводника такой путь и направление, чтобы противодействовать изменению магнитного потока, индуцировавшего их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это используют для демпфирования (успокоения) подвижных частей гальванометров, сейсмографов и других приборов.

    Вихревые токи приводят к неравномерному распределению магнитного потока по сечению проводящего сердечника (рис. 15.6): при высокой частоте тока магнитный поток проходит лишь в тонком поверхностном слое сердечника.

    Вихревые токи вызывают сильное нагревание проводников. Чтобы предотвратить потери энергии на нагревание сердечников трансформаторов и якорей генераторов, их делают не сплошными, а набирают из тонких пластин, разделенных изолирующими прослойками, располагая их перпендикулярно возможным направлением токов Фуко. (Появление ферритов (см. п. 13.10.1)- полупроводниковых магнитных материалов с большим удельным сопротивлением – сделало возможным изготовление сплошных сердечников).

    Тепловое действие токов Фуко используется в индукционных печах. Индукционная печь представляет собой катушку, по обмотке которой пропускается ток высокой частоты. Внутрь катушки помещают тигель с веществом (металлом), в котором возникают интенсивные вихревые токи. Джоулево тепло, выделяемое в единицу времени вихревым током, пропорционально квадрату частоты изменения магнитного потока. Этим способом осуществляется плавление металлов в вакууме. В результате получаются сверхчистые материалы.

    Вихревые токи возникают и в самих проводниках, по которым текут переменные токи: их направление определяется по правилу Ленца, как показано на рис. 15.7.

    Р
    ис. 15.7

    В обоих случаях направление вихревых токов таково, что они противодействуют изменению первичного тока внутри проводника и способствуют его изменению вблизи поверхности. В результате быстропеременный ток как бы вытесняется на поверхность провода. Это явление называется скин-эффектом (от англ. skin – кожа) или поверхностным эффектом. Из-за скин-эффекта провода для токов высокой частоты делают полыми.

    15.4. Явление самоиндукции. Индуктивность

    Самоиндукцией называется явление возникновения э.д.с индукции в электрической цепи вследствие изменения в ней электрического тока.

    Самоиндукция – частный случай электромагнитной индукции. При изменении электрического тока в каком-либо замкнутом контуре изменяется полный магнитный поток , обусловленный собственным магнитным полем этого тока. По основному закону электромагнитной индукции (15.4), в контуре возникает электродвижущая сила самоиндукции

    . (15.6)

    Из закона Био-Савара-Лапласа (12.10) следует, что магнитная индукция В поля замкнутого контура с током пропорциональна силе тока I , следовательно, полный магнитный поток тоже пропорционален силе тока, т.е.

    . (15.7)

    Коэффициент пропорциональности L между ними называется индуктивностью контура.

    Выразим э.д.с. самоиндукции через индуктивность контура, подставив (15.7) в (15.6):

    (15.8)

    Если при изменении силы тока индуктивность остается постоянной (это возможно при отсутствии ферромагнетиков), т.е. L=const , то dL/dt=0 , и соотношение (15.8) примет вид

    . (15.9)

    По правилу Ленца э.д.с. самоиндукции противодействует изменению тока в контуре, то есть замедляет его возрастание или убывание. Это означает, что индуктивность контура является мерой его инертности в отношении изменения силы тока.

    Индуктивность L контура зависит от его формы и размеров, а также от магнитных свойств (от) окружающей контур среды. Если контур жесткий и находится в однородной, изотропной, неферромагнитной среде, то его индуктивность является постоянной величиной.

    За единицу индуктивности в системе СИ принимают индуктивность такого контура, у которого при силе тока в 1А возникает сцепленный с ним поток в 1Вб. Эту единицу называют генри (Гн):

    Рассмотрим некоторые примеры.

    Пример 1. Индуктивность тонкого соленоида.



    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ