Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

С точки зрения теории измерения, все множество различных измерительных процедур, применяемых в психологии, является процедурами построения шкалы психологической переменной, иначе говоря, процедурами психологического шкалирования. В понимании большинства психологов шкалирование - это совокупность экспериментальных и математических приемов для измерения особенностей психических процессов и состояний.

Вслед за С. С. Стивенсом в настоящее время понятие «шкалирование» рассматривают в качестве синонима понятия «измерение». Под шкалированием психологических процессов, свойств, объектов или событий понимается процесс приравнивания к этим процессам, свойствам, объектам или событиям чисел по определенным правилам, а именно таким образом, чтобы в отношениях чисел отображались отношения явлений, подлежащих измерению. Если постулируется, что в свойствах чисел отображаются количественные значения объектов реального предметного мира, то общую проблематику шкалирования правомерно рассматривать как частный случай проблемы отражения марксистско-ленинской теории познания.

Итак, измерение состоит в отображении эмпирических систем с помощью математических систем, а целью такого рода отображения является частичная замена действий, производимых с реальными предметами, формальными действиями с числами. Область чисел выполняет функцию модели определенных свойств предметов и в качестве средства познания дает возможность более глубоко проникать в объективно существующие свойства и взаимосвязи. В этом смысле шкалирование (измерение) служит главной силой, преобразующей психологию из науки описательной, следующей за фактами, в науку, умеющую предсказывать новые факты.

Понятно, что относительно разных эмпирических систем мы должны использовать разные методики измерения, т. е. применять измерительные шкалы разных типов. Понимание исследователем формальных аспектов измерения является необходимым условием для адекватного выбора им измерительных инструментов и процедур, а также для применения адекватных методов анализа полученных в наблюдении и эксперименте данных. Основываясь на правилах измерения, принято различать несколько типов шкал, с каждым из которых могут быть соотнесены конкретные процедуры шкалирования. При этом каждый тип шкалы может быть охарактеризован соответствующими числовыми свойствами. Рассмотрим более подробно основные свойства разных типов шкал, эмпирические операции, допустимые на уровне этих шкал, а также статистические приемы обработки и анализа исходных или, как их чаще называют, первичных результатов исследования.

Шкалы наименований, или номинативные шкалы. Шкала наименований представляет собой взаимно-однозначное отображение некоторой эмпирической системы в числовой системе. Таким образом, шкала наименований отображает взаимооднозначное соответствие между классами эквивалентности, т. е. классами эмпирических объектов - обозначений. Само название «шкала наименований» указывает на то, что в этом случае шкальные значения играют роль лишь названий классов эквивалентности.

Шкалы наименований подчиняются законам равенства. То есть объект Л может быть равен объекту В по признаку X , так что Х А В ; но по отношению к третьему объекту С по признаку X он может быть неравным: Х А С . Любая другая связь между шкальными значениями, за исключением равенства, не имеет отношения к данному случаю, так как для данного типа шкал не существует никакого дополнительного определения.

Шкала наименований представляет собой наиболее общую форму шкал. Всё типы шкал в каждом отдельном случае являются некоторыми видами шкал наименований, но обладающими при этом теми или иными дополнительными свойствами. При построении шкал наименований должны быть выполнены следующие требования: во-первых, каждый член некоторого множества объектов должен быть отнесен лишь к одному классу объектов (или к собирательному классу «прочие объекты») и, во-вторых, ни один из объектов не может быть отнесен одновременно к двум или большему числу классов. К примеру, если принять, что глаза у людей могут быть только светлыми или темными, то все люди по этому признаку разделяются на две группы. При этом люди с множеством оттенков глаз: голубых, серо-зеленых и серых попадут в класс «люди со светлыми глазами», а те, у которых глаза карие и темно-коричневые, - в класс «люди с темными глазами». Из приведенного примера видно, что отношения эквивалентности по заданному признаку между классифицируемыми объектами, как правило, грубее реальных отношений, существующих между объектами.

С формальной точки зрения установление классов эквивалентности как будто не вызывает никаких затруднений. В действительности, как это было показано предыдущим примером, понятие «равенство» можно трактовать более узко или более широко в зависимости от «тонкости» или «грубости» используемой классификации по заданному признаку. Проиллюстрируем это обстоятельство еще одним примером. Так, если делается попытка упорядочить события по признаку «мороз/оттепель», то температуры, обозначаемые как+1° и - 1°, будут входить в два разных неэквивалентных класса, в то время как температуры +Г и +10° попадут в один класс и по признаку «мороз/оттепель» будут рассматриваться как эквивалентные события.

Приведенные примеры должны были показать, что при построении шкал наименований главными являются качественные различия, а количественные не принимаются во внимание. Поэтому числа, используемые в качестве обозначений классов эквивалентности в этих шкалах, не отражают количественных различий выраженности изучаемого признака.

В примере с температурой мы имели дело с дихотомической (делением на два класса), или альтернативной, классификацией. Эти классификации можно образовать по логическому принципу «А/не-А», т. е. согласно принципу наличия или отсутствия определенного признака. Примерами такого рода классификации могут быть: «нормальный/анормальный», «женатый/ холостой», «решает задачу/не решает задачу» и т. п. В случае так называемой истинной дихотомии классы могут быть четко разделены по определенному признаку, например: «мужской/ женский пол».

Однако бывают классификации с менее жесткими переходами признака, т. е-, с довольно произвольными границами между классами эквивалентности, например: «способен к концентрации внимания/не способен к концентрации внимания». Именно с такого рода классификациями чаще всего и имеет дело психолог. Это так называемые квазйдихотомические классификации. Построение и использование шкал с квазидихотомическими границами клас-

сов вызывает ряд затруднений. Первая трудность, которая при этом возникает, состоит в установлении границы классов. В частности, каков же будет в нашем примере критерий «способности» к концентрации внимания, как определить точку в континууме «концентрация внимания», дифференцирующую людей на «способных» и «неспособных» к концентрации внимания?

Разберем другой пример из области психологии мышления. На первый взгляд альтернатива «решил задачу/не решил задачу» вполне может быть расценена как истинно-дихотомическая классификация. И действительно, в принципе для отнесения любого конкретного решения к классу «решил задачу» достаточно соотнести получаемый в нем результат с результатом^ полученным достаточно большой группой людей, аналогичным образом решивших данную задачу. Все остальные решения можно тогда отнести к классу «не решил задачу». Однако возникает вопрос: действительно ли данный человек решил эту задачу? И вот почему: вполне возможно, во-первых, что решение было случайным, т. е. случайно данный результат совпал с результатом решения других людей и, во-вторых, что этот класс задач заранее был известен данному человеку. Но, как правило, такого рода сопровождающие факторы, например в психодиагностических тестах, совершенно не учитываются.

В шкале наименований с числами, которые мы приписываем объектам или классам объектов, нельзя производить никаких арифметических действий. Числа, обозначающие классы, нельзя суммировать, вычитать, умножать и делить. Дело в том, что структура шкалы остается инвариантной по отношению к перемене обозначений (наименований) и к изменению последовательности, т. е. разного рода перестановкам. Следовательно, операция присвоения чисел классам объектов является совершенно произвольной операцией и ей не соответствуют операции, производимые с реальными объектами. Поэтому классы объектов можно обозначать любыми символами- произвольными числами, буквами или другими знаками при одном условии: каждый символ будет использован исключительно для обозначения одного класса объектов и одновременно ни один класс объектов не будет обозначаться двумя или большим числом символов.

Из вышесказанного уже очевидны те ограничения, которые накладываются на использование статистических приемов обработки результатов, полученных на уровне шкалы наименований. Поскольку операции арифметического характера не допускаются, то в качестве меры центральной тенденции можно использовать лишь моду. Модальный класс объектов определяют после подсчета абсолютных или относительных частот, т. е. встречаемости того или иного результата в каждом классе. В качестве меры тесноты взаимосвязи между различными массивами измерений можно использовать некоторые коэффициенты корреляции. Для оценки статистической значимости различий между частотами или между модами можно использовать критерий хи-квадрат.

Шкалы порядка, или ординальные шкалы. В порядковых измерениях символы, в частности числа, присваивают классам объектов так, чтобы

первые отображали не только равенство или неравенство, эквивалентность или неэквивалентность, но и упорядоченность объектов в отношении измеряемого свойства. В шкалах порядка классы объектов, как и в случае шкал наименований, являются дискретными. И хотя числа можно сравнивать, всегда надо помнить, что в шкалах порядка их величины имеют лишь относительное, а не абсолютное значение. Например, если какой-то один класс объектов обозначен большим числом, чем другой, то мы понимаем, что по измеряемой характеристике первый превосходит второй, но при этом нам неизвестно, насколько велико это различие. Дело в том, что в самих измерительных операциях, связанных с установлением порядка, не содержится никаких данных о величине различий. Рассмотрим в качестве примера оценки знаний материала студентами во время экзаменов. Различия между оценками 5 - «отлично» и 4 - «хорошо» указывают лишь на то, что уровень знаний отличника выше уровня знаний «хорошиста». Однако на основе такого рода оценок нельзя сказать, насколько или во сколько раз эти уровни знаний отличаются друг от друга.

Таким образом, шкала порядка отображает монотонное возрастание или убывание измеряемого признака с помощью монотонно возрастающих или монотонно уменьшающихся чисел. Оценить направление изменения признака можно только в том случае, если шкала порядка содержит не меньше трех классов, которые образуют последовательность. Из-за того что в шкале порядка устанавливается последовательность классов, любые преобразования, связанные с перестановками элементов этой шкалы, недопустимы.

К числу постулатов, которым подчиняются преобразования шкал порядка, относятся постулаты трихотомии, асимметрии и транзитивности. Прежде всего рассмотрим явление трихотомии. Если два объекта Аи В обладают признаком X , то между ними по данному признаку может существовать одно из трех отношений: Х А В , или Х А В , или Х Д В . В соответствии с постулатом асимметрии справедливым будет следующее утверждение: если между объектами А и В по признаку X обнаружено неравенство Х А В , то никогда не может быть Х А В или Х А В . Наконец, в соответствии с постулатом транзитивности можно утверждать, что если три объекта А, ВиС обладают признаком X и между ними по признаку X существуют отношения Х А В и Х В С , то из этого следует, что Х А С . Следовательно, для порядковых шкал допустимы любые преобразования типа x "= f (x ), где f (x ) представляет собой любое монотонное преобразование, не изменяющее последовательности элементов. Это означает, что для преобразования шкал порядка можно пользоваться возведением в степень, извлечением корня, логарифмированием.

Довольно часто при сборе информации, служащей основой конструирования шкал порядка, нарушается постулат о транзитивности. Представим себе, что во время состязаний спортсменов или при решении испытуемым задач диагностического теста результаты лица А лучше результатов лица В, но у последнего они лучше, чем улица. С. Очевидно, что в этом случае никакой проблемы в упорядочении результатов ле возникает и можно построить

последовательность А>В>С. Однако во время спортивных состязаний и во время тестирования бывает так, что результат С оказывается лучшим, чем результат А. Очевидно, что в таком случае постулат о транзитивности исходных величин нарушен. Поэтому для построения порядковых шкал приходится привлекать дополнительные критерии. Например: спортсменам предлагают провести не одну, а несколько игр, и испытуемым реигить не одну, а множество задач одной трудности. Тогда ранговое место игрока, т. е. место испытуемого среди других лиц опытной группы, определится уже по иному критерию, а именно по частоте выигрышей или числу правильно решенных задач.

Упорядочивание объектов может быть униполярным или биполярным. При униполярном установлении порядка объекты или классы объектов соотносят, используя в качестве индикатора степень выраженности одного-единственного свойства. Например, шкала порядка для оценки умственной отсталости может содержать следующие классы: «нет отклонения от нормы/отклонение слабое/отклонение среднее/отклонение сильное».

При биполярном упорядочивании исходят, как правило, из полярных проявлений какого-то свойства, которые фиксируются в виде двух «точек отсчета» на шкале. Примером биполярной шкалы в психологическом исследовании является методика семантического дифференциала. В этом случае"для построения шкалы первоначально производят отбор некоторого множества понятий, которые могут характеризовать, по мнению исследователя, изучаемые психические свойства испытуемого. Затем каждому понятию находят антоним (например: «общительный - замкнутый», «сильный - слабый», «уравновешенный - неуравновешенный»). Очевидно, что между каждыми двумя такими понятиями располагается несколько промежуточных оценочных категорий. Словесное определение промежуточных категорий очень часто вызывает у исследователей значительные трудности, поскольку в языке, как правило, мы легче находим понятия для обозначения экстремальных степеней выраженности какого-то свойства и труднее - для промежуточных.

Примерами использования в психологии порядковых шкал могут служить первичные результаты тестовых испытаний группы лиц, первичные результаты при использовании некоторых личностных опросников, работы со шкалами самооценки и т. п. Можно сказать, что результаты большинства психологических исследований представляют собой ординальные величины, т. е. выражающиеся порядковыми числами. Об этом необходимо помнить, поскольку характер первичных результатов накладывает ряд ограничений на возможность использования тех или других статистических приемов их обработки и анализа. Поскольку в порядковых шкалах не определена единая точка отсчета величин, то и для их элементов, как и для элементов шкал наименований, непригодны способы расчета, требующие арифметических действий, - в частности сложение и вычитание, В качестве меры положения классов объектов для преобразования шкал порядка кроме моды (Мо) могут быть использованы еще и медиана (Me ), полуквартильные отклонения (Q, и Q 3), а в качестве меры тесноты взаимосвязи классов - коэффициент ранговой корреляции Ч. Спирмена (р).

Итак, при конструировании шкалы интервалов используют три произвольные операции: установление величин единиц измерения, определение нулевой точки и определение направления, в котором ведут отсчет по отношению к нулевой точке.

Благодаря равенству единиц на уровне шкал интервалов возможна характеристика формы распределения эмпирических величин с помощьккгган-дартных статистических показателей: средней арифметической величины (М), среднего квадратичного отклонения (<т), показателей симметрии (А) и эксцесса х ). Использование линейных преобразований приводит к изменению лишь средней арифметической и / или среднего квадратичного отклонения, не меняя показателей симметрии и эксцесса. Изменение средней арифметической производится прибавлением к каждому первичному результату некоторой постоянной величины: X t + a ... X n + a . Изменение среднего квадратичного отклонения можно получить, умножая каждое отклонение от средней на постоянную величину: (X . - М) а, где X . - первичный результат, М - средняя арифметическая величина, а -^ константа.

Наиболее частыми линейными преобразованиями, которые находят применение как в области психометрии, так и в области психофизики, являются центрирование и нормирование результатов измерения. Под центрированием понимается такое линейное преобразование, при котором средняя арифметическая величина становится равной нулю, в то время как направление шкалы и величина ее единиц остаются неизменными. Под нормированием понимают такое линейное преобразование результатов измерения, при котором их средняя арифметическая величина становится равной нулю, а среднее квадратичное отклонение равным ±1. Из сказанного очевидно, что для обработки и анализа эмпирических данных, полученных на уровне шкал интервалов, допустимы любые приемы статистической обработки, а именно расчет основных характеристик распределения, а также меры взаимосвязи количественных переменных (коэффициентов корреляции). В случае наличия нормальных распределений первичных результатов для их сравнения можно применять также все известные критерии оценки значимости различий как между значениями их средних величин", так и дисперсии, т. е. размаха распределения.

Примером интервальных шкал, используемых в психологии, являются стандартизованные тестовые шкалы психодиагностики: шкалы Векслера, шкалы Тёрстена, шкалы С и шкала Т. Гилфорда.

Шкалы отношений. Конструирование шкал отношений предполагает наряду с наличием свойств предыдущих шкал существование постоянной естественной нулевой точки отсчета, в которой измеряемый признак полностью отсутствует. Следовательно, шкалы отношений характеризуются тем, что в них, во-первых, классы объектов разделены и упорядочены согласно измеряемому свойству, во-вторых, равным разностям между классами объектов соответствуют равные разности между приписываемыми им чис-

лами, в-третьих, числа, приравниваемые классам объектов, пропорциональны степени выраженности измеряемого свойства. Последнее не было свойственно рассмотренным выше шкалам.

Основными операциями, допустимыми на уровне шкал отношений, являются все те операции, которым подчиняются шкалы всех перечисленных выше типов, и дополнительно - операции установления равенства отношений между отдельными значениями шкалы. Это возможно благодаря существованию на шкале естественного, абсолютного, нуля. Поэтому лишь для данной шкалы числа, являющиеся точками (значениями) на шкале, соответствуют реальному количеству измеряемого свойства, что позволяет производить с ними любые арифметические действия - оперирование суммами, произведениями и частными. Для шкал отношений допустимы любые мультипликативные преобразования типа х" =ах для любых а >0. Однако недопустимы (об этом часто забывают!) никакие операции прибавления или вычитания константных величин, что приводит, как было показано на примере шкал интервалов, к сдвигу точки отсчета. Дополнительно к указанным для описанных выше шкал измерения приемам статистической обработки данных для величин шкалы отношений можно рассчитывать, например, геометрические и гармонические средние, а также коэффициенты изменчивости измеряемого признака.

Считалось, что шкалы отношений не встречаются в психологических измерениях. Однако Стивене, исходя из постулата о допустимости непосредственного измерения психических процессов, показал возможность построения шкал отношений в психофизике. Для этой цели он разработал ряд измерительных процедур, предусматривающих прямое шкалирование. Среди них наиболее известными стали методики фракционирования и мультипликации предъявляемых стимулов. К этой же группе методик можно отнести и методики оценки величин стимулов и непосредственной оценки их отношений. Общим для всех перечисленных методик прямого шкалирования является то, что в качестве измерительного инструмента выступает сам испытуемый, который оценивает количественные отношения между раздражителями.

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ

Итак, результаты экспериментальных исследований могут быть описаны с помощью определенных статистических показателей. Какие именно показатели могут.быть применены в каждом отдельном случае, зависит от типа использованных измерительных шкал. Прежде чем будут описаны конкретные способы вычислений некоторых статистических показателей, необходимо определить значение ряда используемых при этом понятий.

В первую очередь надо пояснить понятие распределения результатов. Можно себе представить, что большому числу испытуемых было предложено решить некоторое число, например 20, задач. Результаты оценивались в

ницы 5-го класса находится 35, или 70%, случаев всех наблюдений. Гистограмму и ход кривой накопленных частот, а также суммы накопленных частот можно представить графически (рис. 1.1.6).

На основе описанного только что метода представления первичных результатов- табличного и графического - может быть произведен расчет статистических показателей. Цель этих расчетов в том, чтобы с помощью простых показателей дать математическую оценку результатов эксперимента или наблюдения. Наиболее часто используемыми статистическими показателями распределения являются меры центральной тенденции и меры рассеивания.

Меры центральной тенденции. Среди множества мер центральной тенденции для обработки результатов психологических исследований чаще всего используют среднюю арифметическую величину (М) и медиану (Me ).

В случае небольшого числа первичных результатов и отсутствия предварительной их группировки значение средней арифметической получают путем последовательного суммирования исходных величин (X ) с последующим делением этой суммы на общее количество исходных данных (N ) :

Если массив первичных данных был подвергнут предварительной группировке, то для вычисления средней арифметической величины проделывают следующие операции. Для каждого класса группировки определяют произведение частоты класса (f ) на центр группировки класса (X ), а затем суммируют эти произведения и полученную величину делят на общее количество исходных данных N :

Так, для примера, приведенного в табл. 1.1.4, мы имеем: 57+52+141 +

1480 +168+222+224+324+132+136+24=1480 и -^- =29,60, т. е. М=29,60.

Второй мерой центральной тенденции, особенно для порядковых величин, является медиана. Медиана - это точка на измерительной шкале, выше которой находится точно половина наблюдений и ниже которой - также точно половина наблюдений. В этом определении важно подчеркнуть, что медиана - это точка на шкале., а не отдельное измерение или наблюдение. На примере данных табл. 1.1.4 продемонстрируем этапы вычисления медианы на основе сгруппированных данных.

    Находим половину наблюдений в массиве данных т. е. N /2. В нашем при мере: 50:2=25,0.

    Суммируем частоты, начиная с минимального класса группировки, до класса, содержащего половину необходимых наблюдений т. е. медиану. Для нашего примера, в котором N=50, половиной наблюдений будет 25. Итак, по данным табл. 1.1.4 это: 2+8+6+12=28. Отсюда очевидно, что

медиана предположительно расположена в 4-м классе группировки, точные границы которого 24,5 и 29,5.

    Определяем, сколько же наблюдений из класса, содержащего медиану, необходимо Для того, чтобы найти ее. Поскольку сумма накопленных ча стот из предыдущих трех классов равна 16 (см. табл. 1.1.5), то ясно, что из медианного класса необходимо еще 9 наблюдений, а именно 25-16=9.

    Вычисляем ту долю интервала на шкале, которая позволит определить точное положение медианы. Если в медианном классе имеем 12 наблю дений и наблюдения в пределах класса распределены равномерно, то при ширине класса, равной 5 единицам, получаем: 9/12x5=3,75.

    Прибавляем полученный результат к нижней точной границе класса группировки, содержащего медиану: 24,5+3,75=28,25. Это и есть ее зна чение: Л1е=28,25.

Существует аналитическая формула для интерполяции медианы:

Ме=1 +

где / - нижняя точная граница класса группировки содержащего медиану; F t - сумма частот классов" ниже /; / - сумма частот класса, содержащего медиану; N - число наблюдении или измерений; i - ширина класса группировки.

Как видно из нашего примера, когда распределение первичных результатов наблюдений или измерений отличается от нормального, то величины средней арифметической и медианы не совпадают: 29,60*28,25.

Меры изменчивости. В качестве мер изменчивости результатов, характеризующих степень рассеивания отдельных величин вокруг средней арифметической, используются разные меры в зависимости от примененных шкал измерения. Для характеристики рассеивания величин интервальных шкал и шкал отношений пользуются значением среднеквадратичного отклонения (а). Для величин порядковых шкал используют значения полуквар-тильных отклонений (Q t и Q 3 ).

При несгруппированных данных произведем расчет так называемого стандартного отклонения, обозначаемого S. Понятие стандартного отклонения (S ) на практике чаще всего используется как синоним среднего квадратичного отклонения (о). Расчет делается следующим образом:

    Рассчитаем среднюю арифметическую величину (М).

    Находим отклонение (х) каждого результата измерения (X ) от средней арифметической величины: х=Х-М,

    Возводим найденное значение отклонения каждого результата от сред него в квадрат: х 2 .

    Суммируем значения квадратов отклонений всех результатов: Ех 2 .

3. Анализируя группировку данных, приведенную в табл. 1.1.4, нетрудно заметить, что классом группировки, предположительно содержащим половину наблюдений левого интервала, является 3-й класс, а таким же классом для правого интервала - 6-й класс. Исходя из этого, по табл. 1.1.4 легко определить, что

для левого интервала /=19,5; F b =10; / =6; для правого интервала /=39,5; F t =9; / p =6.

4. Пользуясь найденными значениями величин, производим необходимые расчеты медиан обоих интервалов:

для левого Q,=19,5+-"-- 5 = 21,58,

129-9 для правого Q 3 = 39,5---5 = 36,58.

5. Согласно определению квартильного отклонения следует, что

/") :.~ L 4

п 36.58-21.58 ,. т. е. в нашем примере 4 = ^ = (,ъ.

6. Однако этот результат получен нами для нормального распределения данных. На самом же деле, как показывает табл. 1.1.4, в нашем примере мы имеем дело с явно асимметричным распределением. Поэтому истин ные полуквартильные отклонения в данном случае необходимо было рас считывать с учетом вычисленного значения для медианы (или Q 2), a именно, что Ме=28,25. Тогда мы получаем.

для левого интервала qj-q! =28,25-21,58=6,67,

для правого интервала Q 3 -Q 2 =36,58-28,25=8,33.

С помощью данного приема можно очень легко определить право- и левостороннюю асимметрию Любого распределения:

если Q 3 -Q,>Q 2 -Q, то имела место правосторонняя асимметрия;

если Q 3 - Q 2 < Q 2 - Q, то - левосторонняя.

И только при равенстве указанных разностей можно говорить о строго симметричном распределении.

Для каких целей служат меры центральной тенденции или Me) и меры изменчивости (D, S, о, Q)? Во-первых, эти меры используются для интерпретации первичных результатов. На основе полученных значений мер центральной тенденции можно, например, предвидеть наиболее вероятные результаты аналогичного исследования другой выборки. На основе же мер изменчивости можно оценить точность проведенных измерений, т. е. выявить случайные ошибки измерения. Во-вторых, та или иная из вышеназванных мер необходима для проверки статистической значимости различий (см. с. 274, Приложение I: f-критерий Стьюдента) между результатами исследо-

вания двух разных выборок, а также для вычисления так называемых коэффициентов корреляции, о которых сейчас пойдет речь.

Меры взаимосвязи. Коэффициентами корреляции пользуются* для того, чтобы выяснить, существует ли взаимосвязь между двумя переменными, и определить ее степень, т. е. тесноту взаимосвязи. Значение коэффициента корреляции изменяется от -1 до + 1. Величины, лежащие в этих пределах, отражают максимально возможную взаимосвязь сравниваемых переменных. Когда коэффициент корреляции равен нулю, то это означает, что взаимосвязь отсутствует. Положительная корреляционная связь указывает на прямо пропорциональное отношение между двумя переменными, а отрицательная - на обратно пропорциональную взаимосвязь. Чем больше абсолютное значение коэффициента корреляции, тем теснее связь между изучаемыми переменными. При значениях коэффициентов ± 1 можно говорить об отношении тождественности между переменными.

При сравнении порядковых величин пользуются коэффициентом ранговой корреляции по Ч. Спирмену (р), при сравнении интервальных величин - коэффициентом корреляции произведений по К. Пирсону (г). Рассмотрим кратко способы расчета этих коэффициентов.

Допустим, что с помощью двух опросников (X и У), требующих альтернативных ответов «да» или «нет», были получены первичные результаты - ответы 15 испытуемых (N=15). Результаты представлены в виде сумм баллов за утвердительные ответы («да») для каждого испытуемого отдельно для опросника X и опросника Y. Требуется определить, измеряют ли опросники А" и Y похожие личностные качества испытуемых, или не измеряют. Можно предположить, что если опросники по содержанию и формулировкам мало отличаются друг от друга, то сумма баллов, набранная каждым из испытуемых по опроснику X, будет близка к сумме баллов, набранных по опроснику Y.

Полученные в эксперименте первичные результаты представляют собой два ряда порядковых величин для переменной X и для переменной Y. Для установления взаимосвязи между каждой парой порядковых величин применяют коэффициент порядковой корреляции Спирмена (р). Для расчета величины р известна следующая формула:

где N - число сравниваемых пар величин двух переменных и d 2 - квадрат разностей рангов этих величин.

Для вычисления предстоит проделать ряд операций. Прежде всего надлежит табулировать все первичные результаты (табл. 1.1.7). В 1-й графе записывают номер испытуемого, а во 2-й и 3-й - полученные им суммы баллов по первой методике (переменная X) и по второй (переменная Y).

Затем каждому первичному результату присваивают ранг. Эта процеду- " ра называется ранжированием. Начинают ее с того, что среди всех значений переменной X находят наибольшее и в одной строке с ним, но уже в 4-й графе (R x ) проставляют единицу, что и означает 1-й ранг. В нашем случае мак-

Усреднив эти ранги, каждому испытуемому присваивают одинаковый ранг, в данном случае - 8-й.

На следующем этапе табулирования определяют разность рангов для каждой пары значений X и У и полученные результаты проставляют в 6-й графе: d =R X -R Y . Наконец, в 7-й графе отражены значения квадратов разности рангов, т. е. для каждой пары ХкУ. Полученные величины суммируют и записывают в последней строке таблицы: Sd 2 . Полученную величину (в нашем примере Erf 2 =171) и подставляют в формулу коэффициента ранговой корреляции.

В нашем примере р =0,695. Положительное значение полученного коэффициента позволяет утверждать, что оба опросника - X и Y - дают возможность выявлять похожие, но не идентичные личностные свойства.

Коэффициент корреляции по формуле Пирсона рассчитывается на основе отклонения первичных результатов и среднего квадратичного отклонения от их среднеарифметического значения. Формула расчета коэффициента корреляции по К. Пирсону может быть представлена следующим образом:

т - XY

где х - отклонение величины X М х ; у - отклонение величины Y (первичного результата) от средней арифметической M Y ; "Lx-y - алгебраическая сумма произведений отклонений х и у от М х к M r ; N - объем выборки сравниваемых пар первичных результатов; а х - среднее квадратичное отклонение для первичных результатов X; а у - среднее квадратичное отклонение для первичных результатов У.

Рассмотрим пример, который позволит проследить этапы расчета. Допустим, что переменная X представлена результатами измерения (в сантиметрах) величины коленного рефлекса при. инструкции расслабить мышцы; переменная Y - то же, но при инструкции напрячь мышцы (табл. 1.1.8). Проверяется гипотеза о том, что величины коленного рефлекса не взаимосвязаны между собой.

Последовательность расчета коэффициента.следующая. , 1 . По формулам

, Z.X I.Y

Л, Л= А_ И Л* У = -

находим средние арифметические значения для переменных X и У (в нашем примере М х =7,5; М у =8,0).

    Находим величины отклонений каждого из первичных результатов от М х и M Y - соответственно х и у (см. 4-ю и 5-ю графы).

    Значение каждого отклонения х и у возводим в квадрат: х г и у 2 (см. 5-ю и 6-ю графы).

Таблица 1.1.8

Расчет коэффициента корреляции ло Пирсону (г)

измерения

Таким образом: r XY =

Мт г а у ~ 10-3,53-3,79 ~ 133,78

    По формуле для среднего квадратичного отклонения рассчитываем о^ и о^ (в нашем примере о ж =3,53; о =3,79).

    Определяем произведения для каждой пары отклонений (см 1 . 8-ю графу).

    Полученные величины подставляем в формулу коэффициента корреля ции по Пирсону. Полученный для нашего примера коэффициент корре ляции г ху =0,76 свидетельствует о том, что обе величины коленного реф лекса взаимосвязаны, несмотря на различные условия их измерения.

Методы определения абсолютных порогов чувствительности.

Прежде всего рассмотрим метод минимальных изменений, или метод границ. Основное содержание метода отражено в его названии: выбранный континуум стимулов необходимо предъявлять таким образом, чтобы дискретные значения этого континуума отличались друг от друга на минимально возможную величину. Предъявление стимулов чередуют то в возрастающем, то в убывающем порядке. Для каждой последовательности предъявления стимулов определяют границу смены ответов (типа: «да/нет», «вижу/не вижу»). Обычно измерение порога начинают с убывающего ряда стимулрв, приняв за исходное значение величину отчетливо воспринимаемого стимула. Считают, что порог, т. е. величина стимула, при которой произошла смена ответов испытуемого, находится в середине межстимульного интервала - между тем стимулом, который еще воспринимается, и тем, который уже не воспринимается. Аналогично определяют порог и для возрастающего ряда стимулов. Границы смены категории ответов в восходящих и нисходящих рядах стимулов чаще всего не совпадают. Это происходит вследствие возникновения у испытуемого так называемых систематических ошибок - ошибок привыкания и ошибок ожидания. Каждую восходящую и каждую нисходящую последовательность стимулов повторяют в одном опыте от 6 до 15 раз. За абсолютный порог чувствительности (/?/.) принимают среднее арифметическое значение величин всех найденных в процессе исследования порогов появления и порогов исчезновения:

где RL - средний абсолютный порог чувствительности; L - значение порога в каждом стимульном ряду - как восходящем, так и нисходящем; N - общее число стимульных рядов. Вариативность ответов испытуемого оценивают с помощью среднеквадратичного отклонения (ст). Ошибку, которую приходится допускать, если найденную в опыте оценку абсолютного порога рассматривать как истинное его значение, называют стандартной ошибкой среднего значения:

где а - среднее квадратичное отклонение значения RL; a N - объем выборки.

Другим методом, используемым для определения абсолютного порога чувствительности, является метод постоянных раздражителей, или метод констант. Этот метод требует проведения предварительного опыта, цель которого состоит в ориентировочном определении диапазона пороговой зоны. Пороговая зона - это такой диапазон интенсивности раздражителя, на границах которого испытуемый практически всегда начинает или перестает ощущать воздействие стимула. Выявленный в опыте диапазон пороговой зоны разделяют на равное, желательно нечетное, число интервалов интенсивности (от 5 до 9). Поэтому все разности между величинами всех стиму-

лов в пороговой зоне одинаковы. В течение всего опыта эти выбранные интенсивности остаются неизменными (отсюда и название метода: метод констант). Во время проведения опыта стимулы разной интенсивности предъявляют в случайном порядке, причем обязательно стимулы каждой интенсивности необходимо предъявлять одинаковое число раз.

При обработке экспериментальных данных с целью определения абсолютного порога чувствительности целесообразно придерживаться следующей последовательности.

    Перевести эти абсолютные частоты ответов в относительные частоты (/), что осуществляют путем деления числа положительных ответов на ко личество предъявлений данного стимула.

    Построить систему координат, на оси абсцисс которой отложить интен сивности воздействовавшего стимула, а на оси ординат - относитель ные частоты положительных ответов испытуемого (/) - от 0,0 до 1,0.

    Нанести на график экспериментально полученные значения / для всех интенсивностей стимула и экспериментальные точки соединить с помо щью отрезков прямых линий.

    Из точек на оси ординат, соответствующих частоте положительных от ветов (/=0,50, /=0,25 и /=0,75), параллельно оси абсцисс провести пря мые линии до пересечения их с экспериментальной кривой и обозначить точки пересечения соответственно 1, 2 и 3.

    Путем проекции точки 1 на ось абсцисс найти на ней величину медианы, а путем проекции точек 2 и 3- значение полуквартильных отклонений. Величина Me (проекция точки 1) будет соответствовать абсолютному порогу чувствительности, a Q, и Q 3 (проекции точек 2 и 3) - зоне неуве ренных ответов испытуемых.

Большей точности при графическом определении медианы и полуквартильных отклонений можно достичь путем построения кривой накопленных частот 1 .

Когда результаты исследования подчиняются закону нормального распределения, в качестве меры абсолютного порога и меры точности результатов можно использовать значения средней арифметической величины (М) и среднего квадратичного отклонения (о).

И наконец, для определения абсолютного порога чувствительности используют метод средней ошибки. Однако применение его целесообразно только в тех случаях, когда есть возможность непрерывно (плавно) изменять предъявляемый стимул. При измерениях по данной методике испытуемый сам регулирует величину стимула. Начиная от первоначально вызвавшей у него отчетливое ощущение, он плавно снижает интенсивность стиму-

ла до тех пор, пока не установит такое ее значение, при котором он впервые утрачивает ощущение его воздействия. Если опыт начинается сявнанеощу-щаемой интенсивности стимула, то испытуемый должен найти такое ее значение, при которой ощущение появляется.

При обработке полученных результатов в качестве показателей абсолютного порога чувствительности используют меры центральной тенденции - медиану (Me) и среднюю арифметическую величину (М).

Методы определения разностных порогов чувствительности. Прежде всего остановимся на особенностях использования метода минимальных изменений, или метода границ, в целях определения разностных порогов. Хотя вся процедура измерений в основном остается той же, что и при измерении абсолютного порога, в нее необходимо внести некоторые изменения. Главное из них связано с тем, что определение разностного порога предполагает выбор эталонного стимула среди континуума сверхпороговых стимулов. По отношению к нему и производят сравнение всех остальных стимулов. Сравнение эталонного и остальных, т. е. переменных, стимулов можно осуществлять последовательно или одновременно. В первом случае первым предъявляют эталонный стимул, а во втором - эталонный и сравниваемый с ним переменный стимулы одновременно. Использование метода границ для определения разностных порогов требует учета не двух, а трех категорий ответов испытуемого: «больше», «меньше» и «равно». При обработке экспериментальных данных для каждого стимульного ряда находят границы между сменой категорий ответов, а именно: от «меньше» к «равно» и от «равно» к «больше». Усредняя значения интенсив-ностей стимулов, соответствующие интервалам между этими границами (совместно для нисходящих и восходящих рядов стимуляции), получают средние значения «верхнего» (для ответов «больше») и «нижнего» (для ответов «меньше») порогов чувствительнбсти. Разность между ними определяет интервал неопределенности, т. е. ту зону стимульного ряда, в которой преобладают ответы «равно»: Величина интервала неопределенности, разделенная пополам, дает нам искомую величину разностного порога чувствительности.

Стимул, находящийся в средней точке интервала неопределенности, всегда оценивается испытуемым как равный эталону, т.е. выступает как субъективный эквивалент эталона. Величину данного стимула вычисляют как полусумму верхнего и нижнего порогов. В психофизике эта величина получила название точки субъективного равенства. Поскольку точка субъективного равенства не совпадает с величиной объективного эталона, то разность между той и другой указывает на величину постоянной ошибки (ПО) испытуемого. При переоценке испытуемым эталона постоянная ошибка имеет положительное значение, при недооценке - отрицательное.

Основные предпосылки при определении разностных порогов методом постоянных раздражителей, или методом констант, остаются теми же, что и при определении абсолютного порога чувствительности. Однако естественно, что разностный порог определяется по отношению к произвольно вы-

ности недостаточно точен, поскольку при расчете оказывается учтенной лишь одна часть интервала неопределенности, в котором находится порог чувствительности. Поэтому чаще всего испытуемому дают иную инструкцию, а именно «найти равенство между переменным и эталонным стимулами». При попеременном подравнивании испытуемым заметно больших и заметно меньших, чем эталон, переменных стимулов получаем бимодальное распределение результатов измерения. Раздельный расчет и анализ значений средней арифметической величины ) и среднего квадратичного от^ клонения (а) для подравнивания, где переменный стимул был больше и меньше эталона, позволяет определить интервал неопределенности, а половина этого интервала будет характеризовать величину разностного порога чувствительности.

14. Понятие, виды, особенности измерительных шкал

Измерение - это алгоритмическая операция, которая данному наблюдаемому состоянию объекта ставит в соответствие определенное обозначение: число, помер или символ. Обозначим через хi. i=1,…, m наблюдаемое состояние (свойство) объекта, а через уi, i = 1,..,m - обозначение для этого свойства. Чем теснее соответствие между состояниями и их обозначениями, тем больше информации можно извлечь в результате обработки данных. Менее очевидно, что степень этого соответствия зависит не только от организации измерений (т. е. от экспериментатора), но и от природы исследуемого явления, и что сама степень соответствия в свою очередь определяет допустимые (и недопустимые) способы обработки данных!

Измерительные шкалы в зависимости от допустимых на них операций различаются по их силе. Самые слабые - номинальные шкалы, а самые сильные - абсолютные.

С. Стивенсом предложена классификация из 4 типов шкал измерения:

1) номинативная, или номинальная, или шкала наименований;

2) порядковая, или ординальная, шкала;

3) интервальная, или шкала равных интервалов;

4) шкала равных отношений.

Выделяют три основных атрибута измерительных шкал, наличие или отсутствие которых определяет принадлежность шкалы к той или иной категории:

1. упорядоченность данных означает, что один пункт шкалы, соответствующий измеряемому свойству, больше, меньше или равен другому пункту;

2. интервальность пунктов шкалы означает, что интервал между любой парой чисел, соответствующих измеряемым свойствам, больше, меньше или равен интервалу между другой парой чисел;

3. нулевая точка (или точка отсчета) означает, что набор чисел, соответствующих измеряемым свойствам, имеет точку отсчета, обозначаемую за ноль, что соответствует полному отсутствию измеряемого свойства.

Кроме того, выделяют следующие группы:

    неметрические или качественные шкалы, в которых отсутствуют единицы измерений (номинальная и порядковая(ранговая) шкалы);

    количественные или метрические (шкала интервалов, абсолютная шкала).

Шкалирование представляет собой отображение какого-либо свойства объекта или явления в числовом множестве.

Можно сказать, что чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Поэтому так естественно стремление каждого исследователя провести измерения в возможно более сильной шкале. Однако важно иметь в виду, что выбор шкалы измерения должен ориентироваться на объективные отношения, которым подчинена наблюдаемая величина, и лучше всего производить измерения в той шкале, которая максимально согласована с этими отношениями. Можно измерять и в шкале более слабой, чем согласованная (это приведет к потере части полезной информации), но применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка.

Иногда же исследователи усиливают шкалы; типичный случай - «оцифровка» качественных шкал: классам в номинальной или порядковой шкале присваиваются номера, с которыми дальше «работают» как с числами. Если в этой обработке не выходят за пределы допустимых преобразований, то «оцифровка» - это просто перекодировка в более удобную (например, для ЭВМ) форму. Однако применение других операций сопряжено с заблуждениями, ошибками, так как свойства, навязываемые подобным образом, на самом деле не имеют места.

Виды шкал:

    Номинативная или шкала наименований:

Позволяет установить к какому классу относится тот или иной объект измерения. Все объекты группируются по классам. Каждому классу приписывается значение. Особенностью является то, что учитывается одно значение чисел. Обычные арифметические операции недопустимы. Мы можем сделать вывод о тождественности по измеряемому свойству. Иными словами, объекты сравниваются друг с другом и определяется их эквивалентность -- неэквивалентность. В результате процедуры образуется совокупность классов эквивалентности. Объекты, принадлежащие одному классу, эквивалентны друг другу и отличны от объектов, относящихся к другим классам. Эквивалентным объектам присваиваются одинаковые имена. О шкале наименований можно говорить в том случае, когда эмпирические объекты просто "метятся" числом. Несмотря на тенденцию "завышать" мощность шкалы, психологи очень часто применяют шкалу наименований в исследованиях. "Объективные" измерительные процедуры при диагностике личности приводят к типологизации: отнесению конкретной личности к тому или иному типу. Примером такой типологии являются классические темпераменты: холерик, сангвиник, меланхолик и флегматик.

Самая простая номинативная шкала называется дихотомической. При измерениях по дихотомической шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1, или 2 и 6, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным. В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет.

Операции с числами для номинативной шкалы.

1) Нахождение частот распределения по пунктам шкалы с помощью процентирования или в

численности к общему ряду распределения (частоты).

2) Поиск средней тенденции по модальной частоте. Модальной (Мо) называют группу с

наибольшей численностью. Эти две операции дают представление о распределении

психологических характеристик в количественных показателях. Его наглядность повышается

отображением в диаграммах.

3) Самым сильным способом количественного анализа является установление взаимосвязи

между рядами свойств, расположенных неупорядоченно. С этой целью составляют

перекрестные таблицы. Помимо простой процентовки в таблицах перекрестной

    Порядковая (ранговая) шкала:

Измерения предполагают приписывание объектам чисел в зависимости от выраженности признака. Данная шкала делит всю совокупность признаков на множество, которые связаны отношениями «больше - меньше». Для объектов с одинаковой выраженностью признака используется правило равных рангов. При ранжировании необходимо указывать какому значению (наибольшему или наименьшему) присваивается первый ранг. Эта операция должна быть одинакова для всех признаков.

Чтобы проверить правильность ранжирования используется формула: сумма рангов равна общее количество измерений умноженное на сумму N+1 и делённое на 2.

Шкалы порядка широко используются в психологии познавательных процессов, экспериментальной психосемантике, социальной психологии: ранжирование, оценивание, в том числе педагогическое, дают порядковые шкалы. Классическим примером использования порядковых шкал является тестирование личностных черт, а также способностей. Большинство же специалистов в области тестирования интеллекта полагают, что процедура измерения этого свойства позволяет использовать интервальную шкалу и даже шкалу отношений.

В качестве характеристики центральной тенденции можно использовать медиану, а в качестве характеристики разброса - процентили. Для установления связи двух измерений допустима порядковая корреляция (т-Кэнделла и р-Спирмена).

Характерной особенностью порядковых шкал является то, что отношение порядка ничего не говорит о дистанции между сравниваемыми классами. Поэтому порядковые экспериментальные данные, даже если они изображены цифрами, нельзя рассматривать как числа.Числовые значения порядковой шкалы нельзя складывать, вычитать, делить и умножать.

    Интервальная шкала.

Отражает уровень выраженности свойства. Данная шкала предполагает использование единиц измерения. Тестовые шкалы, разработанные в следствии стандартизации. Но в данной шкале не существует нулевой точки отсчёта. Ряд авторов полагают, что относить тесты интеллекта к шкалам интервалов нет оснований. Во-первых, каждый тест имеет "нуль" - любой индивид может получить минимальный балл, если не решит ни одной задачи в отведенное время. Во-вторых, тест имеет максимум шкалы -- балл, который испытуемый может получить, решив все задачи за минимальное время. В-третьих, разница между отдельными значениями шкалы неодинакова. По крайней мере, нет никаких теоретических и эмпирических оснований утверждать, что 100 и 120 баллов по шкале IQ отличаются на столько же, на сколько 80 и 100 баллов.

Скорее всего, шкала любого теста интеллекта является комбинированной шкалой, с естественным минимумом и\или максимумом, но порядковой. Однако эти соображения не мешают тестологам рассматривать шкалу IQ как интервальную, преобразуя "сырые" значения в шкальные с помощью известной процедуры "нормализации" шкалы

Интервальная шкала позволяет применять практически всю параметрическую статистику для анализа данных, полученных с ее помощью. Помимо медианы и моды для характеристики центральной тенденции используется среднее арифметическое, а для оценки разброса--дисперсия. Можно вычислять коэффициенты асимметрии и эксцесса и другие параметры распределения. Для оценки величины статистической связи между переменными применяется коэффициент линейной корреляции Пирсона и т.д.

Операции с числами в интервальной метрической шкале богаче. Чем в номинальных

1) Точка отсчета на шкале выбирается произвольно.

2) Все методы описательной статистики.

3) Возможности корреляционного и регрессионного анализа. Можно использовать коэффициент парной корреляции Пирсона и коэффициенты множественной корреляции, что может предсказать изменения в одной переменной в зависимости от изменений в другой или в целом ряде переменных.

    Шкала абсолютная. (шкала отношений):

Шкалу отношений называют также шкалой равных отношений. Особенностью этой шкалы является наличие твердо фиксированного нуля, который означает полное отсутствие какого-либо свойства или признака. Шакала отношений является наиболее информативной шкалой, допускающей любые математические операции и использование разнообразных статистических методов. Шкала отношений по сути очень близка интервальной, поскольку если строго фиксировать начало отсчета, то любая интервальная шкала превращается в шкалу отношений.

Шкала отношений показывает данные о выраженности свойств объектов, когда можно сказать, во сколько раз один объект больше или меньше другого.

Это возможно лишь тогда, когда помимо определения равенства, рангового порядка, равенства интервалов известно равенство отношений. Шкала отношений отличается от шкалы интервалов тем, что на ней определено положение "естественного" нуля. Классический пример -- шкала температур Кельвина. Именно в шкале отношений производятся точные и сверхточные измерения в таких науках, как физика, химия, микробиология и др. Измерение по шкале отношений производятся и в близких к психологии науках, таких, как психофизика, психофизиология, психогенетика.

Измерения массы, времени реакции и выполнения тестового задания -- области применения шкалы отношений.

В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета. Считается, что в психологии примерами шкал равных отношений являются шкалы порогов абсолютной чувствительности. Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной. Абсолютная глупость и абсолютная честность – понятия скорее житейской психологии.

Возможны преобразования из одной шкалы в другую. Результаты, полученные по шкале интервалов, могут быть преобразованы в ранги или переведены в номинативную шкалу.

Рассмотрим, например, первичные результаты шести испытуемых по шкале экстраверсии-

интроверсии теста Айзенка. психолог обязан помнить, что в действительности

скрывается за величинами, которыми он оперирует.

1) Первое ограничение – соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования. Более сильная шкала отличается от слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы допустимо и для более сильной, но не наоборот. Поэтому, смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал.

2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным.

Рассмотрим основные типы шкал измерения и соответствующие им группы допустимых преобразований.

Все шкалы делят на две группы – шкалы качественных признаков и шкалы количественных признаков .

К шкалам качественных признаков относятся номинальная и порядковая шкалы.

Шкала наименований (номинальная шкала). Измерения в этой шкале призваны для того чтобы различать объекты. То есть фиксируется только два отношения: ”равно” “не равно”. Единственно допустимой операцией с измерениями в номинальной шкале является счет. Так фиксируются такие характеристики, как собственные имена людей, национальность, название населенных пунктов. С такими измерениями недопустимы математические операции такие как сложение или умножения. Не имеет смысла складывать, например, номера телефонов.

Порядковая шкала это шкала рангов, в которой числа присваиваются объектам для отражения относительной выраженности некоторых характеристик у тех или иных объектов. Простейшим примером являются оценки знаний учащихся. В этой шкале можно задать профессиональный статус. Таблица данных содержит информацию только трех эмпирических отношениях: ”<, >, =”. Допустимыми преобразованиями для данного типа шкал являются все монотонные преобразования, т.е. такие, которые не нарушают порядка следования значений измеренных величин. Такие данные не содержат информации на сколько отличается один ранг от другого.

Как показали многочисленные опыты, человек более правильно (и с меньшими затруднениями) отвечает на вопросы качественного, например, сравнительного, характера, чем количественного. Так, ему легче сказать, какая из двух гирь тяжелее, чем указать их примерный вес в граммах.

К количественным шкалам относятся: “шкала интервалов”, “шкала отношений”, “абсолютная шкала”.

Интервальная шкала это числовая шкала, в которой количественно равные промежутки отображают. Интервальная шкала содержит не только всю информацию, заложенную в порядковой шкале, но позволяет сравнить различия между ними. Разница между двумя смежными значениями шкалы идентична разнице между двумя любыми другими смежными значениями интервальной шкалы. Между значениями интервальной шкалы существует постоянный или равный интервал. Интервальная шкала используется, например, при измерении температуры.

В интервальной шкале расположение точки отсчета не фиксируется. Точка начала отсчета и единицы измерения выбираются произвольно. Любое линейное преобразование сохраняет свойства шкалы. Здесь x – первоначальное значение шкалы, y – преобразованное значение шкалы, b – положительная константа.

В шкале отношений по сравнению с интервальной шкалой определена еще и точка начала отсчета. Общеизвестными примерами измерения в этой шкале являются рост, вес, количество денег. Относительные шкалы допускают только преобразование . Один и тот же эмпирический смысл имеют значения: 12 кг, 12 000 г, 0,012 т.


Абсолютная шкала допускает преобразование только в форме тождества . Этот тип шкалы удобен для записи количества элементов в некотором конечном множестве. Если пересчитав количество яблок, один исследователь запишет в таблицу данных значение 6, а другой VI, то достаточно знать, что 6 означает тоже самое, что и VI, то есть 6=VI.

Относительная информативность измерений в различных шкалах повышается в порядке рассмотрения шкал. Различные шкалы требуют разработки своих методов анализа. При совместном рассмотрении признаков, измеренных в различных шкалах, используются методы преобразования измерительных шкал. Преобразовывать даны из одной шкалы в другую можно только с понижением мощности шкалы.

Такая знаковая система, для которой задается отображение. Элемент шкалы ставится в соответствие реальным объектам. Можно сказать, что шкала измерений - это градуированная линейка, на которую нанесены значения какой-либо величины (расстояние, температура, давление). Проблема, связанная с обеспечением высокого качества продукции, неразрывно связана с качеством измерений. Если последнее не соответствует современным требованиям технического прогресса, нет возможности добиться соответствующего качества продукции. Далее будет подробно рассказано о том, для чего нужна шкала измерений. Виды шкал измерений также будут подробно рассмотрены в данной статье.

Измерение и качество продукции

Как уже было сказано ранее, если успешно решить вопросы, которые связаны с качественных параметров материалов и прочих изделий, а также поддержания режимов в технологии производства, качество продукции значительно улучшится. Если говорить простыми словами, контроль качества - это замеры всех параметров технологических процессов. Результаты их измерений нужны для управления процессом. Чем точнее результаты, тем лучше контроль.

У состояния измерений есть следующие основные свойства:

  • Воспроизводимость измерительных результатов.
  • Точность.
  • Сходимость.
  • Скорость получения.
  • Единство измерений.

Воспроизводимость результатов - это близость измерительных результатов одной величины, которые были получены в различных местах, при помощи разных методов и средств, в разное время и разными людьми, но при одинаковых условиях (влажности, давлении, температуре).

Сходимость измерительных результатов - это когда результаты измерений одной величины, которые проводились повторно с помощью одних и тех же средств, тем же методом, в одних и тех же условиях, с одинаковой тщательностью, близки.

Любое измерение осуществляют с использованием соответствующих шкал.

Шкала измерений. Виды шкал измерений. Примеры

Уже было сказано, что под шкалой подразумевается ряд неких отметок, которые упорядочены. Данный ряд соответствует соотношению идущих друг за другом значений измеряемой величины.

Что такое шкала последовательность которые имеют различный размер и являются одноименными. Она должна быть принята по соглашению.

На практике применяют пять видов шкал:

  • Шкала порядка.
  • Шкала отношений.
  • Шкала наименований.
  • Шкала интервалов.
  • Шкала абсолютных значений.

Шкала порядка

Места, которые величины занимают в такой шкале, называются рангами. Саму шкалу также называют ранговой либо неметрической. В ней все числа упорядочиваются по занимаемым местам. Интервалы между ними нельзя точно измерить. Данная шкала дает возможность не только установить равенство или неравенство между измеряемыми объектами, но и определить характер неравенства в виде логических суждений типа «больше и меньше», «хуже и лучше».

При помощи шкалы порядка можно измерять показатели, являющиеся качественными, но не имеющие строгих количественных мер. Широкое применение нашли такие шкалы в психологии и педагогике, а также социологии.

Шкала отношений

Она отличается от интервальной шкалы строгим определением положения нулевой точки. По этой причине она не ограничивает математический аппарат, который используется при обработке результатов.

Что такое шкала отношений? По ней измеряют величины, образуемые как разности чисел, которые отсчитываются по шкале интервалов. Таким образом, календарное время отсчитывают по интервальной, а промежутки времени - по шкале отношений.

При использовании данного типа измерение любой величины является экспериментальным определением отношения этой самой величины к подобной ей, которая принимается за единицу. При измерении длины объекта можно узнать, во сколько раз она больше длины другого объекта, который принят за единицу длины, например, метровой линейки. Если применять только шкалы отношений, то измерению можно дать более частное, узкое определение: измерение любой величины - есть нахождение опытным путем ее отношения к соответствующей единице.

Шкала наименований

Данная шкала еще называется номинальной. Она является самой простой. Числа в ней играют роль ярлыков. Они нужны для того, чтобы обнаруживать и различать изучаемые объекты. Числа, которые составляют данную шкалу, разрешено менять местами. В ней нет никаких отношений типа «меньше-больше». По этой причине некоторые думают, что ее применение не стоит принимать за измерение. Используя шкалу наименований, можно проводить лишь небольшое число математических операций. К примеру, нельзя вычитать и складывать ее числа, но можно посчитать, сколько раз встречается определенное число.

Интервальная шкала

Это такой тип, в котором числа не просто являются упорядоченными по рангам, но и разделяются определенными промежутками. Нулевая точка в данной шкале выбирается произвольно. Это отличает ее от шкалы отношений. В качестве примеров можно привести календарное время (в различных календарях начало исчисления лет устанавливалось по каким-то случайным причинам), потенциал электрополя, температуру, потенциальную энергию поднятого груза.

Результаты, получаемые путем измерения по этой шкале, можно обрабатывать любым математическим методом, кроме определения отношений. Данные, которые показывает шкала, отвечают на вопрос «на сколько меньше или больше?», но не дают возможности утвердительно говорить, что одно из значений исследуемой величины во сколько-то раз меньше или больше, чем другое. К примеру, если температура в помещении с 10 градусов повысилась до 20, нельзя сказать, что теперь в два раза теплее.

Шкала абсолютных величин

Часто величина чего-либо измеряется напрямую. К примеру, непосредственно подсчитывают количество дефектов в изделиях, число единиц выпущенной продукции, количество присутствующих на лекции студентов, сколько прожито лет и так далее. Делая такие измерения, на шкале отмечаются точные абсолютные количественные значения того, что измеряется. Шкала абсолютных значений имеет точно такие же свойства, что шкала отношений. Разница лишь в том, что те величины, которые обозначаются на первой, носят абсолютный, а не относительный характер.

Результаты, получаемые после измерения по данной шкале, обладают наибольшей достоверностью и информативностью. Они очень чувствительны к неточностям в измерениях.

Вывод

Таким образом, стало понятно, что такое шкала измерений и для чего она используется. Как выяснилось, она не одна. Их пять, и каждая используется для измерения определенных величин. Если раньше казалось, что шкала должна измерять только то оказывается, в таких науках, как психология и социология, тоже есть свои шкалы, которые измеряют числовые показатели. По сути, психологический тест тоже является такой шкалой.

Измеряемая величина называется переменной, а то, чем производится измерение - инструментом. В результате получаются данные либо результаты, которые могут быть различного качества и относиться к одной из шкал. Каждая из них ставит ограничения на использование каких-то математических операций.

Теоретическая валидизация в социологическом исследовании: Методология и методы

Благодаря Стенли Стивенсону, в нашей исследовательской практике мы оперируем несколькими типами шкал. Некоторые критикуют эту типологию, но судя по-всему никто не придумал ничего лучше.

0 Нажми, если пригодилось =ъ

Независимо от того, какой сложности анкетные вопросы или же тестовые методики вы рассматриваете, все их можно разделить на три типа в зависимости от того, к какой измерительной шкале они относятся. Речь в данном случае идет не о специфических методиках построения измерительных инструментов (например, шкала Гутмана или шкала Терстоуна), а о классификации измерительных шкал, предложенной Стэнли Стивенсом в 1946 году. Знание этой классификации имеет решающее значение с точки зрения использования количественного подхода, поскольку применение тех или иных методов математической статистики опирается, в том числе, и на измерительные шкалы, в которой отображены интересующие исследователя переменные.

Более подробно о понятии "переменная"
"Переменная" является часто употребляемым понятием в рамках научных исследований (не только в социальных и поведенческих науках) и особенно, если мы говорим о количественном подходе и применении статистических методов. Фактически переменная - это любое свойство изучаемых объектов, которое меняется от одного наблюдения к другому. Под наблюдениями в данном случае понимаются объекты изучения (люди, организации, страны или что-либо другое - зависит от самого исследования).
Если же некоторое свойство не изменяется от одного наблюдения к другому, то оно не дает никакой ценной в математическом смысле информации (большинство методов будет просто непригодно для использования).
Таким образом, в рамках количественного подхода изучаемые объекты представляются в виде набора переменных, составляющих интерес и подлежащих изучению. Нетрудно догадаться что переменные, прежде всего, делятся в зависимости от шкал, в которых они отображены. Так, можно выделить, например, номинальные, порядковые и метрические переменные. При этом, порядковые можно разделить на свернутые и непрерывные порядковые. Непрерывные порядковые переменные имеют множество численных значений и выглядят (по крайней мере, на первый взгляд), как метрические. Свернутые порядковые переменные имеют лишь несколько категорий или численных значений (не более пяти-шести). Они могут быть получены либо путем сбора данных в свернутой форме, либо сворачивания непрерывной порядковой или метрической шкалы.
Еще одним важным делением переменных является деление на зависимые и независимые. Часто в процессе анализа выдвигаются гипотезы о влиянии одних переменных на другие. В таких случаях, влияющие переменные называются независимыми, а переменные, на которые влияние оказывается, - зависимыми. Например, если мы говорим о взаимосвязи между полом студента и успешностью его обучения, то пол будет - независимой переменной, а успешность обучения - зависимой.

Согласно классификации Стивенсона, в самом общем виде, можно выделить три типа шкал:
- номинальную,
- порядковую,
- метрическую.

Номинальная шкала включает в себя класс переменных, значения которых можно разделить на группы, но невозможно проранжировать. Примерами соответствующих переменных являются пол, национальность, религия и т.д. Рассмотрим более подробно такую переменную как национальность. В данном случае респондентов можно разделить на разные группы в зависимости от того, к какой национальности они себя относят. Вместе с тем, на основе этой информации, респондентов невозможно упорядочить в смысле количественной выраженности интересующего нас параметра, ведь национальность не является измеряемым, в традиционном значении этого слова, свойством.
Порядковая шкала включает в себя класс переменных, значения которых можно не только разделить на группы, но и проранжировать в зависимости от выраженности измеряемого свойства. Классическим примером порядковой шкалы является Шкала Богардуса, предназначенная для измерения национальной дистанциированности. Ниже приведен адаптированный для населения Украины вариант (Н.Панина, Е.Головаха):

Анкетное задание
Относительно каждой национальности, приведенной ниже, выберите одно из положений, наиболее близкое для вас лично, на которое бы вы допустили представителей этой национальности.
Шкала ответов
1) как членов моей семьи;
2) как близких друзей;
3) как соседей;
4) как колег по работе;
5) как жителей Украины;
6) как поситителей Украины;
7) вообще не допускал бы в Украину.

Эта шкала позволяет упорядочить респондентов в зависимости от их отношения к той или иной национальности. Вместе с тем, она предоставляет лишь приблизительную информацию, которая не дает возможности точно оценить различия между градациями шкалы. Так, например, мы может утверждать, что респондент, готовый допустить евреев в качестве членов своей семьи будет относится к ним лучше, чем тот, кто готов допустить их лишь как соседей. Вместе с тем, мы не можем сказать "на сколько?" или "во сколько?" раз первый респондент лучше относится к представителям еврейской национальности чем второй. Другими словами, у нас нет никаких аргументов, которые бы подтверждали равенство интервалов между пунктами шкалы.
Метрическая шкала включает в себя класс переменных, значения которых можно как разделить на группы и проранжировать, так и определить их величину в точных терминах (те самые "на сколько?" и "во сколько?"). Типичными примерами соответствующих переменных являются возраст, заробтная плата, количество детей и т.д. Измерение каждой из них можно осуществить максимально точно: возраст в годах, зароботнуню плату в гривнах, количество детей в... штуках;)
Естественно, если переменная может быть потенциально выражена в метрической шкале, то эту же переменную можно выразить и в порядковой.

Например, возраст можно выразить в возрастных группах (молодежь, средний возраст, пожилой возраст), которые дают лишь приблизительную информацию о респонденте, несмотря на возможность их ранжирования.
Принадлежность переменной к метрической шкале открывает возможность использования любых статистических методов. В свою очередь принадлежность к порядковой или номинальной ограничивает выбор математических инструментов (в случае порядковой шкалы в меньшей мере, а в случае номинальной - в большой). Классификация статистических методов приведена .
Для того, чтобы сделать различия между номинальной, порядковой и метрической шкалами еще более очевидными, приведу дополнительный пример, посвященный рейтингу профессиоанальных боксеров в супертяжелом весе по версии сайта boxrec.com (информация актуальна по состоянию на 31.01.2012). При этом мы рассмотрим данные относительно боксеров первой десятки по трем переменным: этническая принадлежность боксера, его место в рейтинге и количество рейтинговых очков, которые имелись у него в активе 31.01.2012.

А) Этническая принадлежность (номинальная шкала ). Три боксера (братья Кличко и Димитренко) являются украинцами, один (Поветкин) - русским, один (Адамек) - Поляком, два (Чемберс и Томпсон) - американцами, один (Фьюри) - британцем, один (Хелениус) - фином, один (Пулев) - болгарином. Таким образом переменная "национальность" помогла нам разделить всех боксеров на 7 групп, в зависимости от их этнической принадлежности. Владея этими данными, человек далекий от бокса ничего не сможет сказать об успешности перечисленных боксеров, хотя и получит информацию об этнической принадлежности 10-ти наилучших тяжеловесов (мы и далее будет обращаться к гипотетическому эксперту):
украинцы - 30%;
американцы - 20%;
русские, поляки, британцы, фины и болгары - по 10%.
Б) Место в рейтинге (порядковая шкала ) дает приблизительную информацию об успешности боксера. Ситуация следующая:
1. Владимир Кличко
2. Виталий Кличко
3. Александр Поветкин
4. Томаш Адамек
5. Эдди Чемберс
6. Тайсон Фьюри
7. Роберт Хелениус
8. Тони Томпсон
9. Александр Димитренко
10. Кубрат Пулев
Теперь наш неосведомленный аналитик знает последовательность первой десятки боксеров супертяжелого веса. И хотя здесь уже присутствуют числа от 1 до 10, он все еще не может осуществлять никаких математических операций кроме сравнения. К примеру, он не может сказать, что Владимир Кличко лучше Эдди Чемберса на 4 единицы. Выражение "5 минус 1" в данном случае не имеет смысла. В отношении этих двух боксеров он может утверждать лишь то, что Владимир Кличко лучше Эдди Чемберса как боксер (как впрочем и всех остальных из десятки). Причина невозможности осуществления математических действий заключается в том, что между пунктами с 1-го по 10-й нет равенства интервалов. Каковы на самом деле интервалы между пунктами, можно увидеть благодаря последней переменной.
В) Количество рейтинговых очков (метрическая шкала ). Данный показатель



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ