Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Промышленное серийное производство трансформаторных подстанций налажено многими предприятиями. Проекты подстанций различного типа предусматривают не только их надежную функциональность в качестве преобразующего и распределительного узла, но и безопасную эксплуатацию.

Многие КТП устанавливаются в населенных пунктах, на предприятиях, вблизи транспортных магистралей. Пожарная безопасность трансформаторных подстанций - одно из главных требований при монтаже и эксплуатации.С этой целью разработаны определенные правила строительства и оборудования трансформаторных подстанций, обязательные для выполнения как строителями, так и энергетиками.

Эти правила собраны в специальных документах - «Руководстве по защите ТП от пожаров», «Требованиях пожарной безопасности» относительно КТП и других сборниках. В них проанализированы основные причины возгораний и указаны возможности минимизации последствий.

Основные источники возможных возгораний

Риск возгорания кабелей при коротком замыкании, воспламенение масляных высоковольтных выключателей, трансформаторов тока довольно велик и возможность возникновения пожара по вине электрооборудования полностью устранить нельзя. Но можно многократно уменьшить последствия этих возгораний.

    • Одна из наибольших опасностей возгорания угрожает кабельным линиям. Кабели и провода от трансформаторных станций к распределительным щитам должны прокладываться в огнестойких каналах раздельного типа и быть оборудованы негорючей изоляцией. Все линии электропередач внутри и снаружи здания должны оборудоваться автоматикой аварийного отключения при перегрузках или КЗ.
    • Линии, к которым подключены устройства пожарной безопасности, оборудуются огневой защитой или изоляцией с таким классом огнестойкости, чтобы при пожаре система могла сохранять работоспособность столько времени, сколько требуется по нормативам, чтобы эвакуировать весь персонал.
    • Трансформаторные подстанции типа КТПБ - одни из самых безопасных в плане пожарной безопасности. Несгораемые стены и пол позволяют локализовать пожар внутри здания без угрозы его распространения. Но внутри помещений не должны храниться горючие материалы, баллоны с газом, ветошь и другие опасные в пожарном отношении вещества.
    • Все работы внутри подстанции, сопряженные с появлением искр или высокой температурой - сварка, резка болгаркой, сверление производятся только при полном соблюдении соответствующих правил и наличии средств оперативного пожаротушения.
    • Распределительные щиты выполняются из негорючего материала и надежно изолируются от оборудования. Все электрораспределительное оборудование и трансформаторы должны соответствовать классу помещения по взрывоопасности и пожароопасности и регулярно проверяться согласно плану ТО.
    • Вся растительность, угрожающая распространением горения от подстанции, или способная привлечь огонь от сторонних источников к ТП должна удаляться по всему периметру участка, на котором расположен трансформатор. Кровли и перекрытия подстанций выполняются из несгораемых материалов. Все деревянные элементы обрабатываются антипиренами.

Я воспользовался услугами компании «Вариант Безопасности». Помимо подготовки проекта пожарной безопасности трансформаторной станции они занимаются установкой пожарно-охранной сигнализации в театрах, школах, дошкольных учреждениях, гостиницах, работают с другими предприятиями. Если интересно, в Москве их можно найти здесь.

Наиболее сложной и достаточно распространенной проблемой является пожаротушение трансформаторов. Ведь именно трансформаторы считаются достаточно пожароопасными объектами на всей подстанции. Такое суждение сформировалось ввиду использования горючего масла в качестве охлаждающей жидкости, а также изоляции. И только правильная эксплуатация трансформатора становится залогом того, что масло не вспыхнет от возможного короткого внутреннего замыкания.

Оперативно проведенное пожаротушение в случае непредвиденных обстоятельств может значительно снизить количество человеческих жертв либо же возникшие в связи с этим убытки. Поэтому на современных трансформаторных подстанциях предусмотрено использование определенных технических средств, принадлежащих к автоматической пожарной системе. И их наличие обеспечивает своевременное обнаружение, локализацию, а также тушение пожара.

Пожаротушение трансформаторных станций – виды автоматических установок

На самом деле наличие подобной автоматической системы не может быть панацеей от всех бед, но сможет существенно облегчить жизнь.

И уже в зависимости от того, какой она состав имеет, различают несколько видов:
  • пенные;
  • аэрозольные;
  • водяные;
  • порошковые;
  • газовые;
  • комбинированные.

Системы, которые используются при автоматическом пожаротушении трансформаторов, также могут классифицироваться и по другим признакам. Например, по степени их автоматизации они бывают либо же ручными, либо же автоматическими, автоматизированными. В зависимости от способа тушения различают поверхностные, локально-поверхностные, объемные или же применяются локально-объемные. Системы по виду самого привода делятся на электрические, с механическим приводом, пневматические или гидравлические.

В любом случае подобные системы являются гарантом вашей безопасности, ведь никто точно не знает, насколько быстро прибудет пожарная служба в случае с загоранием трансформаторной подстанции. А именно тогда каждая минута идет на вес золота – пожар может распространяться на огромные площади очень быстро. При этом даже малейшее промедление может стоить чьей-то жизни.

Электроэнергетическая отрасль в Российской Федерации долгое время развивалась и существовала под эгидой единственной государственной компании. Естественно, что в таких экономически тепличных условиях конкурентное ведение энергетического хозяйства абсолютно не интересовало руководителей данной компании. Для определения затрат на те или иные мероприятия, в том числе на обеспечение пожарной безопасности, различными НИИ на основе плановых экономических показателей разрабатывались специальные нормы, которые никоим образом не учитывали современные технологии и тенденции развития отрасли. В результате уже после реформы РАО ЕЭС и внедрения рыночной модели мы вынуждены оперировать разработанными в те годы техническими стандартами, лишь незначительно доработанными в наше время.

Интересно было бы проанализировать, как развивалась и совершенствовалась нормативная база в странах Запада, где экономическая составляющая всегда являлась базисом для разработки стандартов. Весьма наглядным примером является зарубежный опыт организации пожарной безопасности для трансформаторного подстанционного оборудования.

Пожар на подстанции в первую очередь опасен тем, что может разгерметизироваться бак с трансформаторным маслом. Последствия могут быть катастрофическими. Возможен взрыв, выделение ядовитых веществ, розлив горючих жидкостей. Помимо опасности для людей любое возгорание трансформатора вызывает повреждение дорогого энергетического оборудования и, как следствие, отключения в энергосистеме и существенный экономический ущерб. Более 20% всех пожаров на подстанциях захватывает маслонаполненное оборудование – силовые выключатели и трансформаторы. Естественно, что вопрос обеспечения пожарной безопасности на таких объектах стоит особенно остро.

Российское нормативное законодательство описывает рекомендации и правила обеспечения пожарной безопасности для трансформаторного оборудования в следующих специальных стандартах:

  • РД 34.15.109-91 Рекомендации по проектированию автоматических установок водяного пожаротушения масляных силовых трансформаторов;
  • РД 153-34.0-49.101-2003 инструкция по проектированию противопожарной защиты энергетических предприятий.

Если учесть, что последний документ – это, по сути, слегка доработанный стандарт 1987 г., то можно говорить о том, что с 1991 г. развитие систем безопасности в этой сфере остановилось. И это при том что пожарными службами и институтами был накоплен опыт тушения трансформаторов в самых разных условиях. Была разработана вполне эффективная тактика тушения таких пожаров, есть рекомендации по выбору средств противопожарной защиты. Но все это не нашло отражения в официальных стандартах и нормативных документах, на основании этих рекомендаций не были составлены аналитическая и экономическая модели, оценивающие риски использования тех или иных средств защиты. Российские нормотворцы ограничились включением трансформаторных подстанций в требования по оснащению таких объектов системами автоматической пожарной сигнализации и пожаротушения в зависимости от площади объекта в соответствии с введенным в 2009 г. СП 5.13130.2009 «Системы противопожарной защиты.

Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования».

Наши зарубежные коллеги работают в других условиях и в другом нормативном поле. В первую очередь мы посетим город Куинси (штат Массачусетс, США). В этом городе находится штаб-квартира одной из самых известных международных организаций по обеспечению пожарной, электрической и строительной безопасности – Национальной ассоциации противопожарной защиты (NFPA). По национальным стандартам NFPA работают специалисты многих стран на всех континентах (даже в Антарктиде на полярных станциях). Стандарты NFPA являются общепризнанными и активно развиваются с момента основания организации в 1896 г. В том числе часть российских современных нормативных документов берет свое начало в стандартах NFPA.

При рассмотрении вопроса противопожарной защиты трансформаторов в формате стандартов NFPA мы, так же как и в российской НТД, получаем NFPA 15 «Стандарт для водяных стационарных систем противопожарной защиты».

Для российского инженера, воспитанного на технических стандартах, регламентирующих такие нюансы, как форма форсунки и размер болтов для ее крепления, американский стандарт выглядит неожиданно. Буквально на одной странице приводятся все основные требования к организации водяного пожаротушения трансформатора. Здесь точно не будут указаны размеры болтов, но зато даны точные характеристики системы по расходу воды и расположению основных элементов. Все остальное – простор для воображения разработчика и проектировщика.

Стандарт был принят в 2001 г. и по состоянию на 2017 г. пункт 7.4.4, в котором, собственно, и содержатся требования к системе пожаротушения трансформаторов, изменений не претерпел. Казалось бы, налицо та же стагнация, которую мы видим и в российском нормативном законодательстве с разницей в 10 лет, однако это не совсем так. С момента появления NFPA 15 многие частные компании, занимающиеся строительством и модернизацией трансформаторных подстанций, начали его критиковать и искать альтернативные способы обеспечения безопасности на рассматриваемых объектах. Основная критика стандарта заключалась в его неэкономичности. На тушение трансформатора в соответствии с NFPA 15 уходит нецелесообразно большое количество воды. Так, нормативный расход воды на пожаротушение одного трансформатора составляет 250 галлонов в минуту. Один галлон – это примерно 3,8 л. Нормативная продолжительность пожаротушения в соответствии со стандартом составляет 1 час. Таким образом, общий объем воды для тушения 2 подстанционных трансформаторов – 11 400 л. Практически 11,5 куб. м воды.

Конечно, в нашей стране нет недостатка в водных ресурсах, да и российские нормы в этом отношении несколько иные. В соответствии с РД 34.15.109-91 нормативный расход воды для тушения трансформатора не превышает 4 л в секунду (то есть в 4 раза меньше). Однако во многих странах, использующих NFPA 15, имеются достаточно большие проблемы с водоснабжением. Крупные трансформаторные подстанции, как правило, располагаются достаточно далеко от городов. Даже если рядом есть природные водоемы, нужны мощные насосы и система фильтров для использования такой воды в противопожарных целях. В любом случае описанная система потребует постоянного обслуживания несколькими специалистами. В результате инвестиции на обеспечение противопожарной защиты могут превысить собственно затраты на реконструкцию или модернизацию подстанции.

Несколько позже появился стандарт NFPA 850 «Рекомендуемые практические способы противопожарной защиты для оборудования электрических генерирующих станций и высоковольтных конвертирующих подстанций», в соответствии с которым необходимо иметь запас воды для тушения трансформаторного оборудования уже в течение 2 часов.

Еще одна проблема: выпуск такого большого количества воды требует обеспечения объекта продуманной дренажной системой. В противном случае горящее масло может вместе с водой перелиться за бортик участка, и мы получим небольшую (или большую) техногенную и экологическую катастрофу.

В результате многие компании на Западе начали отказываться от использования данного стандарта и обеспечивать безопасность на объекте исключительно пассивными методами и средствами защиты. С одной стороны, это привело к развитию пассивных и иных противопожарных средств. Например, в странах Персидского залива, где вода дороже «черного золота», развитие получили гипоксические системы противопожарной защиты. В таких системах трансформатор окружен воздухом с пониженным содержанием кислорода, в котором процесс горения невозможен в принципе. С другой стороны, появились более дешевые средства пожаротушения.

Одной из первых идей, получивших свое развитие в области защиты трансформаторов, стало использование противопожарной пены. Идея не является новой, поскольку пена активно использовалась для тушения воспламенившихся углеводородов, к которым можно отнести и трансформаторное масло. В результате развитие инженерной мысли в данном направлении уже через несколько лет привело к изменению стандарта NFPA 11, в котором была нормативно закреплена возможность использования пены для тушения трансформаторов и определено минимальное время тушения, составляющее 5 минут. Главным преимуществом использования пены в качестве средства тушения горящих трансформаторов стало значительное (более чем в пять раз) снижение расхода воды. Развитие технологий производства пенообразователя специально для использования при тушении электроустановок позволило, с одной стороны, достичь минимальных концентраций собственно пенообразователя (до 2%), а с другой – снизить время тушения пожара.

Другим направлением стало развитие систем пожаротушения тонкораспыленной водой. Высокая эффективность таких систем для тушения горящего электроэнергетического оборудования сейчас является общеизвестным фактом, однако первое признание эти системы получили именно на уровне стандарта NFPA. В меморандуме о стандарте NFPA 750, опубликованном в ноябре 2013 г., было однозначно рекомендовано использование систем с тонкораспыленной водой для тушения электроэнергетического оборудования, в том числе трансформаторного. Это позволяет сэкономить водные ресурсы и снизить затраты на подведение специальных коммуникаций к подстанциям.

Помимо NFPA существует еще одна международная организация, которая заинтересована в развитии базы стандартов обеспечения пожарной безопасности трансформаторных подстанций. Это CIGRE – Международный совет по большим системам высокого напряжения. Штаб-квартира данной организации находится в Париже. CIGRE получила признание как ведущая электроэнергетическая ассоциация, деятельность которой охватывает технические, экономические, организационные проблемы в области электроэнергетики, а также вопросы регулирования и охраны окружающей среды.

Международный совет по большим электроэнергетическим системам CIGRE был создан в 1921 г. и объединяет инженеров и специалистов, представляющих электроэнергетику и электротехнику многих стран мира. Проблемой заинтересовались уже сами энергетики, которые решили создать универсальный документ, описывающий ситуацию возникновения пожара на подстанции, учитывая все возможные причины, за исключением умышленной диверсии и возгорания от соседних объектов. Результатом такого труда стал охранно -пожарная сигнализация опубликованный в июне 2013 г. рабочей группой А2.33 CIGRE документ под названием «Руководство по обеспечению пожарной безопасности трансформаторов».

Указанный документ является наиболее полным на сегодняшний день, описывающим проблему обеспечения пожарной безопасности для трансформаторного оборудования, который будет интересен как инженерам-энергетикам, так и специалистам в области систем безопасности. Текст руководства можно найти в свободном доступе на английском языке.

Цель разработки документа заключалась в представлении практических и экономически эффективных стратегий для предотвращения пожаров и контроля риска его возникновения. Отдельно отмечается, что данное руководство не заменяет соответствующие национальные или локальные стандарты и правила, которые должны учитываться.

Всего документ состоит из 9 глав, в которых содержится следующая информация:

  • перечень основных международных стандартов, в которых описывается проблема обеспечения пожарной безопасности (в том числе документы, выпущенные NFPA, IEC – Международной электротехнической комиссией, IEEE – Институтом инженеров электротехники и электроники, CEATI – Международным центром совершенствования энергетики посредством технологических инноваций, национальными организациями Германии, Австралии и др.);
  • физические процессы горения и сценарии развития пожаров на подстанции в трансформаторном оборудовании;
  • расчет вероятности возникновения пожара в конкретном энергетическом подстанционном хозяйстве;
  • описание физического процесса возникновения электрической дуги в трансформаторе; расчет вероятных диапазонов энергии, температуры, объема выделяемого газа и давления при образовании дуги; способы сброса и ограничения роста давления в трансформаторном баке при возникновении дуги;
  • рекомендации по использованию систем противопожарной защиты для конкретного оборудования, определение вероятности эффективной работы систем противопожарной защиты, методология проектирования и разработки систем противопожарной защиты;
  • способы снижения риска возникновения пожара в трансформаторном оборудовании, рекомендации по ранжированию рисков, основанные на сопоставлении экономичности мероприятий и приемлемости степени риска в каждом конкретном случае;
  • использование специальных установок для защиты жизни и здоровья человека, а также энергетического оборудования;
  • рекомендации по планированию восстановления работоспособности энергетического объекта, минимизации последствий и экономических потерь в результате пожара;
  • рекомендации по улучшению национальных стандартов области противопожарной защиты трансформаторного оборудования.

Документ содержит большое количество иллюстраций и фотографий, показывающих процесс и последствия пожара трансформаторного оборудования, расположение оборудования систем противопожарной защиты, графики развития физических процессов и многое другое.

В стандарте есть описание как пассивных средств противопожарной защиты, так и активных систем пожаротушения (дренчерных, спринклерных, тонкораспыленной водой, гипоксических и газовых) трансформаторов, расположенных на открытом воздухе и в помещениях, в жилых зданиях и на промышленных предприятиях. В целом можно говорить о том, что в рекомендациях CIGRE собраны последние на тот момент технические достижения по обеспечению пожарной безопасности трансформаторных подстанций.

Хотелось бы упомянуть еще об одном стандарте – IEEE 979 «Руководство по противопожарной защите подстанций». Данный документ был разработан в 2012 г. Институтом инженеров электротехники и электроники. Этот стандарт платный, поскольку IEEE является коммерческой организацией. До выхода стандарта CIGRE именно в этом документе содержались наиболее интересные и экономически обоснованные рекомендации по обеспечению пожарной безопасности трансформаторного оборудования, однако с июля 2013 г. он фактически устарел, а основные рекомендации IEEE нашли свое отражение в общедоступном документе, составленном CIGRE.

На этой позитивной ноте хотелось бы завершить краткий обзор иностранной нормативной базы, посвященной проблеме обеспечения противопожарной безопасности трансформаторного оборудования. Читателям, интересующимся этим вопросом и владеющим иностранными языками, возможно, интересно было бы ознакомиться с первоисточниками, описанными в статье. Оригинальные названия этих стандартов представлены в списке использованной литературы. Очевидно, что развитие инженерной мысли в сфере обеспечения пожарной безопасности сложного электроэнергетического оборудования нашло отражение в стандартах и рекомендациях ведущих мировых организаций.

Хотелось бы, чтобы мировой опыт использовался и при разработке российских стандартов.

Использованная литература:

  1. Cigré Technical Brochure 537 Guide for Transformer Fire Safety Practices
  2. NFPA 15 Standard for Water Spray Fixed Systems for Fire Protection
  3. NFPA 750 Standard for Water Mist Fire Protection Systems
  4. NFPA 850 Recommended Practice for Fire Protection for Electric Generating Plants and High Voltage Direct Current Converter Stations
  5. NFPA 11 Standard for Low-, Medium-, and High-Expansion Foam
  6. NFPA Fire Protection Handbook
  7. IEEE 979 Guide of Substation fire protection
  8. IEC 61936-1 Power installation exceeding 1 kV AC
  9. Protection of High Voltage Power Transformers, FireFlex Systems Inc.

ИНСТРУКЦИЯ
по тушению пожаров на ПС 35-110кВ
электрических сетей

Инструкция разработана на основании:
“Правил пожарной безопасности в компаниях, на предприятиях и в организациях энергетической отрасли Украины”, утвержденных приказом Минтопэнерго Украины от 26.07.2005г. №343
Инструкции по организации противопожарных тренировок на предприятиях Минэнерго Украины ГКД 34.03.304-99.
Инструкция по тушению пожаров на энергетических предприятиях Минтопэнерго Украины ГКД 34.03.306-2000г.

I. Общие положения.

1.1. Настоящая инструкция устанавливает основные требования по проведению противопожарных тренировок и тушению пожаров на подстанциях 35-110кВ.
1.2. Знание настоящей инструкции обязательно для персонала группы подстанций, СПС, членов ДПД, а также личного состава пожарных подразделений.
1.3. Проведение противопожарных тренировок является одной из основных форм производственного обучения и повышения квалификации персонала.
1.4. Главными задачами проведения с персоналом противопожарных тренировок
являются:
- приобретение навыков самостоятельно и быстро принимать правильное решение по тушению и ликвидации пожара;
- отработка действий по предотвращению возможных аварий, повреждений оборудования и травм персонала во время пожара;
- организация немедленного вызова пожарной охраны при срабатывании установок автоматической противопожарной защиты, обнаружения задымления или загорания;
- отработка взаимодействия персонала группы подстанций с личным составом пожарных частей;
-определение правильных методов тушения пожара на оборудовании, особенно в электроустановках, находящихся под напряжением;
- приобретение навыков четких и быстрых действий по переключениям оборудования для предупреждения развития пожара и аварии;
-приобретение навыков оказания первой медицинской помощи потерпевшим при пожаре.

2. Проведение противопожарных тренировок.

2.1.Противопожарные тренировки подразделяются на цеховые, совместные и индивидуальные.
2.2. Цеховые тренировки проводятся с персоналом группы подстанций, не менее 3 раз в год.
2.3.Совместные тренировки проводятся с пожарными подразделениями государственной пожарной охраны по графикам не менее одного раза в год
2.4. Индивидуальные противопожарные тренировки проводятся с вновь принятыми на работу, а также с отдельными работниками, которые получили неудовлетворительные оценки при плановой противопожарной тренировки.
2.5. Цеховые тренировки допускается совмещать с противоаварийными тренировками персонала.
2.6. Каждый работник из числа оперативного и оперативно-производственного персонала 1 раз в квартал, производственный персонал 2 раза в год должен принять участие в плановых тренировках.
2.7. Тематика и график цеховых тренировок составляются ежегодно и утверждаются руководителем предприятия.
2.8. Тематика и график совместных тренировок с участием пожарных частей составляется на год и утверждается руководителем предприятия и начальником Главного управления МЧС Украины в области.
2.9.Руководителями противопожарных тренировок назначаются:
- цеховой, индивидуальной - начальник группы подстанций или мастер
- совместной - должностное лицо государственной пожарной охраны.
2.10. Программы конкретных тренировок составляются на основе утвержденной тематики и утверждаются их руководителями.
2.11. После окончания тренировки руководитель противопожарной тренировки подводит итоги и дает оценку проведенной тренировке, а также индивидуальную оценку всем ее участникам (удовлетворительно, неудовлетворительно).
2.12. Результаты каждой тренировки заносятся в журнал учета противопожарных тренировок.
2.13. Если в целом участники тренировки не справились с поставленной задачей или большинство участников (50% и более) получили неудовлетворительные оценки, то тренировка по этой теме должна быть повторена в следующие сроки:
- цеховая - через 10 дней:
- совместная - в срок согласованный должностным лицом государственной пожарной охраны.
2.14. С отдельными участниками, получившими неудовлетворительные оценки при плановой тренировке необходимо проводить индивидуальные тренировки, результаты которых вносятся в журналы учета противопожарных тренировок.

3. Требования по разработке оперативных планов и оперативных карточек действий персонала при пожаре.

3.1.Оперативный план тушения пожара составляется для базовых подстанций и является основным документом, который устанавливает порядок организации тушения пожаров на подстанциях, взаимодействия персонала групп подстанций и личного состава пожарных подразделений, которые прибыли на место пожара, а также определяет меры безопасности, обязательные для выполнения при тушении пожара.
3.2. Оперативный план тушения пожара должен состоять из текстовой части (оформленной на плотной бумаге единого формата размером не менее 210мм х 297мм) и графической.
3.3.Оперативный план разрабатывается работниками пожарной охраны МЧС Украины совместно со специалистами электрических сетей и утверждается соответственно начальником городского управления МЧС и директором электрических сетей.
3.4. При разработке плана действий персонала и пожарных подразделений в обязательном порядке учитываются вопросы необходимости сохранения непрерывного режима работы максимального количества единиц оборудования для обеспечения потребителей электрической энергией при конкретном пожаре, а также условия обеспечения безопасности.
3.5.После разработки и утверждения оперативного плана тушения пожара на подстанции план необходимо довести до сведения каждого работника группы подстанций.
3.6. Для остальных подстанций напряжением 110кВ составляются оперативные карточки действий персонала при пожаре и схема размещения передвижной пожарной техники (графическая часть).
3.7. Корректировку оперативных планов и карточек необходимо выполнять в таких случаях:
- при расширении или реконструкции подстанции;
- если выявлены недостатки при проведении ежегодных совместных противопожарных тренировок или при тушении пожара;
- если выявлены недостатки при проведении проверок главным управлением МЧС Украины или службой пожарной безопасности Минтопэнерго Украины
- при получении указаний от Минтоэнерго Украины и ГУ МЧС Украины.
3.8 Оперативные планы и карточки должны находится на ЩУ ПС вместе с бланками допуска на проведение тушения пожара, схемой размещения передвижной пожарной техники.

Требования к текстовой части оперативного плана.

3.9. Текстовая часть оперативного плана должна содержать краткую характеристику подстанции, основные обязанности персонала при возникновении пожара и организации его тушения, порядок встречи и взаимодействия с прибывшими пожарными подразделениями, особенности тушения на оборудовании и электроустановках, которые находятся под напряжением.
3.10. Текстовая часть оперативного плана должна быть конкретной, без второстепенных деталей и пояснений, и содержать порядок выполнения основных обязанностей оперативного, оперативно-производственного персонала при возникновении пожара.
3.11. Учитывая особенности технологии энергетического производства в оперативном плане пожаротушения следует принимать во внимание требования безопасности при действиях личного состава пожарных подразделений и персонала гр.подстанции, а также давать конкретные и краткие рекомендации по тушению имеющегося в оборудовании трансформаторного масла.

Требования к графической части оперативного плана.

3.12. Графическая часть представляет план-схему подстанции, выполненную на белой бумаге размером не менее 29х42мм на которую наносится расположение зданий, сооружений и оборудования, первичных средств пожаротушения, а также дорог, въездов и входов в здания и т.п.
3.13. На план-схему наносятся все водоисточники с указанием расстояния от водоисточников до основного оборудования и рекомендуемого оптимального варианта прокладки рукавных линий.
3.14. Указываются наиболее оптимальный вариант расстановки пожарной техники, удовлетворяющий различные ситуации при пожаре на подстанции, и места ее заземления.
3.15. При определении мест размещения пожарной техники следует учитывать условия безопасности личного состава пожарных подразделений и техники от падения строительных конструкций, опор, высоковольтных проводов и кабелей, возможных выбросов горящего трансформаторного масла и т.п.
3.16. На плане необходимо указать места размещения пожарной техники, находящейся в резерве, а также люков (входов) в кабельные помещения.
3.17. План - схема оперативного плана пожаротушения должна рассматриваться и утверждаться начальником управления МЧС и руководителем предприятия.

Требования к составлению оперативных карточек действий персонала подстанции при пожаре

3.18. В целях рациональных действий персонала в сложной ситуации при пожаре на трансформаторах, а также в кабельных сооружениях составляются оперативные карточки действий персонала подстанции при пожаре. В них должны быть указаны технические данные трансформатора и кабельных сооружений, конкретно, без лишних пояснений, указаны действия персонала при пожаре.
3.19. На оборотной стороне карточки должен быть чертеж подстанции с нанесением оборудования, мест заземления пожарной техники, пути следования пожарной техники, расположения первичных средств пожаротушения
3.20. Оперативные карточки составляются начальником группы подстанций совместно с инженером по ПБ и утверждаются главным инженером.

4. Порядок тушения пожара.

4.1.При возникновении пожара на подстанции первый заметивший загорание должен сообщить начальнику группы подстанций (мастеру).
4.2. В свою очередь начальник группы подстанций (мастер) в их отсутствие оперативный или оперативно-производственный персонал должен немедленно сообщить о пожаре в пожарную охрану, при этом назвать адрес подстанции, место возникновения пожара, указать количество трансформаторного масла находящегося в горящем оборудовании, сообщить диспетчеру ОДС.
4.3. Начальник группы подстанций (мастер, оперативный или оперативно-производственный персонал) до прибытия первого пожарного подразделения к месту пожара является руководителем тушения пожара и обязан:
- оценить пожарную обстановку, спрогнозировать распространение пожара и возможность образования новых очагов горения;
- принять меры по созданию безопасных условий персоналу и л/с пожарных подразделений для тушения пожара, в случае угрозы жизни людей немедленно организовать их спасение;
- произвести необходимые операции по отключению и заземлению оборудования, отключение или переключение в зоне пожара может производиться по типовым бланкам переключения или по оперативным карточкам, с последующим уведомлением диспетчера ОДС;
- мобилизовать персонал и членов ДПД на тушение пожара первичными средствами пожаротушения;
- направить для встречи пожарных подразделений лицо, хорошо знающее расположение подъездных путей и ближайших водоисточников;
- провести инструктаж по правилам БЭЭ и выдать письменный допуск на тушение пожара первому прибывшему старшему оперативному начальнику пожарной охраны.
4.4. Старший начальник пожарной охраны, прибывший к месту пожара, обязан немедленно связаться с руководителем тушения пожара, получить от него данные об обстановке на пожаре и письменный допуск на проведение тушения (приложение №1) в котором указывается, какое оборудование или какие его токоведущие части остались под напряжением, какие обесточены и принять на себя обязанности руководителя тушения пожара.
4.5. С начальника группы подстанций (мастера, оперативного или оперативно-производственого персонала) или пожарной охраны, которые не приняли на себя руководство тушением пожара, не снимается ответственность за организацию тушения пожара.
4.6. Для руководства тушением пожара организуется штаб. В состав штаба входит начальник группы подстанций (мастер, оперативный или оперативно-ремонтный персонал), который должен иметь на руке красную отличительную повязку с нанесенным знаком электрического напряжения.
4.7. При тушении пожара работа пожарных подразделений (расстановка сил и средств пожаротушения, перемена позиций, переход от одних средств пожаротушения к другим и т.п.) производится с учетом указаний представителя группы подстанций. В свою очередь представитель группы подстанций согласовывает с РТП свою работу и распоряжения, а также информирует во время пожара об изменениях в состоянии работы электроустановок и другого оборудования.

5.Тушение пожаров в электроустановках под напряжением

5.1. Основой безопасного тушения пожаров в электроустановках является строгое соблюдение организационно-технических мероприятий, направленных на обеспечение безопасности, а также сознательная дисциплина персонала и пожарных, участвующих в тушении.
5.2.Тушение пожаров в электроустановках под напряжением осуществляется при соблюдении таких обязательных условий:
- недопущение приближения пожарных к токоведущим частям электроустановок на расстояния до горящих электроустановок под напряжением при подаче пожарными огнетушащих веществ из ручных стволов, менее указанных в таблице

Вещества применяемые для тушения

Безопасные расстояния до горящих электроустановок под напряжением, м

до 1кВ включительно

от 1 до 10кВ включительно

От 10 до 35кВ включительно

Компактные струи воды

Распыленные струи воды, огнетушащие порошковые составы, одновременная подача распыленной воды и огнетушащих составов

Примечание. Оптимальным с точки зрения безопасности и эффективности тушения при подаче огнетушащих веществ, перечисленных в пункте 2, является расстояние 4 м для всех уровней напряжения.

Согласование РТП с начальником ПС (мастером, оперативным, оперативно-производственным персоналом) маршрутов движения пожарных на боевые позиции и конкретное указание их каждому пожарному при инструктаже;
- выполнение работы пожарными и водителями пожарных автомобилей, обеспечивающих подачу огнетушащих веществ, в диэлектрических перчатках, ботах или сапогах;
- подача огнетушащих веществ после заземления ручных пожарных стволов и пожарных автомобилей;
- недопущение тушения пожаров в электроустановках при видимости меньше 10 м;
5.3. При тушении пожара запрещается :
- выполнение любых отключений и прочих операций с электрическим оборудованием личному составу пожарных подразделений;
- приближение к машинам и механизмам, применяемым для подачи огнетушащих веществ на горящие электроустановки, находящимся под напряжением, лицам, непосредственно не занятым в тушении пожара.
5.4. При тушении пожара на электрооборудовании без снятия напряжения с электроустановок пожарные автомобили и стволы должны быть заземлены, а ствольщик должен работать в диэлектрической обуви и диэлектрических перчатках.
5.4. Тушение пожара в помещениях с электроустановками, находящимися под напряжением до 10кВ, всеми видами пен с помощью ручных средств запрещается, так как пена и раствор пенообразователя обладают повышенной электропроводимостью, по сравнению с распыленной водой.
При необходимости тушения пожара воздушно-механической пеной, с объемным заполнением помещения пеной, производится предварительное закрепление пеногенераторов, их заземление, а также заземление насосов пожарных машин
5.5. Устройства для заземления пожарных стволов, пеногенераторов и пожарной техники изготавливаются в необходимом количестве из гибкого медного провода сечением не менее 16мм 2 . Во всех случаях длина провода не ограничивается и определяется из необходимости, допущения свободного маневрирования лица работающего пожарным стволом.
5.6. Места заземления пожарной техники определяется специалистами предприятия совместно с представителя пожарной охраны, оборудуются и вывешиваются таблички.
5.7. Необходимое количество заземлений, диэлектрической обуви, диэлектрических перчаток и места их хранения определяются начальниками групп ПС, исходя из расчета подачи огнегасительных средств на горящее электрооборудование.
5.8. Запрещается пользование указанными заземляющими устройствами, диэлектрической обувью и перчатками, кроме случаев пожара или проведения совместных с пожарными подразделениями тренировок на подстанции.

6. Тушение пожаров на трансформаторах.

6.1. При аварии на трансформаторе с возникновением пожара, он должен быть отключен от сети со всех сторон и заземлен.
После снятия напряжения, тушение пожара следует производить любыми средствами пожаротушения (распыленной водой, воздушно-механической пеной, огнетушителями)
6.2. При пожаре на трансформаторе установленном в закрытом помещении (камере) и закрытом распределительном устройстве, должны быть приняты меры по предупреждению распространения пожара через проемы, каналы и др. При тушении пожара следует применять те же средства тушения пожара, как и для трансформаторов наружной установки.
6.3. При внутреннем повреждении на трансформаторе, с внутренним выбросом масла через выхлопную трубу или через нижний разъем (срез болтов и деформация фланца разъема) и возникновением пожара внутри трансформатора, следует вводить средства тушения пожара внутрь трансформатора, через верхние люки и через деформированный разъем.
6.4. При возникновении пожара на трансформаторе сливать масло из трансформаторов запрещается, так как это может привести к повреждению внутренних обмоток и трудности дальнейшего тушения.
6.5. Во время развившегося пожара на трансформаторе необходимо защищать от действия высокой температуры водными струями металлические опоры, порталы, соседние трансформаторы и другое оборудование, при этом в зоне действия водяных струй с ближайшего оборудования и распредустройств должно быть снято высокое напряжение и они должны быть заземлены.

7. Тушение пожара в кабельных сооружениях.

7.1. При пожаре в кабельных сооружениях должны быть приняты меры по снятию напряжения с кабелей. В первую очередь снимается напряжение с кабелей, имеющих более высокое напряжение.
7.2. В целях предупреждения распространения пожара принимаются меры по изоляции кабелей от остального оборудования.
7.3. Для прохода в кабельные сооружения (кабельные подвалы, полуэтажи) и подачи от пожарных машин воздушно-механической пены, кроме основных входов (дверных проемов) следует использовать имеющиеся люки.
7.4. При подаче пены в кабельные помещения через дверные проемы пеногенераторы закрепляются в верхней части вблизи ее.

Трансформаторные подстанции относятся к объектам повышенной пожароопасности, к тому же последствия возгорания здесь могут быть крайне серьезными. В то же время, некоторые в трансформаторных подстанциях неприменимы. Пожарная защита для подстанций должна учитывать особенности этих объектов.


Последствия возгорания на трансформаторных подстанциях могут быть катастрофическими. Это и угроза жизни людей, и перебои в энергоснабжении, и серьезные убытки для предприятия. Принятие соответствующих противопожарных мер позволит снизить риск возникновения пожароопасных ситуаций и смягчить последствия пожара.


Пожары на трансформаторных подстанциях могут возникнуть в результате: проведения сварочных работ, неполадок в работе масляных высоковольтных выключателей, трансформаторов тока и напряжения, силовых трансформаторов, электрических кабелей под напряжением, шинопроводов и др. Исходя из этого, определяются зоны и очаги возможного возгорания и осуществляется расстановка и подача огнетушащего вещества.

Выбор средства пожаротушения

В современных системах пожаротушения используются разнообразные средства борьбы с огнем – вода, пена, газ и специальные сухие порошковые смеси. Однако для тушения возгораний на объектах, где находится электрооборудование под напряжением, наиболее приемлемым способом является либо .


Разработку систем автоматического пожаротушения производят в соответствии с требованиями Свода правил СП 5.13130.2009 «Системы противопожарной защиты.


Установки и пожаротушения автоматические. Нормы и правила проектирования», который введен в действие в целях исполнения Федерального закона от 22.07.2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности».


Cистемы пожаротушения в трансформаторных подстанциях состоят из модулей с огнетушащим веществом, системы трубопроводов с насадками-распылителями, а также автоматики, определяющей, где начался пожар, и запускающей систему автоматического пожаротушения. Насадки-распылители располагаются таким образом, чтобы равномерно распределять огнетушащее вещество по всей поверхности, обеспечивая действенную борьбу с огнем.

Проект системы пожаротушения

Проект системы пожаротушения в трансформаторных подстанциях требует совместной работы многих профессионалов. Как правило, проект состоит из теоретической и графической частей – первая определяет выбор оборудования и материалов для тушения пожара, содержит в себе расчеты, вторая представляет собой детальные чертежи будущей системы c расстановкой оборудования, схемами соединения приборов, прокладки кабелей и информационных линий. Не нужно забывать и об интеграции локальной установки пожаротушения в систему противопожарной защиты всего здания.


Грамотный и детальный проект системы пожаротушения на трансформаторных подстанциях делает процесс монтажа быстрее и проще, исключая любую возможность ошибки. Создание проекта, равно как и монтаж автоматического пожаротушения, следует поручать только квалифицированным специалистам с большим опытом и знанием всех норм и стандартов.


Специализацией является проектирование и установка систем автоматического пожаротушения на объектах разного типа и уровня сложности. Специалисты компании готовы разработать для вас и автоматического пожаротушения в помещениях электрохозяйства с напряжением до 10 кВ включительно, адаптировав ваши пожелания к требованиям закона.


Каждый проект индивидуален и единого универсального решения не существует, поэтому определить цену системы пожаротушения заочно затруднительно. Однако зная все условия, наши эксперты готовы провести для вас допроектную оценку стоимости всех работ.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ