Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

К атегория: Электромонтажные работы

Производство электрической энергии

Электрическая энергия (электроэнергия) является наиболее совершенным видом энергии и используется во всех сферах и отраслях материального производства. К ее преимуществам относят - возможность передачи на большие расстояния и преобразование в другие виды энергии (механическую, тепловую, химическую, световую и др).

Электрическая энергия вырабатывается на специальных предприятиях - электрических станциях, преобразующих в электрическую другие виды энергии: химическую, топлива, энергию воды, ветра, солнца, атомную.

Возможность передачи электроэнергии на большие расстояния позволяет строить электростанции вблизи мест нахождения топлива или на многоводных реках, что является более экономичным, чем подвоз в больших количествах топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

В зависимости от вида используемой энергии различают электростанции тепловые, гидравлические, атомные. Электростанции, использующие энергию ветра и теплоту солнечных лучей, представляют собой пока маломощные источники электроэнергии, не имеющие промышленного значения.

На тепловых электростанциях используется тепловая энергия, получаемая при сжигании в топках котлов твердого топлива (уголь, торф, горючие сланцы), жидкого (мазут) и газообразного (природный газ, а на металлургических заводах - доменный и коксовый газ).

Тепловая энергия превращается в механическую энергию вращением турбины, которая в генераторе, соединенном с турбиной, преобразуется в электрическую. Генератор становится источником электроэнергии. Тепловые электростанции различают по виду первичного двигателя: паровая турбина, паровая машина, двигатель внутреннего сгорания, локомобиль, газовая турбина. Кроме того, паротурбинные электростанции подразделяют на конденсационные и теплофикационные. Конденсационные станции снабжают потребителей только электрической энергией. Отработанный пар проходит цикл охлаждения и, превращаясь в конденсат, вновь подается в котел.

Снабжение потребителей тепловой и электрической энергией осуществляется теплофикационными станциями, называемыми теплоэлектроцентралями (ТЭЦ). На этих станциях тепловая энергия только частично преобразуется в электрическую, а в основном расходуется на снабжение промышленных предприятий и других потребителей, расположенных в непосредственной близости от электростанций, паром и горячей водой.

Гидроэлектростанции (ГЭС) сооружают на реках, являющихся неиссякаемым источником энергии для электростанций. Они текут с возвышенностей в низины и, следовательно, способны совершать механическую работу. На горных реках сооружают ГЭС, используя естественный напор воды. На равнинных реках напор создается искусственно сооружением плотин, вследствие разности уровней воды по обеим сторонам плотины. Первичными двигателями на ГЭС являются гидротурбины, в которых энергия потока воды преобразуется в механическую энергию.

Вода вращает рабочее колесо гидротурбины и генератор, при этом механическая энергия гидротурбины преобразуется в электрическую, вырабатываемую генератором. Сооружение ГЭС решает кроме задачи выработки электроэнергии также комплекс других задач народнохозяйственного значения - улучшение судоходства рек, орошение и обводнение засушливых земель, улучшение водоснабжения городов и промышленных предприятий.

Атомные электростанции (АЭС) относят к тепловым паротурбинным станциям, работающим не на органическом топливе, а использующим в качестве источника энергии теплоту, получаемую в процессе деления ядер атомов ядерного топлива (горючего), - урана или плутония. На АЭС роль котельных агрегатов выполняют атомные реакторы и парогенераторы.

Электроснабжение потребителей осуществляется преимущественно от электрических сетей, объединяющих ряд электростанций. Параллельная работа электрических станций на общую электрическую сеть обеспечивает рациональное распределение нагрузки между электростанциями, наиболее экономичную выработку электроэнергии, лучшее использование установленной мощности станций, повышение надежности электроснабжения потребителей и отпуска им электроэнергии с нормальными качественными показателями по частоте и напряжению.

Необходимость объединения вызвана неодинаковой нагрузкой электростанций. Спрос потребителей на электроэнергию резко изменяется не только в течение суток, но и в разные времена года. Зимой потребление электроэнергии на освещение возрастает. В сельском хозяйстве электроэнергия в больших количествах нужна летом на полевые работы и орошение.

Разница в степени загрузки станций особо ощутима при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью наступления часов утренних и вечерних максимумов нагрузки. Чтобы обеспечить надежность электроснабжения потребителей и полнее использовать мощность электростанций, работающих в разных режимах, их объединяют в энергетические или электрические системы с помощью электрических сетей высокого напряжения.

Совокупность электростанций, линий электропередачи и тепловых сетей, а также приемников электро- и тепло-энергии, связанных в одно целое общностью режима и непрерывностью процесса производства и потребления электрической и тепловой энергии, называют энергетической системой (энергосистемой). Электрическая система, состоящая из подстанций и линий электропередачи различных напряжений, - часть энергосистемы.

Энергосистемы отдельных районов в свою очередь соединены между собой для параллельной работы и образуют крупные системы, например единая энергетическая система (ЕЭС) европейской части СССР, объединенные системы Сибири, Казахстана, Средней Азии и др.

Теплоэлектроцентрали и заводские электростанции обычно связаны с электросетью ближайшей энергосистемы по линиям генераторного напряжения 6 и 10 кВ или линиям более высокого напряжения (35 кВ и выше) через трансформаторные подстанции. Передача энергии, выработанной мощными районными электростанциями, в электросеть для снабжения потребителей осуществляется по линиям высокого напряжения (110 кВ и выше).



- Производство электрической энергии

I Введение
II Производство и использование электроэнергии
1. Генерация электроэнергии
1.1 Генератор
2. Использование электроэнергии
III Трансформаторы
1. Назначение
2. Классификация
3. Устройство
4. Характеристики
5. Режимы
5.1 Холостой ход
5.2 Режим короткого замыкания
5.3 Нагрузочный режим
IV Передача электроэнергии
V ГОЭЛРО
1. История
2. Результаты
VI Список использованной литературы

I. Введение

Электроэнергия, один из самых важных видов энергии, играет огромную роль в современном мире. Она является стержнем экономик государств, определяя их положение на международной арене и уровень развития. Огромные суммы денег вкладываются ежегодно в развитие научных отраслей, связанных с электроэнергией.
Электроэнергия является неотъемлемой частью повседневной жизни, поэтому важно владеть информацией об особенностях её производства и использования.

II. Производство и использование электроэнергии

1. Генерация электроэнергии

Генерация электроэнергии - производство электроэнергии посредством преобразования её из других видов энергии с помощью специальных технических устройств.
Для генерации электроэнергии используют:
Электрический генератор - электрическую машину, в которой механическая работа преобразуется в электрическую энергию.
Солнечную батарею или фотоэлемент - электронный прибор, который преобразует энергию электромагнитного излучения, в основном светового диапазона, в электрическую энергию.
Химические источники тока - преобразование части химической энергии в электрическую, посредством химической реакции.
Радиоизотопные источники электроэнергии - устройства, использующие энергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её в электроэнергию.
Электроэнергия вырабатывается на электростанциях: тепловых, гидравлических, атомных, солнечных, геотермальных, ветряных и других.
Практически на всех электростанциях, имеющих промышленное значение, используется следующая схема: энергия первичного энергоносителя с помощью специального устройства преобразовывается вначале в механическую энергию вращательного движения, которая передается в специальную электрическую машину - генератор, где вырабатывается электрический ток.
Основные три вида электростанций: ТЭС, ГЭС, АЭС
Ведущую роль в электроэнергетике многих стран играют тепловые электростанции (ТЭС).
Тепловые электростанции требуют огромного количества органического топлива, запасы же его сокращаются, а стоимость постоянно возрастает из-за все усложняющихся условий добычи и дальности перевозок. Коэффициент использования топлива в них довольно низок (не более 40%), а объемы отходов, загрязняющих окружающую среду, велики.
Экономические, технико-экономические и экологические факторы не позволяют считать тепловые электростанции перспективным способом получения электроэнергии.
Гидроэнергетические установки (ГЭС) являются самыми экономичными. Их КПД достигает 93 %, а стоимость одного кВт.ч в 5 раз дешевле, чем при других способах получения электроэнергии. Они используют неисчерпаемый источник энергии, обслуживаются минимальным количеством работ¬ников, хорошо регулируются. По величине и мощности отдельных гидростанций и агрегатов наша страна занимает ведущее положение в мире.
Но темпы развития сдерживают значительные затраты и сроки строительства, обусловленные удаленностью мест строительства ГЭС от крупных городов, отсутствие дорог, трудные условия строительства, подвержены влиянию сезонности режима рек, водохранилищами затапливаются большие площади ценных приречных земель, крупные водохранилища негативно воздействуют на экологическую ситуацию, мощные ГЭС могут быть построены только в местах наличия соответствующих ресурсов.
Атомные электростанции (АЭС) работают по одному принципу с тепловыми электростанциями, т. е. происходит преобразование тепловой энергии пара в механическую энергию вращения вала турбины, которая приводит в действие генератор, где механическая энергия преобразовывается в электрическую.
Главное достоинство АЭС - небольшое количество используемого топлива (1 кг обогащенного урана заменяет 2,5 тыс. т угля), вследствие чего АЭС могут быть построены в любых энергодефицитных районах. К тому же запасы урана на Земле превышают запасы традици-онного минерального топлива, а при безаварийной работе АЭС незначительно воздействуют на окружающую среду.
Главным недостатком АЭС является возможность аварий с катастрофическими последствиями, для предотвращения которых требуются серьезные меры безопасности. Кроме того, АЭС плохо регулируются (для их полной остановки или включения требуется несколько недель), не разработаны технологии переработки радиоактивных отходов.
Атомная энергетика выросла в одну из ведущих отраслей народного хозяйства и продолжает быстро развиваться, обеспечивая безопасность и экологическую чистоту.

1.1 Генератор

Электрический генератор - это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.
Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС Следовательно, такой проводник может нами рассматриваться как источник электрической энергии.
Способ получения индуктированной ЭДС, при котором проводник перемещается в магнитном поле, двигаясь вверх или вниз, очень неудобен при практическом его использовании. Поэтому в генераторах применяется не прямолинейное, а вращательное движение проводника.
Основными частями всякого генератора являются: система магнитов или чаще всего электромагнитов, создающих магнитное поле, и система проводников, пересекающих это магнитное поле.
Генератор переменного тока - электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока. Большинство генераторов переменного тока используют вращающееся магнитное поле.

При вращении рамки изменяется магнитный поток через нее, поэтому в ней индуцируется ЭДС. Так как с помощью токосъемника (колец и щеток) рамка соединена с внешней электрической цепью, то в рамке и внешней цепи возникает электрический ток.
При равномерном вращении рамки угол поворота изменяется по закону:

Магнитный поток через рамку также изменяется с течение времени, его зависимость определяется функцией:

где S − площадь рамки.
По закону электромагнитной индукции Фарадея ЭДС индукции, возникающая в рамке равна:

где - амплитуда ЭДС индукции.
Другая величина, которой характеризуется генератор, является сила тока, выражающаяся формулой:

где i — сила тока в любой момент времени, I m - амплитуда силы тока (максимальное по модулю значение силы тока), φ c — сдвиг фаз между колебаниями силы тока и напряжения.
Электрическое напряжение на зажимах генератора меняется по синусодальному или косинусоидальному закону:

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока. По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода:

2. Использование электроэнергии

Электроснабжение промышленных предприятий. Промышленные предприятия потребляют 30-70% электроэнергии, вырабатываемой в составе электроэнергетической системы. Значительный разброс промышленного потребления определяется индустриальной развитостью и климатическими условиями различных стран.
Электроснабжение электрифицированного транспорта. Выпрямительные подстанции электротранспорта на постоянном токе (городской, промышленный, междугородний) и понижающие ПС междугороднего электрического транспорта на переменном токе питаются электроэнергией от электрических сетей ЭЭС.
Электроснабжение коммунально-бытовых потребителей. К данной группе ПЭ относится широкий круг зданий, расположенных в жилых районах городов и населенных пунктов. Это - жилые здания, здания административно-управленческого назначения, учебные и научные заведения, магазины, здания здравоохранения, культурно-массового назначения, общественного питания и т.п.

III. Трансформаторы

Трансформатор - статическое электромагнитное устройство, имеющее две или большее число индуктивно-связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока.

Схема устройства трансформатора

1 - первичная обмотка трансформатора
2 - магнитопровод
3 - вторичная обмотка трансформатора
Ф - направление магнитного потока
U 1 - напряжение на первичной обмотке
U 2 - напряжение на вторичной обмотке

Первые трансформаторы с разомкнутым магнитопроводом предложил в 1876 г. П.Н. Яблочков, который применил их для питания электрической "свечи". В 1885 г. венгерские ученые М. Дери, О. Блати, К. Циперновский разработали однофазные промышленные трансформаторы с замкнутым магнитопроводом. В 1889-1891 гг. М.О. Доливо-Добровольский предложил трехфазный трансформатор.

1. Назначение

Трансформаторы широко применяются в различных областях:
Для передачи и распределения электрической энергии
Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500, и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышение напряжения.
Распределение электрической энергии между промышленными предприятиями, населёнными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий производится по воздушным и кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 В.
Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя (преобразовательные трансформаторы).
Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др.
Для питания различных цепей радиоаппаратуры, электронной аппаратуры, устройств связи и автоматики, электробытовых приборов, для разделения электрических цепей различных элементов указанных устройств, для согласования напряжения и пр.
Для включения электроизмерительных приборов и некоторых аппаратов (реле и др.) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопастности. (измерительные трансформаторы)

2. Классификация

Классификация трансформаторов:

  • По назначению: силовые общего(используются в линиях передачи и распределения электроэнергии) и специального применения (печные, выпрямительные, сварочные, радиотрансформаторы).
  • По виду охлаждения: с воздушным (сухие трансформаторы) и масляным (масляные трансформаторы) охлаждением.
  • По числу фаз на первичной стороне: однофазные и трёхфазные.
  • По форме магнитопровода: стержневые, броневые, тороидальные.
  • По числу обмоток на фазу: двухобмоточные, трёхобмоточные, многообмоточные (более трёх обмоток).
  • По конструкции обмоток: с концентрическими и чередующимися (дисковыми) обмотками.

3. Устройство

Простейший трансформатор (однофазный трансформатор) представляет собой устройство, состоящее из стального сердечника и двух обмоток.

Принцип устройства однофазного двухобмоточного трансформатора
Магнитопровод представляет собой магнитную систему трансформатора, по которой замыкается основной магнитный поток.
При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки.

Условное обозначение трансформатора:
а) - трансформатор со стальным сердечником, б) - трансформатор с сердечником из феррита

4. Характеристики трансформатора

  • Номинальная мощность трансформатора - мощность, на которую он рассчитан.
  • Номинальное первичное напряжение - напряжение, на которое рассчитана первичная обмотка трансформатора.
  • Номинальное вторичное напряжение - напряжение на зажимах вторичной обмотки, получающееся при холостом ходе трансформатора и номинальном напряжении на зажимах первичной обмотки.
  • Номинальные токи, определяются соответствующими номинальными значениями мощности и напряжения.
  • Высшее номинальное напряжение трансформатора - наибольшее из номинальных напряжений обмоток трансформатора.
  • Низшее номинальное напряжение - наименьшее из номинальных напряжений обмоток трансформатора.
  • Среднее номинальное напряжение - номинальное напряжение, являющееся промежуточным между высшим и низшим номинальным напряжением обмоток трансформатора.

5. Режимы

5.1 Холостой ход

Режимом холостого хода - режим работы трансформатора, при котором вторичная обмотка трансформатора разомкнута, а на зажимы первичной обмотки подано переменное напряжение.

В первичной обмотке трансформатора, соединенной с источником переменного тока течёт ток, в результате чего в сердечнике появляется переменный магнитный поток Φ , пронизывающий обе обмотки. Так как Φ одинаков в обеих обмотках трансформатора, то изменение Φ приводит к появлению одинаковой ЭДС индукции в каждом витке первичной и вторичной обмоток. Мгновенное значение ЭДС индукции e в любом витке обмоток одинаково и определяется формулой:

где - амплитуда ЭДС в одном витке.
Амплитуда ЭДС индукции в первичной и вторичной обмотках будет пропорционально числу витков в соответствующей обмотке:

где N 1 и N 2 - число витков в них.
Падение напряжения на первичной обмотке, как на резисторе, очень мало, по сравнению с ε 1 , и поэтому для действующих значений напряжения в первичной U 1 и вторичной U 2 обмотках будет справедливо следующее выражение:

K - коэффициент трансформации. При K >1 трансформатор понижающий, а при K <1 - повышающий.

5.2 Режим короткого замыкания

Режимом короткого замыкания - режим, когда выводы вторичной обмотки замкнуты токопроводом с сопротивлением, равным нулю (Z =0).

Короткое замыкание трансформатора в условиях эксплуатации создает аварийный режим, так как вторичный ток, а следовательно, и первичный увеличиваются в несколько десятков раз по сравнению с номинальным. Поэтому в цепях с трансформаторами предусматривают защиту, которая при коротком замыкании автоматически отключает трансформатор.

Необходимо различать два режима короткого замыкания:

Аварийный режим - тогда, когда замкнута вторичная обмотка при номинальном первичном напряжении. При таком замыкании токи возрастают в 15¸ 20 раз. Обмотка при этом деформируется, а изоляция обугливается. Железо так же подгорает. Это тяжелый режим. Максимальная и газовая защита отключает трансформатор от сети при аварийном коротком замыкании.

Опытный режим короткого замыкания - это режим, когда вторичная обмотка накоротко замкнута, а к первичной обмотке подводится такое пониженное напряжение, когда по обмоткам протекает номинальный ток - это U K - напряжение короткого замыкания.

В лабораторных условиях можно провести испытательное короткое замыкание трансформатора. При этом выраженное в процентах напряжение U K , при I 1 =I 1ном обозначают u K и называют напряжением короткого замыкания трансформатора:

где U 1ном - номинальное первичное напряжение.

Это характеристика трансформатора, указываемая в паспорте.

5.3 Нагрузочный режим

Нагрузочный режим трансформатора - режим работы трансформатора при наличии токов не менее чем в двух его основных обмотках, каждая из которых замкнута на внешнюю цепь, при этом не учитываются токи, протекающие в двух или более обмотках в режиме холостого хода:

Если к первичной обмотке трансформатора подключить напряжение U 1 , а вторичную обмотку соединить с нагрузкой, в обмотках появятся токи I 1 и I 2 . Эти токи создадут магнитные потоки Φ 1 и Φ 2 , направленные навстречу друг другу. Суммарный магнитный поток в магнитопроводе уменьшается. Вследствие этого индуктированные суммарным потоком ЭДС ε 1 и ε 2 уменьшаются. Действующее значение напряжения U 1 остается неизменным. Уменьшение ε 1 вызывает увеличение тока I 1 :

При увеличении тока I 1 поток Φ 1 увеличивается ровно настолько, чтобы скомпенсировать размагничивающее действие потока Φ 2 . Вновь восстанавливается равновесие при практически прежнем значении суммарного потока.

IV. Передача электроэнергии

Передача электроэнергии от электростанции к потребителям - одна из важнейших задач энергетики.
Электроэнергия передаётся преимущественно по воздушным линиям электропередачи (ЛЭП) переменного тока, хотя наблюдается тенденция ко всё более широкому применению кабельных линий и линий постоянного тока.

Необходимость передачи электроэнергии на расстояние обусловлена тем, что электроэнергия вырабатывается крупными электростанциями с мощными агрегатами, а потребляется сравнительно маломощными электроприёмниками, распределёнными на значительной территории. Тенденция к концентрации генерирующих мощностей объясняется тем, что с их ростом снижаются относительные затраты на сооружение электростанций и уменьшается стоимость вырабатываемой электроэнергии.
Размещение мощных электростанций производится с учётом целого ряда факторов, таких, например, как наличие энергоресурсов, их вид, запасы и возможности транспортировки, природные условия, возможность работы в составе единой энергосистемы и т.п. Часто такие электростанции оказываются существенно удалёнными от основных центров потребления электроэнергии. От эффективности передачи электроэнергии на расстояние зависит работа единых электроэнергетических систем, охватывающих обширные территории.
Передавать электроэнергию от мест её производства к потребителям необходимо с минимальными потерями. Главная причина этих потерь - превращение части электроэнергии во внутреннюю энергию проводов, их нагрев.

Согласно закону Джоуля-Ленца, количество теплоты Q , выделяемое за время t в проводнике сопротивлением R при прохождении тока I , равно:

Из формулы следует, что для уменьшения нагрева проводов необходимо уменьшать силу тока в них и их сопротивление. Чтобы уменьшить сопротивление проводов, увеличивают их диаметр, однако, очень толстые провода, висящие между опорами линий электропередач, могут оборваться под действием силы тяжести, особенно, при снегопаде. Кроме того, при увеличении толщины проводов растёт их стоимость, а они сделаны из относительно дорогого металла - меди. Поэтому более эффективным способом минимизации энергопотерь при передаче электроэнергии служит уменьшение силы тока в проводах.
Таким образом, чтобы уменьшить нагрев проводов при передаче электроэнергии на дальние расстояния, необходимо сделать силу тока в них как можно меньше.
Мощность тока равна произведению силы тока на напряжение:

Следовательно, для сохранения мощности, передаваемой на дальние расстояния, надо во столько же раз увеличить напряжение, во сколько была уменьшена сила тока в проводах:

Из формулы следует, что при постоянных значениях передаваемой мощности тока и сопротивления проводов потери на нагрев в проводах обратно пропорциональны квадрату напряжению в сети. Поэтому для передачи электроэнергии на расстояния в несколько сотен километров используют высоковольтные линии электропередач (ЛЭП), напряжение между проводами которых составляет десятки, а иногда сотни тысяч вольт.
С помощью ЛЭП соседние электростанции объединяются в единую сеть, называемую энергосистемой. Единая энергосистема России включает в себя огромное число электростанций, управляемых из единого центра и обеспечивает бесперебойную подачу электроэнергии потребителям.

V. ГОЭЛРО

1. История

ГОЭЛРО (Государственная комиссия по электрификации России) - орган, созданный 21 февраля 1920 года для разработки проекта электрификации России после Октябрьской революции 1917 года.

К работам комиссии было привлечено свыше 200 деятелей науки и техники. Возглавлял комиссию Г.М. Кржижановский. ЦК Коммунистической партии и лично В. И. Ленин повседневно направляли работу комиссии ГОЭЛРО, определяли основные принципиальные положения плана электрификации страны.

К концу 1920 комиссия проделала огромную работу и подготовила «План электрификации РСФСР» - том в 650 страниц текста с картами и схемами электрификации районов.
План ГОЭЛРО, рассчитанный на 10-15 лет, реализовал ленинские идеи электрификации всей страны и создания крупной индустрии.
В области электроэнергетического хозяйства план состоял из программы, рассчитанной на восстановление и реконструкцию довоенной электроэнергетики, строительство 30 районных электрических станций, сооружение мощных районных тепловых электростанций. Электростанции намечалось оборудовать крупными для того времени котлами и турбинами.
Одной из основных идей плана являлось широкое использование огромных гидроэнергоресурсов страны. Предусматривались коренная реконструкция на базе электрификации всех отраслей народного хозяйства страны и преимущественно рост тяжёлой промышленности, рациональное размещение промышленности по всей территории страны.
Осуществление плана ГОЭЛРО началось в трудных условиях Гражданской войны и хозяйственной разрухи.

С 1947 СССР занимал 1-е место в Европе и 2-е в мире по производству электроэнергии.

План ГОЭЛРО сыграл в жизни нашей страны огромную роль: без него не удалось бы вывести СССР в столь короткие сроки в число самых развитых в промышленном отношении стран мира. Реализация этого плана сформировала всю отечественную экономику и до сих пор в значительной мере ее определяет.

Составление и выполнение плана ГОЭЛРО стали возможным и исключительно благодаря сочетанию многих объективных и субъективных факторов: немалого промышленно-экономического потенциала дореволюционной России, высокого уровня российской научно-технической школы, сосредоточения в одних руках всей экономической и политической власти, ее силы и воли, а также традиционного соборно-общинного менталитета народа и его послушно-доверительного отношения к верховным правителям.
План ГОЭЛРО и его реализация доказали высокую эффективность системы государственного планирования в условиях жестко централизованной власти и предопределили развитие этой системы на долгие десятилетия.

2. Результаты

К концу 1935 программа электростроительства была в несколько раз перевыполнена.

Вместо 30 было построено 40 районных электростанций, на которых вместе с другими крупными промышленными станциями было введено 6914 тыс. кВт мощностей (из них районных 4540 тыс. кВт - почти в три раза больше, чем по плану ГОЭЛРО).
В 1935 г. среди районных электростанций было 13 электроцентралей по 100 тыс. кВт.

До революции мощность самой крупной электростанции России (1-й Московской) составляла всего 75 тыс. кВт; не было ни одной крупной ГЭС. К началу 1935 г. общая установленная мощность гидроэлектростанций достигла почти 700 тыс. кВт.
Были построены крупнейшая в то время в мире Днепровская ГЭС, Свирская 3-я, Волховская и др. В высшей точке своего развития Единая энергосистема СССР по многим показателям превосходила энергосистемы развитых стран Европы и Америки.


Электричество было практически неизвестно в деревнях до революции. Большие землевладельцы устанавливали небольшие электростанции, но число их было мало.

Электроэнергия стала применяться в сельском хозяйстве: в мельницах, кормовых резцах, зерноочистительных машинах, на лесопилках; в промышленности, а позже - в быту.

Список использованной литературы

Веников В. А., Дальние электропередачи, М.- Л., 1960;
Совалов С. А., Режимы электропередач 400-500 кв. ЕЭС, М., 1967;
Бессонов, Л.А. Теоретические основы электротехники. Электрические цепи: учебник / Л.А. Бессонов. — 10-е изд. — М. : Гардарики, 2002.
Электротехника: Учебно-методический комплекс. /И. М. Коголь, Г. П. Дубовицкий, В. Н. Бородянко, В. С. Гун, Н. В. Клиначёв, В. В. Крымский, А. Я. Эргард, В. А. Яковлев; Под редакцией Н. В. Клиначёва. — Челябинск, 2006-2008.
Электрические системы, т. 3 - Передача энергии переменным и постоянным током высокого напряжения, М., 1972.

Извините, ничего не найдено.

Ни для кого не секрет, что электричество в наш дом попадает от электростанций, являющихся основными источниками электроэнергии. Однако между нами (потребителями) и станцией может быть сотни километров и через все это дальнее расстояние ток должен каким-то образом передаваться с максимальным КПД. В этой статье мы, собственно, и рассмотрим, как передается электроэнергия на расстоянии к потребителям.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д. Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт).

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Что еще важно знать?

Также хотелось пару слов сказать о моментах, которые пересекаются с этим вопросом. Во-первых, уже достаточно долго проводятся исследования на тему того, как осуществить передачу электроэнергии без проводов. Существует множество идей, но самым перспективным на сегодняшний день решением является использование беспроводной технологии WI-Fi. Учёные из Вашингтонского университета выяснили, что этот способ вполне реален и приступили к более подробному исследованию вопроса.

Во-вторых, на сегодняшний день по ЛЭП передается переменный ток, а не постоянный. Это связано с тем, что преобразовательные устройства, которые сначала выпрямляют ток на входе, а потом снова делают его переменным на выходе, имеют достаточно высокую стоимость, что экономически не целесообразно. Однако все же пропускная способность линий электропередач постоянного тока в 2 раза выше, что также заставляет думать над тем, как ее более выгодно осуществить.

Тема 3.1 Источники, передача и распределение электрической энергии.

Электрическая энергия универсальна: она удобна для дальних передач, легко распределяется по отдельным потребителям и с помощью сравнительно несложных устройств преобразуется в дру­гие виды энергии.

Эти задачи решает энергетическая система, в которой осуще­ствляются преобразование энергии топлива или падающей воды в электрическую энергию, трансформация токов и напряжений, рас­пределение и передача электрической энергии потребителям.

Источниками электрической энергии служат тепловые (ТЭС), гидравлические (ГЭС) и атомные (АЭС) электростанции, имею­щие общий режим производства энергии. Линии электропереда­чи, трансформаторные и распределительные устройства обеспе­чивают совместную работу электростанций и распределение энер­гии между потребителями.

Рис. 11.1. Общая схема электроснабжения

Рис. 11.2. Передвижная дизельная электростанция с синхронным генератором:

I - возбудитель постоянного тока; 2 - генератор; 3 - дизельный двигатель

Передача и распределение электроэнергии строится по ступен­чатому принципу (рис. 11.1). Для уменьшения потерь в линиях элек­тропередач (ЛЭГТ) напряжение повышают при помощи повыша­ющих (ГГТП-1) и понижающих (ГПП-2) трансформаторов, устанавливаемых на электрических подстанциях. От крупных подстан­ций электроэнергия подается непосредственно к объектам, на ко­торых на трансформаторных подстанциях (ТП) производится окон­чательное понижение напряжения. Распределение электроэнергии в электрических сетях производится, как правило, трехфазным пе­ременным током частотой 50 Гц.

В начальный период строительства в удаленных районах приме­няют в качестве временных источников.

Потребители электроэнергии . Приемником электроэнергии (электроприемником) является элек­трическая часть технологической установки или механизма, получаю­щая энергию из сети и расходующая ее на выполнение технологичес­ких процессов. Потребляя электроэнергию из сети, электроприемник, по существу, преобразует ее в другие виды энергии: механическую, тепловую, световую или в электроэнергию с иными параметрами (по роду тока, напряжению, частоте). Некоторые технологические уста­новки имеют несколько электроприемников: станки, краны, и т.п.

Электроприемники классифицируются по следующим призна­кам: напряжению, роду силы тока, его частоте, единичной мощ­ности, степени надежности электроснабжения, режиму работы, технологическому назначению.

По напряжению электроприемники подразделяются на две груп­пы: до 1000 В и свыше 1000 В.

Породу силы тока электроприемники подразделяются: на при­емники переменного тока промышленной частоты (50 Гц), посто­янного тока и переменного тока частотой, отличной от 50 Гц (по­вышенной или пониженной).

Единичные мощности отдельных электроприемников и электро­потребителей различны - от десятых долей киловатта до несколь­ких десятков мегаватт.

По степени надежности электроснабжения правила устрой­ства электроустановок (ПУЭ) предусматривают три категории:

1 Электроприемники I категории - электроприемники, пере­рыв снабжения которых электроэнергией связан с опасностью для людей или влечет за собой большой материальный ущерб (домен­ные цехи, котельные производственного пара, подъемные и вен­тиляционные установки шахт, аварийное освещение и др.). Они должны работать непрерывно.

2 Электроприемники II категории - электроприемники, пере­рыв электроснабжения которых приводит к массовому недоотпуску продукции, простою технологических механизмов, рабочих, про­мышленного транспорта, нарушению нормальной деятельности городских и сельских жителей.

3 Электроприемники III категории - все остальные электро­приемники, не подходящие под определение I и II категорий. Элек­троприемники данной категории допускают перерыв электроснаб­жения не более одних суток.

Характеристики электроприемников . К общепромышленным ус­тановкам относятся вентиляторы, насосы, компрессоры, возду­ходувки и т. п. Данная группа электроприемников относится, как правило, к первой категории надежности. Некоторые вентиляци­онные и компрессорные станции относятся ко второй категории надежности.

Регулируемый электропривод технологических механизмов и двигатели станков с повышенной скоростью вращения получают питание от преобразовательных установок . Режимы их работы раз­личны и определяются режимом механизма.

Преобразователями тока служат двигатели-генераторы, ртутные и полупроводниковые выпрямители, питающиеся от трехфазных сетей переменного тока промышленной частоты на напряжениях до 110 кВ.

К электротехнологическим установкам относятся электронагре­вательные и электролизные установки, установки электрохими­ческой, электроискровой и ультразвуковой обработки металлов, электромагнитные установки (сепараторы, муфты), электросва­рочное оборудование.

Электронагревательные установки объединяют электрические печи и электротермические установки.

Электросварочное оборудование питается напряжением 380 или 220 В переменного тока промышленной частоты. Электросварочное оборудование работает в повторно-кратко­временном режиме. Сварочные установки по степени надежности относятся ко второй категории.

Мощность электроприводов подъемно-транспортных устройств определяется условиями производства, ее значение колеблется от нескольких до сотен киловатт. Электрические осветительные установки являются в основном однофазными приемниками. Электроосвети -тельные установки относятся ко второй катего­рии надежности.

Схемы электрических сетей. Схема силовой сети оп­ределяется технологическим процессом производства, категорией надежности электроснабжения, взаимным расположением ТП или ввода питания и электроприемников, их единичной установлен­ной мощностью и размещением. Схема должна быть проста, без­опасна и удобна в эксплуатации, экономична, должна удовлетво­рять характеристике окружающей среды, обеспечивать примене­ние индустриальных методов монтажа.

Схемы сетей могут быть радиальными, магистральными и сме­шанными - с односторонним или двусторонним питанием.

При радиальной схеме (рис. 11.3) энергия от отдельного узла пи­тания (ТП) поступает к одному достаточно мощному потребите­лю или к группе электроприемников.

Рис. 11.3. Радиальная схема питания:

1- распределительный щит; 2 - силовой распределительный пункт (РП);

3 - электроприемник; 4 - щит освещения; 5 - кабельная линия

Радиальные схемы применяют для питания сосредоточенных нагрузок большой мощности, при неравномерном размещении приемников, а также для питания приемников во взрывоопасных, пожароопасных и пыльных помещениях. Достоинства радиальных схем заключаются в высо­кой надежности (авария на одной линии не влияет на работу при­емников, получающих питание по другой линии) и удобстве ав­томатизации. Недостатками радиальных схем являются: малая эко­номичность из-за значительного расхода проводникового матери­ала.



При магистральных схемах приемники подключаются к любой точке линии (магистрали). Магистрали могут присоединяться к рас­пределительным щитам подстанции или к силовым РП (рис. 11.4):

Рис. 11.4. Магистральная схема с распределительным шинопроводом:

1- комплектная трансформаторная подстанция (КТП);

2 - распредели­тельный шинопровод; 3- нагрузка

Достоинствами магистральных схем являются: уп­рощение щитов подстанции; высокая гибкость сети, дающая воз­можность перемещать технологическое оборудование без переделки сети; использование уни­фицированных элементов, по­зволяющих вести монтаж ин­дустриальными методами.

Для повышения надежно­сти питания электроприемни­ков по магистральным схемам применяется двустороннее питание магистральной линии (рис. 11.5):

Рис. 11.5. Схема с двусторонним пита­нием магистралей

Схемы сетей электрического освещения. Система рабочего осве­щения создает нормальное освещение всего помещения и рабочих поверхностей. В такую систему входят светильники общего и мест­ного освещения.

Аварийное освещение обеспечивает освещенность для продолже­ния работы или останова технологического процесса и для эваку­ации людей при отключении рабочего освещения.

Групповые линии в зависимости от протяженности и нагрузки могут быть двух-, трех- и четырехпроводными. Групповые линии одного помещения должны получать пита­ние так, чтобы при погасании части ламп одних групп оставшиеся в работе группы обеспечивали минимальную освещенность до лик­видации аварии. Пример схемы питания осветительной сети при­веден на рис. 11.6.

Рис. 11.6. Схема питания электроосвещения от двух ТП:

1- распределительный щит; 2 - линии, отходящие к силовым РП; 3,

4 - групповые щитки соответственно рабочего и аварийного освещения; 5,

б - групповая сеть соответственно рабочего и аварийного освещения;

7- питающие линии освещения

Расчет электрических нагрузок. Основой рационального решения комплекса технико-экономи­ческих вопросов электроснабжения является правильное опреде­ление ожидаемых электрических нагрузок. От этого зависят капи­тальные затраты в схеме электроснабжения, расход цветного ме­талла, потери электроэнергии и эксплуатационные расходы.

Исходными данными для расчета электрических нагрузок явля­ются установленная мощность электроприемников и характер из­менения нагрузки. Под установленной мощностью (Ру) групп по­требителей понимают суммарную паспортную мощность всех элек­троприемников. Например, установленная мощность башенного крана равна сумме номинальных мощностей всех его электродви­гателей.

В результате расчета определяется максимальная (расчетная) нагрузка, которая служит основой для выбора сечения токоведущих частей, потерь мощности и напряжения в сетях, выбора мощ­ности трансформаторов и компенсирующих устройств.

Для каждой группы электроприемников существует некоторое определенное соотношение между величинами расчетной (Рр) и установленной мощности. Это соотношение называется коэффи­циентом спроса:

Зная установленную мощность и коэффициент спроса данной группы потребителей, можно определить расчетную мощность:

Расчетную реактивную мощность (Qp) определяют по формуле:

(11.3)

где tg φ находят для угла φ, косинус которого определяют из паспортных данных установки.

Полная расчетная мощность силовой нагрузки определяется как:

(11.4)

К расчетной силовой нагрузке необходимо прибавить мощность на освещение. Расчеты удобно вести в табличной форме (таб. 11.1):

Таблица 11.1

Для снижения потерь электроэнергии надо использовать более высокие напряжения, стремиться к сокраще­нию протяженности сетей до 1000 В, применять меры по повыше­нию коэффициента мощности.

На значении коэффициента мощности электроустановки отри­цательно сказывается наличие малозагруженных электродвигате­лей и трансформаторов. Поэтому в первую очередь проводятся ме­роприятия организационного порядка, направленные на то, что­бы естественный коэффициент мощности достиг максимального значения. Если этих мер недостаточно, то применяют батареи кон­денсаторов, синхронные двигатели.

Методика расчет величины и места расположения конденсато­ров сложна, но в приближенных расчетах значение емкости (квар) определяют по формуле

(11.6)

где Qc – емкость конденсаторной батареи; Pp – расчетная активная мощность нагрузки, кВАр;

tg φр – расчетный тангенс.

По каталожным данным выбирают ближайший стандартный конденсатор. Устанавливают батареи конденсаторов или на под­станции, или непосредственно у потребителя.

Трансформаторные подстанции . Трансформаторные подстанции служат для приема электроэнер­гии, преобразования напряжения и распределения электрической энергии на объекте. По назначению различают следующие виды трансформаторных подстанций:

главные (повышающие и понижающие) подстанции , предназна­ченные для повышения напряжения линии электропередач при больших расстояниях;

распределительные, или просто трансформаторные подстанции (ТП), в которых электроэнергия, поступающая от ГПП, транс­формируется с высшего напряжения 35 ...6 кВ на низшее 660/380 или 380/220 В, на которое и рассчитано большинство потребите­лей.

Оборудование ТП состоит из трансформаторов, аппаратов ком­мутации и защиты, устройств управления, контроля и учета элект­роэнергии. Схема ТП типа строительной комплектной трансформа­торной подстанции с одним трансформатором показана на рис. 11.7:


Рис. 11.7. Мачтовая открытая подстанция (а) и схема ТП с одним транс­форматором (б):

1 - трансформатор; 2 - разъединитель; 3 - предохранитель;

4 - распреде­лительный шкаф; 5 - разрядник

По конструктивному выполнению различают открытые, закрытые, передвиж­ные подстанции.

К открытым, оборудование которых устанавливается на откры­том воздухе, относятся мачтовые подстанции с трансформатора­ми, установленными на деревянных или железобетонных опорах. На рис. 11.7 изображена подстанция с одним трансформатором, присоединенным к ЛЭП.

Закрытые ТП (рис. 11.8) располагаются в помещениях К закрытым транс­форматорным подстанциям относятся также комплектные под­станции КТП или СКТП (строительные комплектные трансфор­маторные подстанции). Электрооборудование КТП размещается в металлическом корпусе.

Рис. 11.8. Закрытая трансформаторная подстанция: 1 - трансформатор;

2 - контакт замыкающий; 3 - предохранитель

Передвижные подстанции (рис. 11.9), которые также могут быть комплектными, монтируются на авто- или железнодорожной плат­форме.

Рис.11.9. Передвижная комплектная трансформаторная подстанция

Технические характеристики силовых трансформаторов . Основ­ным конструктивным типом силового трансформатора напряже­нием до 10 кВ является трехфазный трансформатор с естествен­ным масляным охлаждением. Используются и сухие силовые транс­форматоры (т. е. с воздушным охлаждением). Они безопасны в от­ношении пожара и поэтому ими комплектуются ТП в зданиях с повышенными требованиями пожарной безопасности. Промышленность выпускает трехфазные силовые трансформа­торы по определенной шкале мощностей: 10; 16; 25; 40; 63; 100; 250; 400; 630; 1000; 1600 кВА.

Определение типа и мощности силового трансформатора. Выбор типа, мощности ТП, ее расположение обуславливается величиной, характером электрических нагрузок и их пространственным расположением.

Расчет ведется в такой последовательности:

определяется местоположение ТП с учетом положения опасных зон, расположения подъездных путей и дорог. Трансформаторные подстанции желательно располагать ближе к мощным потребителям;

при определении мощности трансформатора необходимо одно­временно решать вопрос о компенсации реактивной мощности. При компенсации на стороне 0,4 кВ получается расчетная мощность трансформатора:

(11.7)

где Рр - расчетная активная мощность нагрузки, кВт; Qр - рас­четная реактивная мощность нагрузки, квар; QЭ - реактивная мощ­ность энергосистемы (как правило, QЭ = 0,33 Рр); В - коэффици­ент загрузки трансформатора (для однотрансформаторной подстан­ции В = 0,95... 1,0).

Из справочных данных выбирают ближайший трансформатор равной или большей мощности.

Электрические станции.

Электрическая энергия вырабатывается на электростан­циях. Различные виды природной энергии (топливо, атом­ная, падающей воды, ветра, морских приливов и отливов и т. д.) преобразуются на этих станциях в электрическую. Для работы электрических генераторов используют паро­вые поршневые машины и турбины, двигатели внутреннего сгорания, газовые и гидравлические турбины, ветряные двигатели и др. В зависимости от вида энергии, потребляе­мой первичными двигателями, электростанции бывают тепловыеу включая и атомные, гидравлические, ветряные. Некоторое значение для горных и южных районов имеют гелиостанции (солнечные установки). Однако мощность их пока незначительна, поэтому они имеют лишь местное зна­чение и ограниченное применение.

Городские станции обеспечивают потребителей не только электроэнергией, но и теплотой и называются теплоэлектроцентралями (ТЭЦ).

Постепенное сокращение топливных ресурсов требуют поисков новых способов получения электроэнергии. Одним из наиболее перспективных является получение электроэнер­гии с помощью термоядерного синтеза. В этом направлении ведутся исследовательские работы во всем мире.

Следует отметить, что к.п.д. даже крупных тепловых электростанций не превышает 40-42%. Эффективным способом повышения к.п.д. тепловых электростанций является применение так называемых магнитогидродинамически х генераторов (МГД- генераторов).

Понятие об электрических системах . Передачу электрической энергии на большие расстоя­ния выгодно осуществлять при высоких напряжениях. Поэтому при электростанциях сооружаются трансформа­торные подстанции, на которых напряжение генераторов повышается до 35, 110, 220 кВ и более. При очень больших расстояниях, порядка не­скольких тысяч километров, передача энергии может осу­ществляться на постоянном токе высокого напряжения, что позволяет уменьшить потери энергии в линиях электро­передачи (ЛЭП). В ме­стах потребления постоянный ток вновь преобразуется в переменный на специальных преобразовательных подстан­циях. От сборных шин распределительного устройства под­станции (РУ) по линиям электропередачи энергия переда­ется на районные понизительные подстанции с вторичным номинальным напряжением 6-10 кВ. От районных пони­зительных подстанций электрическая энергия передается обычно по кабельным линиям на городские распредели­тельные пункты (РП), от которых распределяется между по­низительными подстанциями, расположенными вблизи по­требителей непосредственно в микрорайонах и жилых кварталах.

Совокупность электрических станций, линий электропередачи, подстанций, тепловых сетей, свя­занных в одно целое общностью режима, непрерывностью процессов производства и распределения электрической и тепловой энергии, называется энергосистемой.

В России имеется ряд крупных энергосистем, объединяю­щих большое количество электрических станций. Часть энергетической системы, состоящая из генера­торов, распределительных устройств, повысительных и понизительных подстанций, линий электрических сетей и электроприемников, называется электрической системой.

На рис. 11.10 приведена примерная схема электроснабже­ния крупного города:

Длительно допустимая расчетная токовая нагрузка для заданных условий

Iд ³ Imax /(ККп), (11.8)

где Imax - расчетная длительная максимальная токовая нагрузка элемента сети, А,

определяемая по формулам:

а) для трехфазной четырехпроводной и трехпроводной сетей

(11.9)

б) для двухфазной сети с нулевым проводом

, (11.10)

в) для однофазной сети

(11.11)

где Рmах - расчетная максимальная нагрузка, кВт; Uном - номинальное линейное

напряжение, В; UФ - номинальное фазное напряжение, В.

Для сетей, питающих люминесцентные лампы, при оп­ределении расчетного тока Imах следует вводить повышаю­щий коэффициент, учитывающий потери мощности в пуско­регулирующих аппаратах (ПРА), равный 1,25.

Электроэнергетика. Электроэнергетика Беларуси начала свое существование с 1889 г. после строительства небольшой (1,2 тыс. кВт) электростанции в Добруше на местной бумажной фабрике, котлы которой работали на угле и дровах. Общая мощность всех электростанций Беларуси в 1913 г. составила только 5,3 тыс. кВт, что позволяло получать 3 млн кВт · ч электроэнергии. Этого количества энергии едва хватало на освещение центральных улиц крупных в то время городов и работу нескольких небольших кинотеатров. В промышленности электричество почти не использовалось.

Начало развитию современной электроэнергетики было положено планом электрификации России (планом ГОЭЛРО), принятым в 1921 г. В соответствии с планом в первую очередь возобновили свою работу электростанции в Минске, Витебске, Гомеле, Бобруйске. Самыми крупными электростанциями (в 1920-х гг.) были Минская (3 тыс. кВт) и Добрушская (1,6 тыс кВт). В 1927 г. на Осиновских болотах около Орши началось строительство Белорусской ГРЭС - первой крупной электростанции в Беларуси, которая в 1940 г. достигла своей проектной мощности - 34 тыс. кВт. От этой станции по линиям электропередач получили дешевую и устойчивую энергию такие города, как Витебск, Могилев, Орша, Шклов. В годы Великой Отечественной войны электроэнергетика Беларуси была почти целиком уничтожена. В настоящее время общая мощность электростанций Беларуси составляет более 8 млн кВт, а производство электроэнергии - 34,9 млрд кВт · ч. На долю Витебской области и г. Минска приходится почти 2 / 3 всей вырабатываемой в стране электроэнергии.

В Беларуси электроэнергетика состоит практически из электростанций одного типа - тепловых. Это государственные районные электростанции (ГРЭС ) и теплоэлектроцентрали (ТЭЦ ). ГРЭС вырабатывают только электрическую энергию, ТЭЦ - электрическую и тепловую. В республике имеются и гидравлические электростанции (ГЭС ) (рис. 102).

Самая крупная электростанция Беларуси - Лукомская ГРЭС (г. Новолукомль) (рис. 103); среди теплоэлектроцентралей наибольшую мощность имеют Минская ТЭЦ-4 и Новополоцкая ТЭЦ. Характерна высокая концентрация выработки электроэнергии: на 11 наиболее крупных электростанциях сейчас вырабатывается 95 % общего объема электроэнергии. Почти половина производства электроэнергии приходится на ТЭЦ.

Рис. 103 Лукомская ГРЭС: общий вид

До 70-х гг. ХХ в. главными видами топлива на электростанциях Беларуси были торф и уголь, в настоящее время - природный газ и мазут.

Кроме тепловых электростанций, в Беларуси действуют свыше 30 небольших гидроэлектростанций. Наибольшие из них Гродненская (17 тыс. кВт) на р. Неман, Осиповичская (2,2 тыс. кВт) на р. Свислочь и Чигиринская (1,5 тыс. кВт) на р. Друть.

Сейчас в Беларуси активно ведется работа, направленная на использование нетрадиционных (альтернативных) источников электричества. Первый из них - энергия ветра. В стране уже определены 1640 пунктов, где можно поставить ветроэнергетические установки, хотя скорость ветра над территорией Беларуси составляет в среднем не более 3,5-5 м/с, а для экономической выгоды ветряков она должна достигать 7-12 м/с. Некоторые установки уже действуют в Минской и Гродненской областях. Второй источник нетрадиционной энергии - солнечная энергия. Однако для Беларуси она будет обходиться гораздо дороже, чем гидравлическая. К тому же солнечных дней в Беларуси тоже мало. (Вспомните, какое количество солнечных дней в среднем бывает в Беларуси ежегодно.)

Пока единственным нетрадиционным источником электроэнергии, на которую может рассчитывать Беларусь в настоящее время, являются электростанции на отходах деревообрабатывающей промышленности и лесного хозяйства, биогазе и рапсовом масле. В Минской области уже работают биоэнергетические установки в Снове (2 МВт) и Лани (1,2 МВт), а в Гомельской области - Хойникская ТЭЦ (0,5 МВт) на рапсовом масле.

Размещенные на территории Беларуси электростанции, трансформаторные подстанции связаны между собой линиями электропередач различного напряжения тока и образуют единую энергосистему , которая, в свою очередь, линиями электропередач связана с энергосистемами соседних стран.

Использование электроэнергии. Электробаланс позволяет определить поступление электроэнергии из различных источников, ее межотраслевое распределение и потери. Основными потребителями всей электроэнергии являются промышленность и строительство. Кроме них, много электроэнергии используют сельское хозяйство, транспорт и жилищно-коммунальное хозяйство (рис. 104).

Своей электроэнергии Беларуси не хватает. До 1982 г. для энергобаланса республики было характерно устойчивое самообеспечение электроэнергией. Но в связи с превышением электропотребления над приростом электрических мощностей Беларуси в последние годы он превратился в дефицитный.Проблемы и перспективы развития электроэнергетики. Электроемкость продукции, производимой в Беларуси пока выше, чем во многих странах Европейского союза. Поэтому сбережение топливных ресурсов и электроэнергии является одной из главных задач хозяйства Беларуси. Значительной проблемой является и то, что много малых теплоэнергоустановок имеют низкие технико-экономические характеристики, что отрицательно сказывается на состоянии окружающей среды, и используют большое количество трудовых ресурсов. Для увеличения производства электроэнергии начато строительство Зельвенской ГРЭС (2,4 млн кВт) и атомной электростанции в Островецком районе (2 млн кВт). Всего планируется восстановить 55 малых ГЭС и построить к 2016 г. несколько больших и малых ГЭС общей мощностью около 200 тыс. кВт. На Немане планируется в ближайшее время построить вторую ГЭС - Немновскую. На Западной Двине будет создан каскад из четырех ГЭС суммарной мощностью 132 тыс. кВт, первая из которых - Полоцкая (22 тыс. кВт) уже строится, остальные (Верхне двинская, Бешенковичская и Витебская) проектируются.

Список литературы

1. География 10 класс/ Учебное пособие для 10 класса учреждений общего среднего образования с русским языком обучения/Авторы:М. Н. Брилевский - «От авторов», «Введение», § 1-32;Г. С. Смоляков - § 33-63/ Минск «Народная асвета» 2012



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ