Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Теория

Фотоэффект - вырывание электронов из вещества под действием света. В металле электрон движется свободно, но при вылете его с поверхности сам металл из-за этого заряжается положительным зарядом и препятствует вылету. Поэтому для того, чтобы покинуть металл, электрон должен обладать дополнительной энергией, зависящей от вещества. Эта энергия называется работой выхода.

Для исследования фотоэффекта можно собрать установку, изображенную на рис. 1. Она состоит из стеклянного баллона, из которого выкачан воздух. Окно, через которое падает свет, сделано из кварцевого стекла, пропускающего видимые и ультрафиолетовые лучи. Внутри баллона впаяны два электрода: один из которых - катод - освещается через окно. Между электродами источник создает электрическое поле, которое заставляет двигаться фотоэлектроны от катода к аноду.

движущиеся электроны образуют электрический ток (фототок). При изменении напряжения меняется сила тока. График зависимости I от U - вольтамперная характеристика - приведен на рис. 2. При малых напряжениях не все вырванные из катода электроны достигают анода, при увеличении напряжения их число возрастает. При некотором напряжении все вырванные светом электроны достигают анода, тогда устанавливается ток насыщения I н , при дальнейшем увеличении напряжения ток не изменяется.

При увеличении интенсивности падающего излучения наблюдается возрастание тока насыщения, пропорционального числу вырванных электронов. 1-й закон фотоэффекта утверждает, что количество электронов, вырванных светом с поверхности металла, пропорционально поглощенной энергии световой волны.

Для измерения кинетической энергии электронов нужно поменять полярность источника тока. На графике этому случаю соответствует участок при U , на котором фототок падает до нуля. Теперь поле не разгоняет, а тормозит фотоэлектроны. При некотором напряжении, названном задерживающим U 3 , фототок исчезает. При этом все электроны будут остановлены полем, затем поле вернет их в бывший катод, подобно тому, как брошенный вверх камень будет остановлен полем тяготения Земли и возвращен снова на Землю.

Работа сил электрического поля A = qU 3 , затраченная на торможение электрона, равна изменению кинетической энергии электрона, то есть m v 2 /2 = qU 3 , где m - масса электрона, v - его скорость, q - заряд. Т.е., измеряя задерживающее напряжение U 3 , мы определяем максимальную кинетическую энергию. Оказалось, что максимальная кинетическая энергия электронов зависит не от интенсивности света, а только от частоты. Это утверждение называют 2-м законом фотоэффекта.

При некоторой граничной частоте света, которая зависит от конкретного вещества, и при более низких частотах фотоэффект не наблюдается. Эта граничная частота носит название "красной" границы фотоэффекта.

Объяснил законы фотоэффекта А. Эйнштейн в 1905 г. Он воспользовался идеей Планка о квантовой природе света. Энергия одного кванта света E = hν . Если предположить, что один квант света вырывает один электрон, то энергия кванта Е идет на совершение работы выхода электрона А и на сообщение ему кинетической энергии mv 2 /2 . То есть

hν = A + mv 2 /2 .

Это уравнение носит название уравнения Эйнштейна для фотоэффекта.

Объясним с позиций идеи Эйнштейна 1-й закон фотоэффекта. Если один квант энергии вырывает один электрон, то чем больше квантов поглощает вещество (чем больше интенсивность света), тем больше электронов вылетит из вещества.

Объясним второй закон фотоэффекта. Работа выхода А зависит от рода вещества и не зависит от частоты света. Кинетическая энергия электрона, вырванного из вещества, mv 2 /2=h - A зависит от частоты света ν : чем больше частота, тем большую кинетическую энергию получит электрон. Интенсивность света не влияет на кинетическую энергию электрона, потому что уравнение Эйнштейна описывает энергетику одного электрона. Не важно, сколько вылетит электронов, скорость каждого из них зависит от частоты.

Формула Эйнштейна объясняет и тот факт, что свет данной частоты из одного вещества может вырвать электрон, а из другого - не может. Для каждого вещества фотоэффект наблюдается в том случае, если энергия кванта света больше или, в крайнем случае, равна работе выхода (hν ≥ A ). Предельная частота, при которой еще возможен фотоэффект, ν min = A/h . Это частота, при которой совершается вырывание электронов без сообщения им кинетической энергии, - частота "красной границы" фотоэффекта.

Уравнение Эйнштейна запишем для случая, когда кинетическая энергия электрона равна по величине работе сил электрического поля, то есть при задерживающем напряжении:

hν = A + qU 3 .

Отсюда U 3 = -A/q + (h/q)ν.

Построим график зависимости задерживающего напряжения от частоты (рис. 3). Из формулы видно, что зависимость U 3 от ν является линейной. Тангенс угла наклона графика:

tg α = ΔU 3 /Δν = h/q .

Отсюда постоянная Планка:

h = qtg α = q ΔU 3 /Δν.

Эта формула служит для экспериментального определения постоянной Планка.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

Стерлитамакский филиал

федерального государственного бюджетного

образовательного учреждения

высшего профессионального образования

«Башкирский государственный университет»

Физико-математический факультет

КАФЕДРА ОБЩЕЙ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Курсовая работа

Явление внешнего фотоэффекта

Выполнил: студент II курса

Физико-математического факультета

очной формы обучения

группа Физ 21

Суханов Сергей Павлович

Научный руководитель:

к. ф.-м. н., доцент

Кутушева Раиса Муллагалиевна

Стерлитамак - 2015

Введение

Глава I. История открытия внешнего фотоэффекта

1.1 Законы фотоэффекта

1.2 Объяснение законов фотоэффекта

Глава II. Описание лабораторного опыта

2.1 Таблицы, графики

Глава III. Применение явления внешнего фотоэффекта

Заключение

Список использованной литературы

ВВЕДЕНИЕ

Физика играет огромную роль в современном естествознании, в развитии современной техники и всех отраслей народного хозяйства. Это предопределяет значение курса физики в программах высшей школы. Цель курса физики в ознакомлении с основными физическими явлениями, их механизмом, закономерностями и практическими приложениями. Этим закладывается физическая основа для изучения общетехнических и специальных дисциплин. Правильное представление о природе физических явлений особенно важно при постановке новых вопросов, которые возникают в процессе практической деятельности инженера.

Изучение физики помогает формированию правильного диалектико-материалистического мировоззрения.

Роль физического практикума очень велика, потому что в лабораторной обстановке студент может воспроизвести явление и изучить его. Для изучения явления студент использует сложные стационарные приборы, выдвигает научные предположения для объяснения явления, делает выводы.

Методические указания на выполнение лабораторной работы «Изучение явления внешнего фотоэффекта» освещают развитие идей, приведших к осознанию непригодности классической физики для описания поведения микрообъектов, подводят к объяснению явлений, связанных с действием света с точки зрения квантовой теории. В теоретической части рассмотрены законы фотоэффекта и применение их к конструированию оптических приборов. Метод выполнения практической работы дает возможность самим убедиться в справедливости закономерностей фотоэффекта и построения графических закономерностей характеристик.

Цель работы: изучить явления внешнего фотоэффекта на примере исследования основных характеристик фотоэлементов:

· Эксперементальное изучение основных закономерностей фотоэффекта;

· Определение постоянной Планка;

· Определение работы выхода электрона и красной границы фотоэффекта.

ГЛАВА I. ИСТОРИЯ ОТКРЫТИЯ ЯВЛЕНИЯ ВНЕШНЕГО ФОТОЭФФЕКТА

В 1887 г. Г. Герц обнаружил, что если направить на отрицательный электрод искрового разрядника ультрафиолетовое излучение, то электрический разряд происходит при меньшем напряжении между электродами, чем в отсутствие освещения. Герцу не удалось дать правильного объяснения этому явлению. Опыты В. Гальвакса, и в особенности тщательные исследования А. Г. Столетова, проведенные в 1888 - 1889 гг., позволили понять сущность явления, обнаруженного Герцем: оно обусловлено выбиванием под действием света отрицательных зарядов из металлического катода разрядника. В дальнейшем измерения удельного заряда этих частиц показали, что они представляют собой электроны. Явление выравнивания электронов из твердых и жидких тел под действием света называют внешним фотоэлектрическим эффектом, а вырванные таким образом электроны иногда называют фотоэлектронами.

Опыт Столетова.

Для исследования фотоэффекта Столетов собирал следующую схему (рис.1). На схеме металлическая пластинка К (фотокатод) соединена с отрицательным полюсом батареи.

Из графика на рис.2,а видно, что при некотором напряжении U величина фототока достигает максимального значения и далее остается постоянной при любых значениях. Это значит, что все электроны, вырываемые светом из фотокатода, достигают анода. Максимальный ток называется током насыщения при данном световом потоке Ф. Если изменять величину светового потока Ф, то получим семейство кривых для данного фотокатода (рис.2,б).

Положительный полюс через гальванометр соединен с металлической сеткой А (анод). Оба электрода находятся в стеклянном сосуде, из которого откачивается воздух. При освещении катода (пластины К) светом в цепи возникает ток, который регистрировался гальванометром. Этот ток получил название фототока, а электроны, вырываемые светом из катода, - фотоэлектронами. Фототок представляет собой движение к аноду электронов, вышедших из катода световым потоком.

1.1 ЗАКОНЫ ВНЕШНЕГО ФОТОЭФФЕКТА

Столетов исследовал зависимость фототока от величины приложенного напряжения между анодом и катодом. При обобщении полученных данных Столетовым установлены три закона внешнего фотоэффекта.

I. При фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света(сила тока насыщения пропорциональна энергетической освещенности E e катода).

II. Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой н

III. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

1.2 ОБЪЯСНЕНИЕ ЗАКОНОВ ВНЕШНЕГО ФОТОЭФФЕКТА

Полученные опытным путем законы фотоэффекта не удалось объяснить на основе электромагнитной волновой теории света. С точки зрения этой теории электромагнитная волна, достигнув поверхности металла, вызывает вынужденные колебания электронов, отрывая их от металла. Но тогда требуется время для «раскачки» электронов, и при малой освещенности металла должно возникнуть заметное запаздывание между началом освещения и моментом вылета электронов. Далее, кинетическая энергия электронов, покидающих металл, должна зависеть от амплитуды вынуждающей силы и тем самым от напряженности электрического поля в электромагнитной волне. Однако все эти выводы противоречат законам фотоэффекта. Решение было найдено А. Эйнштейном в 1905 г. Из совершенно иных соображений. Законы фотоэффекта не удаётся объяснить с помощью законов классической физики, которую мы изучали до сих пор. Для их объяснения А. Эйнштейн в 1905 использовал идею, высказанную ранее немецким физиком М. Планком, согласно которой свет - поток частиц, фотонов. При этом энергия E каждого фотона, называемая квантом, равна:

где n- частота света, а h - коэффициент, названный постоянной Планка и равный 6,63 . 10 -34 Дж. с.

Эйнштейн предположил, что фотон может выбить с поверхности только один электрон, а электрону, чтобы вырваться из вещества, необходимо совершить работу выхода А вых. Тогда из закона сохранения энергии следовало, что при фотоэффекте энергия фотона h n должна быть равна сумме работы выхода А вых и кинетической энергии фотоэлектрона со скоростью v и массой m :

Уравнение (1.2), объясняющее все законы фотоэффекта, называют уравнением Эйнштейна для фотоэффекта. Чем больше фотонов, тем больше они выбивают фотоэлектронов. Это и является объяснением закона №1 фотоэффекта. Согласно (1.2) кинетическая энергия фотоэлектронов прямо пропорциональная частоте света и не зависит от его интенсивности, что и объясняет закон №2 фотоэффекта. Из уравнения (1.2) следует, что фотоэлектрону необходимо совершить работу выхода А вых, и свет с частотой меньше л мин = А вых /h не будет вызывать фотоэффекта, что и объясняет закон №3 фотоэффекта.

ГЛАВА II. ОПИСАНИЕ ЛАБОРАТОРНОГО ОПЫТА

Установка состоит за универсального монохроматора УМ-4, микроамперметра Ф195, вольтметра постоянного тока, сурьмяно-цезиевого вакуумного фотоэлемента (СВЦ), источников питания ВУП-24, ИЭПП-2. Свет на фотоэлемент поступает через его прозрачную часть.

Два электрода в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникший при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь миллиамперметром.

2.2 ТАБЛИЦЫ И ГРАФИКИ

Табл. №1. Снятие прямой ветви вольтамперной характеристики фотоэлемента.

Вольтамперная характеристика представляет зависимость фототока от напряжения на электродах фотоэлемента при неизменном световом потоке. Из вольамперной характеристики видны следующие моменты:

· При отсутствии напряжения между электродами фототок отличен от нуля. Следовательно, фотоэлектроны при вылете с поверхности обладают кинетической энергией, следовательно долетают до анода и обуславливают ток.

· При некотором напряжении между катодом и анодом фототок достигает насыщения. Ток насыщения соответсвует тому состоянию, когда все фотоэлектроны, покидающие материал за 1 с, достигают анода.

Табл. № 2. Исследование световой харатеристики.

Из световой характеристики можно заметить, что при увеличении ширины входной щели, ток в цепи увеличивается. Это можно объяснить тем, что чем шире входная щель, тем больше электронов пролетаю через нее, вызывая при этом фототок.

Табл. № 3. Исследование спектральной характеристики фотоэлемента.

Интенсивность фотоэффекта зависит от длинны волны падающего света. При одной и той же мощности излучения сила тока насыщения будет разной для разных длин волн л. Зависимость чувствительности фотоэлемента от длины волны падающего света называется его спектральной характеристикой. фотоэффект спектральный постоянный планк

Работа выхода -- разница между минимальной энергией которую необходимо сообщить электрону для его «непосредственного» удаления из объёма твёрдого тела. Здесь «непосредственность» означает то, что электрон удаляется из твёрдого тела через данную поверхность и перемещается в точку, которая расположена достаточно далеко от поверхности. При этом пренебрегают дополнительной работой, которую необходимо затратить на преодоление внешних полей, возникающих из-за перераспределения поверхностных зарядов. Таким образом, работа выхода для одного и того же вещества для различных поверхностей оказывается различной.

При удалении электрона на бесконечность его взаимодействие с зарядами, остающимися внутри твёрдого тела приводит к индуцированию макроскопических поверхностных зарядов (при рассмотрении полубесконечного образца в электростатике это называют «изображением заряда»). При перемещении электрона в поле индуцированного заряда совершается дополнительная работа, которая определяется диэлектрической проницаемостьювещества, геометрией образца и свойствами других поверхностей. За счет этого полная работа по перемещению электрона из любой точки образца в любую другую точку (в том числе и точку бесконечности) не зависит от пути перемещения, то есть от того, через какую поверхность был удален электрон. Поэтому в физике твёрдого тела эта работа не учитывается и не входит в работу выхода.

Работа выхода во внешнем фотоэффекте - минимальная энергия, необходимая для удаления электрона из вещества под действием света.

Работа выхода электрона равна 1,66 эВ. равна 750 нм.

В результате облучения электроны, выбитые из электрода, могут достигнуть противоположного электрода и создать некоторый начальный ток. При увеличении напряжения, поле разгоняет электроны, и ток увеличивается, достигая насыщения, при котором все выбитые электроны достигают анода.

Если приложить обратное напряжение, то электроны тормозятся и ток уменьшается. При так называемом запирающем напряжении фототок прекращается. Согласно закону сохранения энергии:

где m- масса электрона, а х max - максимальная скорость фотоэлектрона.

Табл. № 4. Снятие зависимости запирающего напряжения от частоты н.

При увеличении напряжения, поле разгоняет электроны, и ток увеличивается, достигая насыщения, при котором все выбитые электроны достигают анода.

Если приложить обратное напряжение, то электроны тормозятся и ток уменьшается. При так называемом запирающем напряжении фототок прекращается. Согласно закону сохранения энергии, где m- масса электрона, а х max - максимальная скорость фотоэлектрона.

Постоянная Планка -- основная константа квантовой теории, коэффициент, связывающий величину энергии кванта электромагнитного излучения с его частотой, так же как и вообще величину кванта энергии любой линейной колебательной физической системы с её частотой. Впервые упомянута Планком в работе, посвящённой тепловому излучению, и потому названа в его честь.

Значения постоянной Планка, полученные теоретически и эксперементально примерно равны.

ГЛАВА III. ПРИМЕНЕНИЕ ЯВЛЕНИЯ ВНЕШНЕГО ФОТОЭФФЕКТА

1. В медецине

На внешнем фотоэффекте основана работа электронно-оптического преобразователя (ЭОП), предназначенного для преобразования изображения из одной области спектра в другую, а также для усиления яркости изображений. Ускоренные и сфокусированные электрическим полем электроны попадают на люминесцентный экран. Здесь электронное изображение благодаря катодолюминесценции вновь преобразуется в световое.

В медицине ЭОП применяют для усиления яркости рентгеновского изображения, это позволяет значительно уменьшить дозу облучения человека.

Если сигнал с ЭОП подать в виде развертки на телевизионную систему, то на экране телевизора можно получить «тепловое» изображение предметов. Части тела, имеющие разные температуры, различаются на экране либо цветом при цветном изображении, либо светом, если изображение черно-белое. Такая техническая система, называемая тепловизором, используется в термографии.

2. В технике.

Фотоэлементы, использующие внешний фотоэффект, преобразуют в электрическую энергию лишь незначительную часть энергии излучения. Поэтому в качестве источников электроэнергии их не используют, зато широко применяют в различных схемах автоматики для управления электрическими цепями с помощью световых пучков.

С помощью фотоэлементов осуществляется воспроизведение звука, записанного на кинопленке, а также передача движущихся изображений (телевидение).

В аэронавигации, в военном деле широкое применение нашли фотоэлементы, чувствительные к инфракрасным лучам. Инфракрасные лучи невидимы, облака и туман для них прозрачны.

Сочетание фотоэффекта со вторичной электронной эмиссией применяется в фотоэлектронных умножителях (ФЭУ): слабый пучок фотоэлектронов, ускоряясь попадает на ряд катодов, выбивая из каждого вторичные электроны и лавинообразно усиливаясь. Усиление 9-каскадного ФЭУ достигает 106, т.е. на выходе из фотоумножителя сила тока в миллион раз превосходит первичный фототок.

На явлении внутреннего фотоэффекта основана работа фото-сопротивлений.

3. В полупроводниках.

Явление фотоэффекта получило широкое практическое применение. Приборы, в основе принципа действия которых лежит фотоэффект, называются фотоэлементами. Фотоэлементы, использующие внешний фотоэффект, преобразуют энергию излучения в электрическую лишь частично. Так как эффективность преобразования небольшая, то в качестве источников электроэнергии фотоэлементы не используют, но зато применяют их в различных схемах автоматики для управления электрическими цепями с помощью световых пучков.

Внутренний фотоэффект используют в фоторезисторах. Вентильный фотоэффект, возникающий в полупроводниковых фотоэлементах с p-n переходом, используется для прямого преобразования энергии излучения в электрическую энергию (солнечные батареи). Необходимые условия для возникновения внутреннего фотоэффекта- частица должна быть связанной, и энергия фотона должна превышать ее энергию связи. Внутренний фотоэффект может происходить в полупроводниках и диэлектриках (и в металлах тоже).

Фотоэффект используется в фотоэлектронных приборах, получивших разнообразные применения в науке и технике. На фотоэффекте основано превращение светового сигнала в электрический. Электрическое сопротивление полупроводника падает при освещении; это используется для устройства фотосопротивлений. При освещении области контакта различных полупроводников возникает фото-эдс, что позволяет преобразовывать световую энергию в электрическую. Фотоэлектронные умножители позволяют регистрировать очень слабое излучение, вплоть до отдельных квантов. Анализ энергий и углов вылета фотоэлектронов позволяет исследовать поверхности материалов. В 2004 году японские исследователи создали новый тип полупроводникового прибора - фотоконденсатор, неразрывно соединяющий в себе фотоэлектрический преобразователь и средство хранения энергии. В преобразовании света новый прибор оказался вдвое эффективнее простых кремниевых солнечных батарей.

ЗАКЛЮЧЕНИЕ

Таким образом, фотоэффект - это явление с освобождением электронов твердого тела под действием электромагнитного излучения.

· фототок насыщения пропорционален величине светового потока;

· фотоэффект носит пороговый характер: при длине волны излучения, большей л макс ("красная" граница), электроны не выбиваются. Значение л макс не зависит от величины светового потока;

· значение энергии электронов с увеличением частоты света (уменьшением л) не уменьшается, а растет. Причем растет линейно.

Объяснение свойств фотоэффекта с позиции квантовой физики принадлежит А. Эйнштейну: свет поглощается частями (квантами), имеющими энергию и получившими название фотон.

Электрон приобретает кинетическую энергию не постепенно (ускоряясь электрическим полем волны), а сразу - в результате единичного акта взаимодействия. В монохроматическом пучке все фотоны имеют одинаковую энергию hн. Увеличение интенсивности светового пучка означает увеличение числа фотонов в пучке, но не сказывается на их энергии, если частота остается неизменной. Зависимость задерживающего напряжения от частоты излучения, как мы видели, имеет вид прямой линии, наклон которой определяется значением постоянной Планка.

Таким образом фотонная теория добавляет новые свойства к обычным свойствам света (дифракции и поляризации). Она не требует отказа от старого представления о свете; она требует лишь сочетания концепции фотонов с концепцией электромагнитных волн.

Существует и немало других экспериментов, которые также показывают согласие фотонной теории с опытом.

Исследованное Вами явление вырывания светом электронов с поверхности металла названо внешним фотоэффектом. Но, как оказалось, фотон может передать свою энергию отдельному электрону атомной оболочки или нуклону ядра атома. Такое явление названо внутренним фотоэффектом. Необходимые условия: частица должна быть связанной, и энергия фотона должна превышать ее энергию связи. Внутренний фотоэффект может происходить в полупроводниках и диэлектриках (и в металлах тоже).

С помощью законов сохранения энергии и импульса можно показать, что фотон не может быть поглощен свободной частицей. В металле электрон взаимодействует с атомами кристаллической решетки. Поэтому при поглощении электроном фотона часть импульса фотона может быть передана кристаллической решетке металла.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1) Богданов К.Ю., Учебник по физике для 11 класса - М.: Просвещение, 2010.

2) Геворкян Р.Г., Шепель В.В. Курс общей физики. - М.: Высшая школа, 1968.

3) Грабовский Р.И. Курс физики - Спб.:Лань, 2005.

4) Савельев И.В. Курс общей физики. Т.3. М.:Наука.1973 г.

5) Сивухин Д.В, Курс общей физики, Т-4. Оптика. Учебное пособие для вузов.- М.: Физматлит, 2002.

6) Тарасов Л.В. Введение в квантовую оптику: Учеб. пособие для вузов. -М.:Высш. шк., 1987.

7) Трофимова Т.И. Курс физики: учеб. пособие для вузов. - Изд. 9-е, перераб. и доп. - М.: Издательский центр «Академия», 2004.

8) http://physics.ru/

9) http://mgul.ac.ru/

10) http://bibliofond.ru/

11) http://edu.dvgups.ru/

Размещено на Allbest.ru

Подобные документы

    Открытие внешнего фотоэффекта немецким физиком Генрихом Герцем. Вывод уравнения фотоэффекта Эйнштейном. Корпускулярные свойства света. Внутренний, внешний и вентильный фотоэффект. Применение фотоэффекта в медицине. Внутренний фотоэффект в полупроводниках.

    реферат , добавлен 29.10.2011

    Макс Планк как основоположник квантовой физики. Исследование фотоэффекта Столетовым. Максимальная кинетическая энергия фотоэлектронов. Определение массы фотона. Применение явления фотоэффекта в автоматизации станков на заводах, солнечных батареях.

    презентация , добавлен 02.04.2012

    Понятие фотоэффекта, его сущность и особенности, история открытия и изучения, современные знания. Законы Столетова, их значение в раскрытии свойств данного явления. Объяснение законов фотоэффекта с помощью квантовой теории света, уравнения Эйнштейна.

    реферат , добавлен 01.05.2009

    Виды фотоэффектов: внешний, внутренний, фотогальванический и в газообразной среде. Зависимость вольт-амперных характеристик внешнего фотоэффекта от интенсивности и частоты света. Гипотеза М. Планка о квантах и кватновая теория фотоэффекта Эйнштейна.

    презентация , добавлен 25.07.2015

    Виды фотоэлектрического эффекта. Внутренний и вентильный фотоэффект. Вольт-амперная его характеристика. Закон Столетова. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света. Масса и импульс фотона.

    реферат , добавлен 24.06.2015

    История открытия фотоэффекта. Схема установки, задачи и выводы Столетова. Основные законы, красная граница, применение фотоэффекта. Вакуумный фотоэлемент, фоторезисторы, вентильные фотоэлементы. Источники для бытовых и производственных нужд.

    презентация , добавлен 10.05.2011

    Теория фотоэффекта. Спектральные характеристики фотокатода. Работа выхода. Распределение электронов в металле. Селективный фотоэффект. Квантомеханическая теория фотоэффекта. Применение. Основные закономерности фотоэффекта.

    реферат , добавлен 17.02.2003

    Законы внешнего фотоэффекта. Фотонная теория света. Масса, энергия и импульс фотона. Эффект Комптона. Тормозное рентгеновское излучение. Двойственная природа и давление света. Изучение основного постулата корпускулярной теории электромагнитного излучения.

    презентация , добавлен 07.03.2016

    Фотоэффект - испускание электронов телами под действием света. Первый, второй и третий закононы фотоэффекта. Фотоэффект широко используется в технике. На явлении фотоэффекта основано действие фотоэлементов.

    реферат , добавлен 10.05.2004

    Открытие явления фотоэффекта не вписывалось в рамки классической физики. Это привело к созданию квантовой механики. Фотоэлектрический эффект и дискретная природа света. Дифракция электронов. Применение явления корпускулярно – волнового дуализма.

Демонстрирует простой опыт. Если отрицательно заряженную цинковую пластинку, соединённую с электроскопом (прибором, показывающим наличие электрического заряда), осветить светом ультрафиолетовой лампы, то очень быстро стрелка электроскопа перейдёт в нулевое состояние. Это говорит о том, что заряд исчез с поверхности пластины. Если такой же опыт проделать с положительно заряженной пластиной, стрелка электроскопа не отклонится вовсе. Этот опыт был впервые проведен в 1888 г. русским физиком Александром Григорьевичем Столетовым .

Александр Григорьевич Столетов

Что же происходит с веществом, когда на него падает свет?

Мы знаем, что свет - это электромагнитное излучение, поток квантовых частиц - фотонов . Когда электромагнитное излучение падает на металл, часть его отражается от поверхности, а часть поглощается поверхностным слоем. При поглощении фотон отдаёт электрону свою энергию. Получив эту энергию, электрон совершает работу и покидает поверхность металла. И пластинка, и электрон имеют отрицательный заряд, поэтому они отталкиваются, и электрон вылетает с поверхности.

Если же пластинка заряжена положительно, отрицательный электрон, выбитый с поверхности, снова притянется ею и не покинет её поверхность.

История открытия

Явление фотоэффекта было открыто в начале XIX века.

В 1839 г. французский учёный Александр Эдмонд Беккерель наблюдал фотогальванический эффект на границе металлического электрода и жидкости (электролите).

Александр Эдмонд Беккерель

В 1873 г. английский инженер-электрик Смит Уиллоуби обнаружил, что если воздействовать на селен электромагнитным излучением, то его электропроводность меняется.

Проводя опыты по исследованию электромагнитных волн в 1887 г., немецкий физик Генрих Герц заметил, что заряженный конденсатор разряжается гораздо быстрее, если осветить его пластины ультрафиолетовым излучением.

Генрих Герц

В 1888 г. германский физик-экспериментатор Вильгельм Гальвакс обнаружил, что при облучении металла коротковолновым ультрафиолетовым излучением металл теряет отрицательный заряд, то есть наблюдается явление фотоэффекта.

Огромный вклад в изучение фотоэффекта внёс русский физик Александр Григорьевич Столетов, проводивший детальные опыты по изучению фотоэффекта в 1888-1890 гг. Для этого он сконструировал специальный прибор, состоявший из двух параллельных дисков. Один из этих дисков, катод , сделанный из металла, находился внутри стеклянного корпуса. Другой диск, анод , представлял собой металлическую сетку, нанесённую на изготовленный из кварцевого стекла торец корпуса. Кварцевое стекло было выбрано учёным не случайно. Дело в том, что оно пропускает все виды световых волн, включая ультрафиолетовое излучение. Обычное стекло ультрафиолетовое излучение задерживает. Из корпуса откачивался воздух. К каждому из дисков подводилось напряжение: к катоду отрицательное, к аноду положительное.

Опыт Столетова

Во время опытов учёный освещал катод через стекло красным, зелёным, синим и ультрафиолетовым светом. Величина тока регистрировалась гальванометром, в котором основным элементом было зеркало. В зависимости от величины фототока, зеркало отклонялось на разный угол. Наибольший эффект оказывали ультрафиолетовые лучи. И чем больше их было в спектре, тем сильнее оказывалось воздействие света.

Столетов обнаружил, что под действием света освобождаются только отрицательные заряды.

Катод изготавливали из различных металлов. Наиболее чувствительными к свету оказались такие металлы, как алюминий, медь, цинк, серебро, никель.

В 1898 г. было установлено, что освобождаемые при фотоэффекте отрицательные заряды являются электронами.

А в 1905 г. Альбер Эйнштейн объяснил явление фотоэффекта, как частный случай закона сохранения и превращения энергии.

Внешний фотоэффект

Внешний фотоэффект

Процесс выхода электронов из вещества под действием электромагнитного излучения называют внешним фотоэффектом , или фотоэлектронной эмиссией . Электроны, вылетающие с поверхности, называются фотоэлектронами . Соответственно, электрический ток, который образуется при их упорядоченном движении, называют фототоком .

Первый закон фотоэффекта

Сила фототока прямо пропорциональна плотности светового потока . Чем выше интенсивность излучения, тем большее количество электронов будет выбито из катода за 1 с.

Интенсивность светового потока пропорциональна числу фотонов. С увеличением числа фотонов увеличивается число электронов, покидающих поверхность металла и создающих фототок. Следовательно, увеличивается сила тока.

Второй закон фотоэффекта

Максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности .

Энергия, которой обладает падающий на поверхность фотон, равна:

Е = h·ν ,где ν - частота падающего фотона; h - постоянная Планка.

Получив энергию Е , электрон совершает работу выхода φ . Остальная часть энергии - это кинетическая энергия фотоэлектрона.

Из закона сохранения энергии вытекает равенство:

h·ν=φ + W e , где W e - максимальная кинетическая энергия электрона в момент вылета из металла.

h·ν=φ + mv 2 /2

Третий закон фотоэффекта

Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν min (или максимальная длина волны λ max ), при которой ещё возможен фотоэффект, и если ν˂ ν min , то фотоэффект уже не происходит.

Фотоэффект проявляется, начиная с определённой частоты света ν min . При этой частоте, называемой «красной» границей фотоэффекта , начинается испускание электронов.

h· ν min = φ .

Если частота фотона ниже ν min , его энергии будет недостаточно, чтобы «выбить» электрон из металла.

Внутренний фотоэффект

Если под воздействием излучения электроны теряют связь со своми атомами, но не покидают твёрдые и жидкие полупроводники и диэлектрики, а остаются внутри них как свободные электроны, то такой фотоэффект называется внутренним. В результате происходит перераспределение электронов по энергетическим состояниям. Изменяется концентрация носителей зарядов и возникает фотопроводимость (увеличение проводимости под воздействием света).

К внутреннему фотоэффекту относят и вентильный фотоэффект , или фотоэффект в запирающем слое . Этот фотоэффект возникает, когда под воздействием света электроны покидают поверхность тела и переходят в другое, контактирующее тело - полупроводник или электролит.

Применение фотоэффекта

Все устройства, принцип действия которых основан на фотоэффекте, называются фотоэлементами . Первым в мире фотоэлементом стал прибор Столетова, созданный им для проведения опытов по изучению фотоэффекта.

Фотоэлементы широко используются в самых различных устройствах в автоматике и телемеханике. Без фотоэлементов невозможно управление станками с числовым программным управлением (ЧПУ), которые могут создавать детали по чертежам без участия человека. С их помощью считывается звук с киноплёнки. Они входят в состав различных контролирующих устройств, помогают остановить и заблокировать устройство в нужный момент. С помощью фотоэлементов уличное освещение включается с наступлением темноты и отключается на рассвете. Они помогают управлять турникетами в метро и маяками на суше, опускают шлагбаум при приближении поезда к переезду. Их используют в телескопах и солнечных батареях.

Внешним фотоэлектрическим эффектом (фотоэффектом) называется явление испускания электронов из вещества под действием электромагнитного излучения и, в частности, света. (При внутреннем фотоэффекте при поглощении падающего излучения электроны переходят на более высокие энергетические уровни, оставаясь в пределах вещества).

Простейшая схема для наблюдения фотоэффекта представлена на рис.1.

Свет через окошко попадает внутрь вакуумной стеклянной колбы и падает на металлическую пластинку, играющую роль катода (фотокатода).

Вследствие фотоэффекта с катода будут испускаться электроны (фотоэлектроны), которые будут под действием электрического поля, создаваемого между катодом и анодом, двигаться к аноду. Электроны достигают анода, и в цепи появляется электрический ток I ф , который регистрируется гальванометром G . Напряжение U между катодом и анодом регулируется с помощью потенциометра R и измеряется вольтметром V . С помощью этой схемы были сняты вольтамперные характеристики фотоэффекта (ВАХ) – зависимости силы фототока от напряжения между катодом и анодом. Две ВАХ для двух значений освещенности фотокатода ипоказаны на рисунке 2.

Из кривых мы видим, что при нулевом напряжении фототок не равен нулю. Это значит, что при U =0 некоторая часть вырванных фотоэлектронов долетает до анода. Чтобы уменьшить фототок до нуля необходимо приложить между катодом и анодом задерживающую разность потенциалов (-U З ). При увеличении освещенности E фотокатода сила фототока будет увеличиваться, вольтамперная характеристика идет выше предыдущей. При некотором напряжении, равном U нас (напряжение насыщения), сила фототока достигает насыщения - I нас . Это значит, что при таком напряжении между катодом и анодом все вылетевшие с катода электроны достигнут анода. Из анализа вольтамперных характеристик были установлены следующие экспериментальные закономерности фотоэффекта (законы Столетова).

1. Сила фототока насыщения пропорциональна освещенности фотокатода (или интенсивности падающего света) при частоте света v = const.

=
,
(2)

где γ-коэффициент пропорциональности.

2. Максимальная начальная скорость фотоэлектронов (или максимальная кинетическая энергия) не зависит от интенсивности падающего света и увеличивается с увеличением частоты света.

3. Для каждого вещества существует минимальная частота ν 0 (или максимальная длина волны λ 0 ), при которой ещё происходит вырывание электронов. Если частота света будет меньше ν 0 , то фотоэффект прекратится. Эта частота называется “красной границей” фотоэффекта .

Таким образом, для наблюдения фотоэффекта необходимо выполнения условия: νν 0 (λλ 0).

Наблюдаемые в опыте закономерности фотоэффекта оказалось невозможно объяснить с позиции классических или волновых представлений. Например, независимость скорости вылета фотоэлектронов от интенсивности света, поскольку с увеличением интенсивности падающей световой волны электронам должна бы передаваться бóльшая энергия. Невозможно также объяснить безинерционность фотоэффекта и наличие “красной границы”.

Качественное непротиворечивое объяснение фотоэффекта было дано A.Эйнштейном в 1905 году на основе предложенной им квантовой теории фотоэффекта. В соответствии с этой теорией кванты света (фотоны) ведут себя подобно материальным частицам. Падающее монохроматическое излучение рассматривается как поток световых квантов - фотонов с энергией E =hν . Поглощение веществом света сводится к тому, что один фотон передаёт полностью свою энергию одному электрону вещества. Если эта энергия фотона достаточна, чтобы освободить электрон от удерживающих его внутри вещества связей, то происходит эмиссия электрона. Следовательно, число фотоэлектронов должно быть пропорционально числу поглощённых фотонов (что согласуется с первым законом Столетова). Энергия фотона увеличивается с частотой ν и, следовательно, энергия фотоэлектронов также должна увеличиваться с частотой падающего света, что согласуется также с опытом. Полученная электроном вещества энергия фотона перераспределяется следующим образом. Часть этой энергии, называемой работой выхода А , затрачивается на то, чтобы освободить электрон от удерживающих его внутри металла связей. Если фотон поглощается электроном не у самой поверхности металла, а на некоторой глубине, то часть энергии фотона, равная Е потерь , может быть рассеяна вследствие случайных столкновений электрона в веществе. Остаток энергии образует кинетическую энергию К электрона, покинувшего вещество. Таким образом

hν= А + Е потерь + К (3)

Для тех электронов, у которых Е потерь = 0, кинетическая энергия будет максимально возможной при А = const для данного металла. Для таких электронов равенство (3) перепишем в виде

(4)

Это выражение называется уравнением Эйнштейна для внешнего фотоэффекта. Оно выполняет роль закона сохранения энергии для фотоэффекта.

Из уравнения Эйнштейна следуют рассмотренные выше экспериментальные законы фотоэффекта. Например, из формулы (4) непосредственно вытекает второй закон Столетова

= hν – А (A= const).

Из уравнения (4) следует, что если уменьшать частоту падающего света v , то будет уменьшаться энергия фотона
, соответственно, будет уменьшаться кинетическая энергия фотоэлектронов при A = const для данного металла. Тогда при некотором значении частоты света v = кинетическая энергия фотоэлектронов станет равной нулю, и фотоэффект прекратится. Тогда из уравнения (4) следует

h= A + 0,

= (5)

То есть, существует некоторая граничная частота («красная граница») падающего света, ниже которой свет не вызывает фотоэффект. Этот вывод находится в соответствии с эмпирическим третьим законом фотоэффекта.

Выражение (5) определяет связь красной границы фотоэффекта с работой выхода. Работа выхода электронов из металла в сильной степени зависит от состояния поверхности металла, например, от находящихся на поверхности оксидов и адсорбированных газов. Поэтому долгое время не удавалось проверить с достаточной точностью формулу Эйнштейна.

Еще одной важной характеристикой фотоэффекта является спектральная чувствительность фотокатода, которая показывает зависимость чувствительности катода
от длины волныизлучения, падающего на фотокатод. Величиной, пропорциональной чувствительности фотокатода, является фототок. Таким образом, на практике для получения спектральной характеристики можно снимать зависимость фототока от длины волны (или от частоты) падающего на фотоэлемент (или фотокатод) монохроматического излучения. При больших длинах волн, то есть при малых энергиях квантов света, энергия, получаемая электроном, оказывается недостаточной для преодоления работы выхода и эмиссии электронов в вакуум. Поэтому для каждого металла существует его пороговая длина волны (наибольшая λ 0 =λ max) или пороговая частота (наименьшая ν 0 =ν max), которую мы выше определили как «красную границу» фотоэффекта. При малых длинах волн возрастает показатель поглощения. Поэтому глубина проникновения квантов света в металл уменьшается, и вероятность передачи энергии кванта света свободному электрону металла уменьшается. Таким образом, спектральная характеристика имеет вид кривой с максимумом, со спадом при малых длинах волн (рис.3).

Различные вещества имеют разную работу выхода, поэтому максимум спектральной характеристики фотокатода может находиться в той или иной части электромагнитного спектра.

Таким образом, фотоэлемент, иcпользуемый в лабораторной работе, является селективным фотоприёмником, то есть он “чувствует” излучение в строго определённой области спектра от λ 1 до λ 2 .

2.1. Цель работы
Практическое ознакомление с закономерностями внешнего фотоэффекта; экспериментальное определение работы выхода для сурьмяно-цезиевого фотокатода, а также постоянной Планка.

Изучение закономерностей фотоэффекта привело физическую науку к понятию световых квантов и сыграло выдающуюся роль в становлении современных представлений о природе.

2.2.2. Вакуумный фотоэлемент
Это один из самых распространенных приборов, использующих внешний фотоэффект. Он представляет собой откаченный стеклянный баллон, часть внутренней поверхности которого покрыта металлом и является катодом К. Металлическое кольцо А служит анодом (см. рис. 2. 1).

Электрическая цепь на рис. 2. 1 разомкнута; ток в ней появится, только если из катода будут вырваны (например, светом) электроны, которые затем достигнут анода. Сила фототока зависит от числа вылетающих из катода электронов, от их начальной скорости, а также от разности потенциалов между катодом и анодом. Зависимость силы фототока от анодного напряжения (при постоянной освещенности катода) называется вольтамперной характеристикой (ВАХ) фотоэлемента (см. рис. 2. 2).

2.2.3. Закономерности фотоэффекта
Даже при нулевом анодном напряжении U некоторые из фотоэлектронов долетают до анода, поэтому I ≠ 0 при U = 0. С увеличением U анода достигают все большее число электронов, и сила фототока постепенно возрастает. Наконец, при некотором напряжении (называемым напряжением насыщения UН) все фотоэлектроны долетают до анода, и в дальнейшем увеличение напряжения не приводит к увеличению силы тока. Достигнутое значение силы фототока называется током насыщения IН. По значению силы тока насыщения можно судить о количестве электронов n , испускаемых катодом за единицу времени:

Если анодное напряжение отрицательно, то оно будет тормозить фотоэлектроны, и сила тока уменьшится.

При некотором значении напряжения U = U З < 0 (которое называется запирающим) даже самые быстрые фотоэлектроны не в силах достигнуть анода, и ток прекращается. При этом вся начальная кинетическая энергия электронов расходуется на совершение работы против сил задерживающего электрического поля:

E kmax = e*U З

(E kmax – начальная кинетическая энергия самых быстрых фотоэлектронов, покидающих катод при данных условиях).

На рис. 2. 2 приведены несколько ВАХ одного и того же фотоэлемента, полученные при облучении катода монохроматическим светом одной и той же частоты ω, но разной интенсивности (а) или одной и той же интенсивности I, но разных частот (б).

Экспериментально установлены следующие закономерности фотоэффекта .

1. При фиксированной частоте света сила фототока насыщения (и число фотоэлектронов вырываемых из катода за единицу времени) прямо пропорционально интенсивности света).

2. Величина запирающего напряжения (и максимальная скорость фотоэлектронов) определяется частотой света и не зависит от его интенсивности.

3. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света ω0, при которой фотоэффект еще возможен.

2.2.4. Недостаточность классических представлений
К моменту открытия фотоэффекта была общепризнана волновая теория света, берущая начало из опытов Френеля, Юнга и Араго по дифракции и интерференции света. Из уравнений Максвелла следовало существование электромагнитных волн, свойства которых (экспериментально изученных Герцем) оказались тождественны свойствам света, а также инфракрасного и ультрафиолетового излучений. Были измерены длины световых волн (0,4 – 0,7 мкм).

С помощью представлений о свете как об электромагнитных волнах успешно объяснены (не только качественно, но и количественно) закономерности отражения, преломления, поляризации света. Естественным было стремление объяснить с тех же позиций и фотоэффект.

Металлы отличаются от других веществ наличием большого числа "свободных" электронов (не связанных с каким-либо атомом) проводимости. Резонно предположить, что именно эти электроны и будут вырываться электрическим полем световой (электромагнитной) волны. Тогда первый из указанных в п.2.2.3 законов фотоэффекта объясняется элементарно: чем больше амплитуда световой волны, тем большее количество электронов может она вырвать с поверхности металла.

Найдем далее зависимость скорости и кинетической энергии приобретаемой электроном, от параметров световой волны. Для этого проинтегрируем уравнение движения "свободного" электрона проводимости в переменном электрическом поле волны:

m e *v" = cos(ω*t)


где Е – амплитуда, ω = 2πν − циклическая частота света. Получим

m e *v = (e*E) / ω * sin(ω*t)

E k = m e *v 2 /2 = 1/2*m e * (e*E / ω) 2 * sin 2 (ω*t)

Поскольку интенсивность света определяется квадратом амплитуды электрического вектора Е, то можно сказать, что максимальная начальная кинетическая энергия фотоэлектронов: во-первых, прямо пропорциональна интенсивности света; во-вторых, обратно пропорциональна квадрату частоты света.

Однако оба этих предсказания никак не подтверждаются наблюдениями!

Даже если предположить, что свет вырывает из металла не электроны проводимости, а электроны, связанные с атомами квазиупругими силами, то решение уравнения движения такого электрона дало бы резонансную зависимость Е kmax от ω (острый пик при ω = ω 0 – частота собственных колебаний электронов в атомах) и по-прежнему пропорциональность меду интенсивностью света и Е kmax .
Итак, классические представления явно не способы объяснить всех наблюдаемых закономерностей фотоэффекта!

2.2.5. Квантовое истолкование законов фотоэффекта

В 1905 г. Эйнштейн показал, что закономерности излучения и поглощения света легко могут быть объяснены в предположении, что энергия света излучается и поглощается дискретными порциями (квантами); при этом величина кванта энергии света прямо пропорциональна его частоте: ε = hν (коэффициент h называется постоянной Планка).

В соответствии с квантовой теорией (см., например , ) энергия электрона в твердом теле также принимает дискретный ряд значений. Эти значения (энергетические уровни) группируются в полосы, или разрешенные зоны разделенные запрещенными зонами.

Энергетическая зона, заполненная электронами лишь частично, называется зоной проводимости ; у зон, лежащих ниже неё, заполнены все уровни.

Находящиеся в зоне проводимости электроны легко могут переходить на более высокие энергетические уровни этой зоны, иначе говоря – увеличивать свою кинетическую энергию (ускоряться) за счет внешних воздействий. Наивысший из энергетических уровней, занятых электронами при Т = 0 К, называется уровнем Ферми .

При обычных условиях все электроны в металле имеют отрицательные значения полной энергии; за нулевой уровень энергии принимается энергия покоящегося электрона, находящегося вне металла. Наименьшая работа, необходимая для удаления электрона из металла в вакуум, называется работой выхода А 0 . Фактически работа выхода – это энергия, которую нужно затратить, чтобы вырвать из металла (при Т = 0 К) электрон, имеющий энергию Ферми и движущийся к поверхности (а не вглубь) металла. Для вырывания любого другого электрона понадобится большая энергия! Работу выхода можно также трактовать как глубину потенциальной ямы, в которой находится электроны металла. Она определяется химической природой вещества и в меньшей степени – условиями, в которых оно находится, например, температурой.

Если энергия каждого кванта света (фотона) меньше работы выхода, то электроны, которым передается их энергия, не смогут покинуть металл. Минимальная частота света, которая еще может вызывать фотоэффект, определяется соотношением:

ν 0 = A 0 / h

и называется красной границей фотоэффекта . (Здесь "красная" является синонимом слов "длинноволновая" или "низкочастотная"; красная граница может лежать и в ультрафиолетовой области спектра!)

Итак, если поверхность металла освещена светом с частотой ν > ν 0 , то максимальная кинетическая энергия, которую могут иметь фотоэлектроны, определяется из соотношения

Е kmax = h*ν − A 0

называемого уравнением Эйнштейна для фотоэффекта.

В соответствии с уравнением Эйнштейна и формулой (2.2) запирающее напряжение должно зависеть от частоты линейно:

е*U З = hν − A 0


Этот вывод (одно из предсказаний квантовой теории) находится в прекрасном соответствии с опытом. Более того, измерив значение запирающего напряжения для нескольких частот света, мы можем с помощью уравнения (2.8) найти работу выхода материала фотокатода и постоянную Планка.


2.3. Описание лабораторной установки

В лабораторной установке, показанной на рис. 2.3, в качестве источника света используется ртутная газоразрядная лампа ДРШ, излучающая линейчатый спектр. (Длины волн спектральных линий ртути хорошо известны и занесены в таблицы, что избавляет от необходимости их измерять.)

С помощью монохроматора из излучения ртутной лампы выделяется узкие пучки монохроматического света, которые поочередно направляют на фотоэлемент с сурьмяно-цезиевым катодом.

Электрическая схема включения фотоэлемента показана на рис. 2.4. С помощью источника постоянного тока ИП, смонтированного в основании монохроматора, и двухполюсного переключателя S на аноде фотоэлемента Ф можно создавать как положительный (ускоряющее поле), так и отрицательный потенциал (тормозящее поле). Напряжение между катодом и анодом регулируется потенциометром R; для измерения напряжения служит вольтметр V. Сила тока в цепи фотоэлемента измеряется амперметром А.

2.4. Методика проведения эксперимента и обработка результатов
2.4.1. Методика эксперимента
2.4.1.1. Измеряемые и вычисляемые величины

Для определения красной границы фотоэффекта и постоянной Планка измеряются значения запирающего напряжения для нескольких наиболее ярких спектральных линий, двигаясь от фиолетовой до желто-зеленой области спектра. Для этих же линий снимаются вольт-амперные характеристики в интервале напряжения от 0 до 3 В.

По окончании измерений строится график зависимости U З (ν); по графику определяются значения h и ν 0 . Вычисляются значения λ 0 (нм), а также А 0 (Дж, эВ).


2.4.1.2. Темновой ток фотоэлемента и точность измерений

В реальном фотоэлементе даже при нулевой освещенности катода течет некоторый (очень небольшой) темновой ток I Т, обусловленный отчасти термоэлектронной эмиссией с катода, отчасти разностью работ выхода для катода и анода, отчасти просто утечкой тока между выводами фотоэлемента.

При разности потенциалов между катодом и анодом, близкой к U З, сила тока в цепи анода того же порядка, что и темновой ток. Однако величина темнового тока зависит от множества параметров и в принципе может меняться в ходе опыта.

Из сказанного ясно, что способ экспериментального определения U З как напряжения, при котором ток на выходе фотоэлемента равен нулю (или даже предварительно измеренному значению I Т) не вполне надежен. Для получения более достоверного значения U З следует увеличивать (по модулю) отрицательное анодное напряжение до тех пор, пока не прекратит уменьшаться анодный ток фотоэлемента.

При положительных значениях анодного напряжения темновой ток составляет незначительную часть полного тока. Поэтому при снятии вольт-амперной характеристики в области U > 0 учет темнового тока не требуется.


2.4.2. Порядок выполнения работы

2.4.2.1. Подготовка к работе

  1. Подготовьте амперметр к работе в соответствии с инструкцией.
  2. Включите ртутную лампу 1 нажатием тумблера "ВКЛ" и "ЛАМПА ДРШ" на блоке питания (если лампа не загорается, нажмите черную кнопку)
  3. При правильной настройке свет ртутной лампы должен быть сфокусирован в центре крышечки 2, закрывающей объектив монохроматора. Если это не так, наведите световое пятно на центр крышки 2, поворачивая винт 8 конденсорной линзы.
  4. Снимите крышку 2 с объектива монохроматора. Рукоятка затвора 4 должна стоять в положении "ОТКР".
  5. Микровинотом 3 установите ширину входной щели 0,15 мм.


2.4.2.2. Измерение запирающего напряжения

  1. Глядя в окуляр монохроматора, поворотом барабана 5 совместите яркую фиолетовую линию (λ = 404,7 нм) с указателем (темная стрелка на фоне спектра). При необходимости регулируйте резкость вращением окулярного кольца.
  2. Замените окулярную головку 7 на головку с фотоэлементом 6.
  3. Микровинтом 3 установите ширину входной щели 2 мм.
  4. Ручкой "УСТАНОВКА 0" амперметра выведите его стрелку на середину шкалы.
  5. Переключатель полярности блока питания фотоэлемента поставьте в положение "−".
  6. Вращая ручку потенциометра R, увеличивайте анодное напряжение до тех пор, пока стрелка амперметра не остановится.
  7. Запишите значения напряжения, при котором стрелка остановилась (запирающее напряжение) в таблицу 2.2.
  8. Проделайте измерения по пунктам 9-12 еще два раза.
  9. Ручкой "УСТАНОВКА 0" выставьте стрелку амперметра на нулевое деление.

2.4.2.3. Снятие вольт-амперных характеристик
  1. Переключатель полярности блока питания поставьте в положение "+".
  2. Потенциометром R установите анодное напряжение равное 0.
  3. Измерьте силу фототока для значений ускоряющего напряжения от 0 до 3 В через 0,6 В. Запишите ее в таблицу 2.3.
Внимание! Измерения по пункте 3 необходимо проделать также для синей (λ = 435,6 нм) и голубой (481,6 нм) линий спектра ртути.

Однократно измеряемые величины:

Таблица 2.1



2.4.3. Обработка результатов измерений

  1. Вычислите значения частоты ν = с/λ, соответствующие длинам волн исследуемых спектральных линий. Результаты занесите в таблицу 2.2.
  2. На миллиметровой бумаге постройте координатные оси ν и UЗ.
  3. Нанесите на график частóты исследованных спектральных линий и измеренные для этих линий значения запирающего напряжения.
  4. Через экспериментальные точки проведите прямую линию. Определите координаты точек ее пересечения с осями ν и U З (см. рис. 2.5).
  5. По полученным значениям ν 0 и U * вычислите постоянную Планка h = e*U * = eU * / ν 0 и работу выхода A 0 = h*ν 0 . Занесите все значения в таблицу 2.1.

2.5 Контрольные вопросы

  1. Расскажите, как экспериментально определить число фотоэлектронов, покидающих катод за единицу времени, и их начальную кинетическую энергию.
  2. Поясните ход вольт-амперных характеристик фотоэлемента. Пользуясь этими графиками, сформулируйте основные законы фотоэффекта.
  3. Почему электроны вылетают из металла с разными скоростями даже при освещении его монохроматическим светом?
  4. Почему при попытке классического истолкования фотоэффекта мы рассматривали действие на электрон лишь электрического, но не магнитного поля световой волны?
  5. Объясните, в чем состояла новизна эйнштейновской теории фотоэффекта.
  6. Дайте определение работы выхода: сперва в терминах классической, а затем – квантовой физики.
  7. Из опыта известно, что количество выбитых из металла фотоэлектронов в несколько раз меньше фотонов упавших на поверхность катода. Почему? Подумайте, будет ли ток насыщения фотоэлемента зависеть от частоты света, падающего на фотокатод.
  8. Можно ли наблюдая фотоэффект для света с длиной волны λ > λ0, если создать между катодом и анодом не тормозящую, а ускоряющую разность потенциалов?
  9. Работа выхода для металлов составляет обычно несколько электронвольт. Почему же для вырывания электронов электрическим полем из отрицательно заряженного металлического электрода требуется разность потенциалов в сотни тысяч вольт? (Это явление называется холодной, или автоэлектронной эмиссией)
  1. Гольдин Л.Л., Новикова Г.И. Введение в атомную физику. М.: Наука, 1969.
  2. Савельев И.В. Курс общей физики. Т.3. М.: Наука, 1982.
  3. Детлаф А.А., Яворский В.М. Курс физики. М.: Высшая школа, 1989.
Автор методики: Подопригора А.Г.; ВолгГТУ


Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ