Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Центр тяжести - точка, через которую проходит линия действия равнодействующей элементарных сил тяжести. Он обладает свойством центра параллельных сил (Е. М. Никитин , § 42). Поэтому формулы для определения положения центра тяжести различных тел имеют вид:
x c = (∑ G i x i) / ∑ G i ;
(1) y c = (∑ G i y i) / ∑ G i ;
z c = (∑ G i z i) / ∑ G i .

Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес G i каждого отрезка l i можно представить в виде произведения
G i = l i d,
где d - постоянный для всей фигуры вес единицы длины материала.

После подстановки в формулы (1) вместо G i их значений l i d постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий , примут вид:
x c = (∑ l i x i) / ∑ l i ;
(2) y c = (∑ l i y i) / ∑ l i ;
z c = (∑ l i z i) / ∑ l i .

Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174), то вес каждой плоскости (поверхности) можно представить так:
G i = F i p,
где F i - площади каждой поверхности, а p - вес единицы площади фигуры.

После подстановки этого значения G i в формулы (1) получаем формулы координат центра тяжести фигуры, составленной из площадей :
x c = (∑ F i x i) / ∑ F i ;
(3) y c = (∑ F i y i) / ∑ F i ;
z c = (∑ F i z i) / ∑ F i .

Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части
G i = V i γ,
где V i - объем каждой части, а γ - вес единицы объема тела.

После подстановки значений G i в формулы (1) получаем формулы для определения координат центра тяжести тела, составленного из однородных объемов :
x c = (∑ V i x i) / ∑ V i ;
(4) y c = (∑ V i y i) / ∑ V i ;
z c = (∑ V i z i) / ∑ V i .


При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.

Если известен радиус дуги r и центральный угол 2α, стягиваемый дугой и выраженный в радианах, то положение центра тяжести C (рис. 176, а) относительно центра дуги O определится формулой:
(5) x c = (r sin α)/α.

Если же задана хорда AB=b дуги, то в формуле (5) можно произвести замену
sin α = b/(2r)
и тогда
(5а) x c = b/(2α).

В частном случае для полуокружности обе формулы примут вид (рис. 176, б):
(5б) x c = OC = 2r/π = d/π.

Положение центра тяжести кругового сектора, если задан его радиус r (рис. 176, в), определяется при помощи формулы:
(6) x c = (2r sin α)/(3α).

Если же задана хорда сектора, то:
(6а) x c = b/(3α).

В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
(6б) x c = OC = 4r/(3π) = 2d/(3π).

Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.

У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).

При решении задач на определение положения центра тяжести любого однородного тела, составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:

1) выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;

2) разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;

3) определить или длины, или площади, или объемы составных частей;

4) выбрать расположение осей координат;

5) определить координаты центров тяжести составных частей;

6) найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;

7) по найденным координатам указать на рисунке положение центра тяжести тела.

§ 23. Определение положения центра тяжести тела, составленного из тонких однородных стержней

§ 24. Определение положения центра тяжести фигур, составленных из пластинок

В последней задаче, а также в задачах, приведенных в предыдущем параграфе, расчленение фигур на составные части не вызывает особых затруднений. Но иногда фигура имеет такой вид, который позволяет разделить ее на составные части несколькими способами, например тонкую пластинку прямоугольной формы с треугольным вырезом (рис. 183). При определении положения центра тяжести такой пластинки ее площадь можно разделить на четыре прямоугольника (1, 2, 3 и 4) и один прямоугольный треугольник 5 - несколькими способами. Два варианта показаны на рис. 183, а и б.

Наиболее рациональным является тот способ деления фигуры на составные части, при котором образуется наименьшее их число. Если в фигуре есть вырезы, то их можно также включать в число составных частей фигуры, но площадь вырезанной части считать отрицательной. Поэтому такое деление получило название способа отрицательных площадей.

Пластинка на рис. 183, в делится при помощи этого способа всего на две части: прямоугольник 1 с площадью всей пластинки, как будто она целая, и треугольник 2 с площадью, которую считаем отрицательной.

§ 26. Определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму

Чтобы решать задачи на определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму, необходимо иметь навыки определения координат центра тяжести фигур, составленных из линий или площадей.

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

1. Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно или в плоскости симметрии, или на оси симметрии, или в центре симметрии.

Допустим, например, что однородное тело имеет плоскость симметрии. Тогда этой плоскостью оно разбивается на две такие части, веса которых и равны друг другу, а центры тяжести находятся на одинаковых расстояниях от плоскости симметрии. Следовательно, центр тяжести тела как точка, через которую проходит равнодействующая двух равных и параллельных сил будет действительно лежать в плоскости симметрии. Аналогичный результат получается и в случаях, когда тело имеет ось или центр симметрии.

Из свойств симметрии следует, что центр тяжести однородного круглого кольца, круглой или прямоугольной пластины, прямоугольного параллелепипеда, шара и других однородных тел, имеющих центр симметрии, лежит в геометрическом центре (центре симметрии) этих тел.

2. Разбиение. Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всего тела можно непосредственно вычислить по формулам (59) - (62). При этом число слагаемых в каждой из сумм будет равно числу частей, на которые разбито тело.

Задача 45. Определить координаты центра тяжести однородной пластины, изображенной на рис. 106. Все размеры даны в сантиметрах.

Решение. Проводим оси х, у и разбиваем пластину на три прямоугольника (линии разреза показаны на рис. 106). Вычисляем координаты центров тяжести каждого из прямоугольников и их площади (см. таблицу).

Площадь всей пластины

Подставляя вычисленные величины в формулы (61), получаем:

Найденное положение центра тяжести С показано на чертеже; точка С оказалась вне пластины.

3. Дополнение. Этот способ является частным случаем способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известныу

Задача 46. Определить положение центра тяжести круглой пластины радиуса R с вырезом радиуса (рис. 107). Расстояние

Решение. Центр тяжести пластины лежит на линии так как эта линия является осью симметрии. Проводим координатные оси. Для нахождения координаты дополняем площадь пластины до полного круга (часть 1), а затем вычитаем из полученной площади площадь вырезанного круга (часть 2). При этом площадь части 2, как вычитаемая, должна браться со знаком минус. Тогда

Подставляя найденные значения в формулы (61), получаем:

Найденный центр тяжести С, как виднм, лежнт левее точки

4. Интегрирование. Если тело нельзя разбить на несколько конечных частей, положения центров тяжести которых известны, то тело разбивают сначала на произвольные малые объемы для которых формулы (60) принимают вид

где - координаты некоторой точки, лежащей внутри объема Затем в равенствах (63) переходят к пределу, устремляя все к нулю, т. е. стягивая эти объемы в точки. Тогда стоящие в равенствах суммы обращаются в интегралы, распространенные на весь объем тела, и формулы (63) дают в пределе:

Аналогично для координат центров тяжести площадей и линий получаем в пределе из формул (61) и (62):

Пример применения этих формул к определению координат центра тяжести рассмотрен в следующем параграфе.

5. Экспериментальный способ. Центры тяжести неоднородных тел сложной конфигурации (самолет, паровоз и т. п.) можно определять экспериментально. Один из возможных экспериментальных методов (метод подвешивания) состоит в том, что тело подвешивают на нити или тросе за различные его точки. Направление нити, на которой подвешено тело, будет каждый раз давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела. Другим возможным способом экспериментального определения центра тяжести является метод взвешивания. Идея этого метода ясна из рассмотренного ниже примера.

Примечание. Центр тяжести симметричной фигуры находится на оси симметрии.

Центр тяжести стержня находится на середине высоты. При решении задач используются следующие методы:

1. метод симметрии: центр тяжести симметричных фигур нахо­дится на оси симметрии;

2. метод разделения: сложные сечения разделяем на несколько простых частей, положение центров тяжести которых легко опреде­лить;

3. метод отрицательных площадей: полости (отверстия) рас­сматриваются как часть сечения с отрицательной площадью.

Примеры решения задач

Пример1. Определить положение центра тяжести фигуры, представленной на рис. 8.4.

Решение

Разбиваем фигуру на три части:

Аналогично определяется у С = 4,5 см.

Пример 2. Найти положение центра тяжести симметричной стержневой фермы ADBE (рис. 116), размеры которой таковы: АВ = 6м, DE = 3 м и EF = 1 м.

Решение

Так как ферма симметричная, то ее центр тяжести лежит на оси симметрии DF. При выбранной (рис. 116) системе коор­динатных осей абсцисса центра тяжести фермы

Неизвестной, следовательно, является лишь ордината у С центра тя­жести фермы. Для ее определения разбиваем ферму на отдельные части (стержни). Длины их определяются из соответствующих треугольников.

Из ΔAEF имеем

Из ΔADF имеем

Центр тяжести каждого стержня лежит в его середине, координаты этих центров легко определяются из чертежа (рис. 116).

Найденные длины и ординаты центров тяжести отдельных частей фермы заносим в таблицу и по формуле

определяем ординату у с центра тяжести данной плоской фермы.

Следовательно, центр тяжести С всей фермы лежит на оси DF симметрии фермы на расстоянии 1,59 м от точки F.

Пример 3. Определить координаты центра тяжести составного сечения. Сечение состоит из листа и прокатных профилей (рис. 8.5).

Примечание. Часто рамы сваривают из разных профилей, создавая необходимую конструкцию. Таким образом, уменьшается расход металла и образуется конструкция высокой прочности.

Для стандартных прокатных профилей собственные геометри­ческие характеристики известны. Они приводятся в соответствую­щих стандартах.

Решение

1. Обозначим фигуры номерами и выпишем из таблиц необхо­димые данные:

1 - швеллер № 10 (ГОСТ 8240-89); высота h = 100 мм; ширина полки b = 46 мм; площадь сечения А 1 = 10,9 см 2 ;

2 - двутавр № 16 (ГОСТ 8239-89); высота 160 мм; ширина полки 81 мм; площадь сечения А 2 - 20,2 см 2 ;

3 - лист 5x100; толщина 5 мм; ширина 100мм; площадь сечения A 3 = 0,5 10 = 5 см 2 .

2. Координаты центров тяжести каждой фигуры можно опреде­лить по чертежу.

Составное сечение симметрично, поэтому центр тяжести нахо­дится на оси симметрии и координата х С = 0.

3. Определение центра тяжести составного сечения:

Пример 4. Определить координаты центра тяжести сечения, по­казанного на рис. 8, а. Сечение состоит из двух уголков 56x4 и швеллера № 18. Выполнить проверку правильности определения положения центра тяжести. Указать его положение на сечении.

Решение

1. : два уголка 56 х 4 и швеллер № 18. Обозначим их 1, 2, 3 (см. рис. 8, а).

2. Укажем центры тяжести каждого профиля, используя табл. 1 и 4 прил. I, и обозначим их С 1 , С 2 , С 3 .

3. Выберем систему координатных осей. Ось у совместим с осью симметрии, а ось х проведем через центры тяжести уголков.

4. Определим координаты центра тяжести всего сечения. Так как ось у совпадает с осью симметрии, то она проходит через центр тяжести сечения, поэтому х с = 0. Координату у с опреде­лим по формуле

Пользуясь таблицами приложения, определим площади каждого профиля и координаты центров тяжести:

Координаты у 1 и у 2 равны нулю, так как ось х проходит через центры тяжести уголков. Подставим полученные значения в формулу для определения у с :

5. Укажем центр тяжести сечения на рис. 8, а и обозначим его буквой С. Покажем расстояние у С = 2,43 см от оси х до точ­ки С.

Поскольку уголки симметрично расположены, имеют одина­ковую площадь и координаты, то А 1 = А 2 , у 1 = у 2 . Поэтому фор­мула для определения у С может быть упрощена:

6. Выполним проверку. Для этого ось х проведем по нижнему краю полки уголка (рис. 8, б). Ось у оставим, как в первом ре­шении. Формулы для определения х С и у С не изменяются:

Площади профилей останутся такими же, а координаты центров тяжестей уголков и швеллера изменятся. Выпишем их:

Находим координату центра тяжести:

По найденным координатам х с и у с наносим на рисунок точ­ку С. Найденное двумя способами положение центра тяжести находится в одной и той же точке. Проверим это. Разница между координатами у с, найденными при первом и втором решении, составляет: 6,51 - 2,43 = 4,08 см.

Это равно расстоянию между осями х при первом и втором решении: 5,6 - 1,52 = 4,08 см.

Ответ: у с = 2,43 см, если ось х проходит через центры тяже­сти уголков, или у с = 6,51 см, если ось х проходит по нижнему краю полки уголка.

Пример 5. Определить координаты центра тяжести сечения, изображенного на рис. 9, а. Сечение состоит из двутавра № 24 и швеллера №.24а. Показать положение центра тяжести на сече­нии.

Решение

1. Разобьем сечение на профили проката : двутавр и швеллер. Обозначим их цифрами 1 и 2.

3. Укажем центры тяжести каждого профиля С 1 и С 2 , ис­пользуя таблицы приложений.

4. Выберем систему осей координат. Ось х совместим с осью симметрии, а ось у проведем через центр тяжести двутавра.

5. Определим координаты центра тяжести сечения. Координа­та у с = 0, так как ось х совпадает с осью симметрии. Координату х с определим по формуле

По табл. 3 и 4 прил. I и схеме сечения определим

Подставим числовые значения в формулу и получим

5. Нанесем точку С (центр тяжести сечения) по найденным значениям х с и у с (см. рис. 9, а).

Проверку решения необходимо выполнить самостоятельно при положении осей, как показано на рис. 9, б. В результате ре­шения получим х с = 11,86 см. Разница между значениями х с при первом и втором решении равна 11,86 - 6,11 = 5,75 см, что равно расстоянию между осями у при тех же решениях b дв /2 = 5,75 см.

Ответ: х с = 6,11 см, если ось у проходит через центр тяжести двутавра; х с = 11,86 см, если ось у проходит через левые крайние точки двутавра.

Пример 6. Железнодорожный кран опирается на рельсы, расстояние меж­ду которыми АВ = 1,5м (рис. 1.102). Сила тяжести тележки крана G r = 30 кН, центр тяжести тележки находится в точке С, лежащей на линии KL пересечения плоскости симметрии тележки с плоскостью рисунка. Сила тяжести лебедки крана Q л = 10 кН приложена в точке D. Сила тяжести противовеса G„=20 кН приложена в точке Е. Сила тяжести стрелы G c = 5 кН приложена в точке Н. Вылет крана относительно линии KL равен 2 м. Определить коэффициент устойчивости крана в ненагруженном состоянии и какой груз F можно поднять этим краном при условии, что коэффициент устойчивости должен быть не менее двух.

Решение

1. В ненагруженном состоянии у крана возникает опасность опро­кидывания при повороте вокруг рельса А. Следовательно, относительно точки А момент устойчивости

2. Опрокидывающий момент относительно точки А создается силой тяжести противове­са, т. е.

3. Отсюда коэффициент устойчивости крана в ненагруженном состоянии

4. При нагрузке стрелы крана грузом F возникает опасность опрокидывания крана с поворотом около рельса В. Следовательно, от­носительно точки В момент устойчивости

5. Опрокидывающий момент относитель­но рельса В

6. По условию задачи эксплуатация крана разрешается при коэффициенте устойчивости k B ≥ 2 , т. е.

Контрольные вопросы и задания

1. Почему силы притяжения к Земле, действующие на точки тела, можно принять за систему параллельных сил?

2. Запишите формулы для определения положения центра тя­жести неоднородных и однородных тел, формулы для определения положения центра тяжести плоских сечений.

3. Повторите формулы для определения положения центра тя­жести простых геометрических фигур: прямоугольника, треугольни­ка, трапеции и половины круга.

4.
Что называют статическим моментом площади?

5. Вычислите статический момент данной фигуры относительно оси Ox. h = 30 см; b = 120 см; с = 10 см (рис. 8.6).

6. Определите координаты центра тяжести заштрихованной фи­гуры (рис. 8.7). Размеры даны в мм.

7. Определите координату у фигуры 1 составного сечения (рис. 8.8).

При решении воспользоваться справочными данными таблиц ГОСТ «Сталь горячекатанная» (см. Приложение 1).

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.7

2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

Рис.8

3.Метод отрицательных площадей. Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S 1 и площади вырезанной части S 2 .

Рис.9

4.Метод группировки. Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

Центры тяжести некоторых одно­родных тел.

1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

Рис.10

Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ’ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

где L - длина дуги АВ , равная .

Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О , равном

где угол измеряется в радианах.

2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy , координаты вершин которого известны: A i (x i ,y i ), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А 1 А 2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А 3 М 3 (рис.11) .

Рис.11

Разбивая треугольник на полоски, параллельные стороне А 2 А 3 , можно убедиться, что он должен лежать на медиане А 1 М 1 . Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан , которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

В частности, для медианы А 1 М 1 получим, учитывая, что координаты точки М 1 - это среднее арифметическое координат вершин А 2 и А 3:

x c = x 1 + (2/3)∙(x М 1 - x 1) = x 1 + (2/3)∙[(x 2 + x 3)/2-x 1 ] = (x 1 + x 2 +x 3)/3.


Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

x c =(1/3)Σx i ; y c =(1/3)Σy i .

3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2α, расположенный симметрично относительно оси Ox (рис.12) .

Очевидно, что y c = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

Рис.12

Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом d φ. С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R ×d φ и высотой R . Площадь такого треугольника dF =(1/2)R 2 ∙d φ, а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R ∙cosφ. Подставляя в (5) F = αR 2 , получим:

С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга .

Подставляя в (2) α = π/2, получим: x c = (4R )/(3π) ≅ 0,4R .

Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

Рис.13

Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их:

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

Рис.14

Координаты центров тяжести:

Площади:

Рис. 6.5.
Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.15). Найдем центр тяжести листа.

Рис.15

В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

координата так как тело имеет ось симметрии (диагональ).

Пример 4. Проволочная скобка (рис.16) состоит из трёх участков оди­наковой длины l .

Рис.16

Координаты центров тяжести участ­ков:

Поэтому координаты центра тяжести всей скобки:

Пример 5. Определить положение центра тяжести фермы, все стержни которой имеют одинаковую погонную плотность (рис.17).

Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ= ρg , где g - ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

Рис.17

Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

где L i длина i -го стержня фермы, а x i , y i - координаты его центра тяжести.

Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

Первая группа состоит из первого стержня, для нее L 1 = 4 м, x 1 = 0 м, y 1 = 2 м. Вторая группа стержней состоит из пяти стержней, для нее L 2 = 20 м, x 2 = 3 м, y 2 = 2 м.

Координаты центра тяжести фермы находим по формуле:

x c = (L 1 ∙x 1 + L 2 ∙x 2)/(L 1 + L 2) = (4∙0 + 20∙3)/24 = 5/2 м;

y c = (L 1 ∙y 1 + L 2 ∙y 2)/(L 1 + L 2) = (4∙2 + 20∙2)/24 = 2 м.

Отметим, что центр С лежит на прямой, соединяющей С 1 и С 2 и делит отрезок С 1 С 2 в отношении: С 1 С /СС 2 = (x c - x 1)/(x 2 - x c ) = L 2 / L 1 = 2,5/0,5.

Вопросы для самопроверки

Что называется центром параллельных сил?

Как определяются координаты центра параллельных сил?

Как определить центр параллельных сил, равнодействующая которых равна нулю?

Каким свойством обладает центр параллельных сил?

По каким формулам вычисляются координаты центра параллельных сил?

Что называется центром тяжести тела?

Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

Что называют статическим моментом площади?

Приведите пример тела, центр тяжести которого расположен вне тела.

Как используются свойства симметрии при определении центров тяжести тел?

В чем состоит сущность способа отрицательных весов?

Где расположен центр тяжести дуги окружности?

Каким графическим построением можно найти центр тяжести треугольника?

Запишите формулу, определяющую центр тяжести кругового сектора.

Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

Какими вспомогательными теоремами пользуются при определении положения центра тяжести?

Инструкция

Следует учитывать, что положение центра масс напрямую зависит от того, каким образом распределена по объему тела его масса. Центр масс может даже не находиться в самом теле, примером такого объекта может служить однородное кольцо, у которого центр масс находится в его геометрическом центре. То есть – . При расчетах центр масс можно расценивать математической точкой, в которой сосредоточена вся масса тела.

Здесь R.ц.м. – радиус-вектор центра масс, mi – масса i-той точки, ri – радиус-вектор i-той точки системы. На практике во многих случаях легко найти центр масс, если предмет имеет некую строгую геометрическую форму. Например, у однородного стержня он находится точно посередине. У параллелограмма - на пересечении диагоналей, у треугольника это точка , а у правильного многоугольника центр масс находится в центре поворотной симметрии.

Для более сложных тел задача расчета усложняется, в этом случае необходимо разбить объект на однородные объемы. Для каждого из них отдельно центры масс, после чего найденные значения подставляются в соответствующие формулы и находится итоговое значение.

На практике необходимость определения центра масс (центра тяжести) обычно связана с конструкторскими работами. Например, при проектировании судна важно обеспечить его остойчивость. Если центр тяжести будет находиться очень , то может опрокинуться. Как рассчитать нужный параметр для такого сложного объекта, как судно? Для этого находятся центры тяжести его отдельных элементов и агрегатов, после чего найденные значения складываются с учетом их месторасположения. При конструировании центр тяжести обычно стараются расположить как можно ниже, поэтому наиболее тяжелые агрегаты располагают в самом низу.

Источники:

  • Центр масс
  • Решение задач по физике

Центр масс – важнейшая геометрическая и техническая характеристика тела. Без вычисления его координат невозможно представить конструирование в машиностроении, решение задач строительства и архитектуры. Точное определение координат центра массы производится с помощью интегрального исчисления.

Инструкция

Начинать всегда следует от , постепенно переходя к более сложным ситуациям. Исходите из того, что определению подлежит центр массы непрерывной плоской фигуры D, которой ρ постоянна и равномерно распределена в ее пределах. Аргумент х изменяется от а до b, y от c до d. Разбейте фигуру сеткой вертикальных (x=x(i-1), x=xi (i=1,2,…,n)) и горизонтальных прямых (y=y(j-1), y=xj (j=1,2,…,m)) на элементарные прямоугольники с основаниями ∆хi=xi-x(i-1) и высотами ∆yj=yj-y(j-1) (см. рис. 1). При этом середину элементарного отрезка ∆хi найдите как ξi=(1/2), а высоту ∆yj как ηj=(1/2). Поскольку плотность распределяется равномерно, то центр массы элементарного прямоугольника совпадет с ее геометрическим центром. То есть Хцi=ξi, Yцi=ηj.

Массу М плоской фигуры (если она неизвестна), вычислите как произведение на площадь. Замените элементарную площадь на ds=∆хi∆yj=dxdy. Представьте ∆mij в виде dM=ρdS=ρdxdy и получите ее массу по формуле, приведенной на рисунке. 2a. При малых приращениях считайте, что ∆mij, сосредоточена в материальной точке с координатами Хцi=ξi, Yцi=ηj. Из задач известно, что каждая координата центра масс системы материальных точек равна дроби, числитель которой сумму статических моментов масс mν относительно соответствующей оси, а равен сумме этих масс. Статический момент массы mν, относительно оси 0х равен уν*mν, а относительно 0у хν*mν.

Примените это к рассматриваемой ситуации и получите приблизительные значения статических моментов Јх и Ју в виде Ју≈{∑ξνρ∆xν∆yν}, Јх≈{∑ηνρ∆xν∆yν} (суммирование производилось по ν от 1 до N). Входящие в последнее выражения суммы являются интегральными. Перейдите к пределам от них при ∆хν→0 ∆yν→0 и запишите окончательные (см. рис. 2b). Координаты центра масс находите делением соответствующего статистического момента на общую массу фигуры М.

Методология получения координат центра масс пространственной фигуры G отличается лишь тем, что возникают тройные интегралы, а статические моменты рассматриваются относительно координатных плоскостей. Не следует забывать и что плотность не обязательно постоянна, то есть ρ(x,y,z)≠const. Поэтому окончательный и самйы общий имеет вид (см. рис. 3).

Источники:

  • Пискунов Н.С. Дифференциальное и интегральное исчисления. Т.2., М.: 1976, 576 с., ил.

Закон всемирного тяготения, открытый Ньютоном в 1666 году и опубликованный в 1687 году, гласит, что все тела, обладающие массой, притягиваются друг к другу. Математическая формулировка позволяет не только установить сам факт взаимного притяжения тел, но и измерить его силу.

Инструкция

Еще до Ньютона многие высказывали предположения о существовании всемирного тяготения. С самого начала им было очевидно, что притяжение между любыми двумя телами должно зависеть от их массы и ослабевать с расстоянием. Иоганн Кеплер, первым описавший эллиптические орбиты Солнечной системы, считал, что Солнце притягивает с силой, обратно пропорциональной расстоянию.

Окончательно закон всемирного тяготения формулируется так: любые два тела, обладающие массой, взаимно притягиваются, и сила их притяжения равна

F = G* ((m1*m2)/R^2),

где m1 и m2 - массы тел, R - расстояние , G - гравитационная постоянная.

Если тело, участвующее в тяготении, обладает приблизительно сферической формой, то расстояние R следует отмерять не от его поверхности, а от центра масс. Материальная точка с той же массой, находящаяся точно в центре, порождала бы точно такую же силу притяжения.

В частности, это значит, что, например, при расчете силы, с которой Земля притягивает стоящего на ней , расстояние R равно не нулю, а радиусу . На самом деле оно равно расстоянию между центром Земли и центром тяжести человека, но этой разницей можно пренебречь без потери точности.

Гравитационное притяжение всегда взаимно: не только Земля притягивает человека, но , в свою очередь, притягивает Землю. Из-за огромной разницы между массой человека планеты это незаметно. Аналогично и при расчетах траекторий космических аппаратов обычно пренебрегают тем, что аппарат притягивает к себе планеты и кометы.

Однако если массы взаимодействующих объектов сравнимы, то их взаимное притяжение становится заметным для всех участников. Например, с точки зрения физики не вполне верно говорить, что Луна вращается вокруг Земли. В действительности Луна и Земля вращаются вокруг общего центра масс. Поскольку наша планета намного больше своего естественного , то этот центр находится внутри нее, но все же с центром самой Земли не совпадает.

Видео по теме

Источники:

  • Классная физика для любознательных - закон всемирного тяготения

Математика и физика, возможно, самые удивительные науки из доступных человеку. Описывая мир через вполне определенные и поддающиеся расчету законы, ученые могут «на кончике пера» получить значения, измерить которые, на первый взгляд, кажется невозможным.

Инструкция

Один из базовых законов физики – закон всемирного тяготения. Он гласит, что все тела притягиваются друг к другу с силой, равной F=G*m1*m2/r^2. При этом G является определенной константой (будет указана непосредственно во время расчета), m1 и m2 массы тел, а r –расстояние между ними.

Массу Земли можно вычислить на основе эксперимента. При помощи маятника и секундомера можно рассчитать ускорение свободного падения g (шаг будет опущен за несущественностью), равное 10 м/c^2. Согласно второму закону Ньютона F можно представить как m*a. Поэтому, для тела, притягивающегося к Земле: m2*a2=G*m1*m2/r^2, где m2 – масса тела, m1 – масса Земли, a2=g. После преобразований (сокращения m2 в обеих частях, переноса m1 влево, а a2 - вправо) уравнение примет следующий вид: m1=(ar)^2/G. Подстановка значений дает m1=6*10^27

Расчет массы Луны опирается на правило: от тел до центра масс системы обратно пропорциональны массам тел. Известно, что Земля и Луна обращаются вокруг некоторой точки (Цм), причем расстояния от центров до этой точки как 1/81,3. Отсюда Мл=Мз/81,3=7.35*10^25.

Дальнейшие вычисления опираются на 3-ий закон Кепплера, согласно которому (T1/T2)^2*(M1+Mc)/(M2+Mc)=(L1/L2)^3, где T – период обращения небесного тела вокруг Солнца , L – расстояние до последнего, M1, M2 и Mc – массы двух небесных тел и , соответственно. Составив уравнения для двух систем ( +луна – / земля - луна) можно увидеть, что одна часть уравнения получается общей, а значит, вторые можно приравнять.

Расчетной формулой в наиболее общем виде является Lз^3/(Tз^2*(Mc+Мз)=Lл^3/(Tл^2*(Mз+Мл). Массы небесных тел были вычислены теоретически, периоды обращения находятся практически, для расчета L используются исчисления либо практические методы. После упрощения и подстановки необходимых значений уравнение примет вид: Мс/Мз+Мл=329.390. Отсюда Мс=3,3*10^33.

Кинетическая энергия – это энергия механической системы, которая зависит от скоростей движения каждой из ее точек. Другими словами, кинетическая энергия представляет собой разницу между полной энергией и энергией покоя рассматриваемой системы, та часть полной энергии системы, которая обусловлена движением. Кинетическая энергия делится на энергию поступательного и вращательного движения. Единицей измерения кинетической энергии в системе СИ является Джоуль.

Инструкция

В случае поступательного движения все точки системы (тела) имеют одинаковые скорости движения, которые равны скорости движения центра масс тела. При этом кинетическая системы Тпост равна:
Tпост = ? (mk Vс2)/2,
где mk –масса тела, Vс – центра масс.Таким образом, при поступательном тела кинетическая энергия равна произведению массы тела на квадрат скорости центра масс, деленному на два. При этом значение кинетической не зависит от движения.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ