Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Определение длины световой волны при помощи дифракционной решётки

Цель работы : определение с помощью дифракционной решётки длины световых волн в различных частях видимого спектра.

Приборы и принадлежности : дифракционная решётка; плоская шкала со щелью и лампа накаливания с матовым экраном, укреплённые на оптической скамье; миллиметровая линейка.

1. ТЕОРИЯ МЕТОДА

Дифракцией волн называется огибание волнами препятствий. Под препятствиями понимаются различные неоднородности, которые волны, в частности, световые, могут огибать, отклоняясь от прямолинейного распространения и заходя в область геометрической тени. Дифракция наблюдается также, когда волны проходят через отверстия, огибая их края. Дифракция заметно выражена, если размеры препятствий или отверстий порядка длины волны, а также на больших расстояниях от них по сравнению с их размерами.

Дифракция света находит практическое применение в дифракционных решётках. Дифракционной решёткой называют всякую периодическую структуру, влияющую на распространение волн той или иной природы. Простейшая оптическая дифракционная решётка представляет собой ряд одинаковых параллельных очень узких щелей, разделённых одинаковыми непрозрачными полосами. Кроме таких прозрачных решёток существуют также отражательные дифракционные решётки, в которых свет отражается от параллельных неровностей. Прозрачные дифракционные решётки обычно представляют собой стеклянную пластинку, на которой алмазом с помощью специальной делительной машины прочерчены полосы (штрихи). Эти штрихи являются почти полностью непрозрачными промежутками между неповреждёнными частями стеклянной пластинки – щелями. Число штрихов, приходящихся на единицу длины, указывается на решётке. Периодом (постоянной) решётки d называется суммарная ширина одного непрозрачного штриха плюс ширина одной прозрачной щели, как показано на рис. 1, где подразумевается, что штрихи и полосы расположены перпендикулярно плоскости рисунка.

Пусть на решётку (ДР) перпендикулярно её плоскости падает параллельный пучок света, рис. 1. Поскольку щели являются очень узкими, то будет сильно выражено явление дифракции, и световые волны от каждой щели пойдут по различным направлениям. В дальнейшем прямолинейно распространяющиеся волны будем отождествлять с понятием лучей. Из всей совокупности лучей, распространяющихся от каждой щели, выделим пучок параллельных лучей, идущих под некоторым углом  (угол дифракции) к нормали, проведённой к плоскости решётки. Из этих лучей рассмотрим два луча, 1 и 2, которые идут от двух соответствующих точек A и C соседних щелей, как показано на рис. 1. Проведём к этим лучам общий перпендикуляр AB . В точках A и C фазы колебаний одинаковы, но на отрезке C B между лучами возникает разность хода , равная

 = d sin. (1)

После прямой AB разность хода  между лучами 1 и 2 сохраняется неизменной. Как видно из рис. 1, такая же разность хода будет существовать между лучами, идущими под тем же углом  от соответствующих точек всех соседних щелей.

Рис. 1. Прохождение света через дифракционную решетку ДР: Л – собирающая линза, Э – экран для наблюдения дифракционной картины, M – точка сведения параллельных лучей

Если теперь все эти лучи, т. е. волны, свести в одну точку, то они будут либо усиливать, либо ослаблять друг друга вследствие явления интерференции. Максимальное усиление, когда амплитуды волн складываются, происходит в том случае, если разность хода между ними равна целому числу длин волн:  = k , где k – целое число или ноль,  – длина волны. Следовательно, в направлениях, удовлетворяющих условию

d sin = k , (2)

будут наблюдаться максимумы интенсивности света с длиной волны .

Для сведения лучей, идущих под одним и тем же углом , в одну точку (M ) используется собирающая линза Л, обладающая свойством собирать параллельный пучок лучей в одной из точек своей фокальной плоскости, куда помещается экран Э. Фокальная плоскость проходит через фокус линзы и параллельна плоскости линзы; расстояние f между этими плоскостями равно фокусному расстоянию линзы, рис 1. Важно, что линза не изменяет разность хода лучей , и формула (2) остаётся справедливой. Роль линзы в настоящей лабораторной работе играет хрусталик глаза наблюдателя.

В направлениях, для которых величина угла дифракции  не удовлетворяет соотношению (2), будет происходить частичное или полное ослабление света. В частности, световые волны, приходящие в точку встречи в противоположных фазах, будут полностью гасить друг друга, и в соответствующих точках экрана будут наблюдаться минимумы освещённости. Кроме того, каждая щель из-за дифракции посылает в разных направлениях лучи разной интенсивности. В результате картина, возникающая на экране, будет иметь довольно сложный вид: между главными максимумами, определяемыми условием (2), располагаются добавочные, или побочные максимумы, разделённые совсем тёмными участками – дифракционными минимумами. Однако практически на экране будут видны лишь главные максимумы, так как интенсивность света в побочных максимумах, не говоря уже о минимумах, очень мала.

Если падающий на решётку свет содержит волны различных длин  1 ,  2 ,  3 , ..., то по формуле (2) можно подсчитать для каждой комбинации k и  свои значения угла дифракции , для которых будут наблюдаться главные максимумы интенсивности света.

При k = 0 для любого значения  получается  = 0, т. е. в направлении, строго перпендикулярном плоскости решётки, усиливаются волны всех длин. Это так называемый спектр нулевого порядка. Вообще, число k может принимать значения k = 0, 1, 2 и т. д. Два знака, , для всех значений k  0 соответствуют двум системам дифракционных спектров, расположенных симметрично по отношению к спектру нулевого порядка, слева и справа от него. При k = 1 спектр носит название спектра первого порядка, при k = 2 получается спектр второго порядка и т. д.

Поскольку всегда |sin|  1, то из соотношения (2) следует, что при заданных d и  значение k не может быть произвольно большим. Максимально возможное k , т. е. предельное число спектров k max , для конкретной дифракционной решётки можно получить из условия, которое следует из (2) при учете того, что |sin|  1:

Поэтому k max равно максимальному целому числу, не превосходящему отношения d /. Как было указано выше, каждая щель посылает в разных направлениях лучи разной интенсивности, причем оказывается, что при больших значениях угла дифракции  интенсивность посылаемых лучей слаба. Поэтому спектры с большими значениями |k |, которые должны наблюдаться под большими углами , практически видны не будут.

Картина, возникающая на экране в случае монохроматического света, т. е. света, характеризуемого одной определённой длиной волны , показана на рис. 2а. На тёмном фоне можно видеть систему отдельных ярких линий одного цвета, из которых каждая соответствует своему значению k .

Рис. 2. Вид картины, получаемой с помощью дифракционной решетки: а) случай монохроматического света, б) случай белого света

Если же на решётку падает немонохроматический свет, содержащий набор волн различных длин (например, белый свет), то при данном k  0 волны с различными длинами  будут усиливаться под разными углами , и свет будет разложен в спектр, когда каждому значению k соответствует весь набор спектральных линий, рис. 2б. Способность дифракционной решётки разлагать свет в спектр используют на практики для получения и исследования спектров.

Основными характеристиками дифракционной решётки являются её разрешающая способность R и дисперсия D . Если в световом пучке присутствуют две волны с близкими длинами  1 и  2 , то возникнут два близко расположенных дифракционных максимума. При малой разности длин волн  =  1   2 эти максимумы сольются в один и не будут видны раздельно. Согласно условию Рэлея, две монохроматические спектральные линии видны ещё раздельно в том случае, когда максимум для линии с длиной волны  1 попадает на место ближайшего минимума для линии с длиной волны  2 и наоборот, как показано на рис. 3.

Рис. 3. Схема, поясняющая условие Рэлея: I – интенсивность света в относительных единицах

Обычно для характеристики дифракционной решётки (и других спектральных приборов) используют не минимальное значение , когда линии видны раздельно, а безразмерную величину

называемую разрешающей способностью. В случае дифракционной решётки, используя условие Рэлея, можно доказать формулу

R = kN , (5)

где N – полное число штрихов решётки, которое можно найти, зная ширину решётки L и период d :

Угловая дисперсия D определяется угловым расстоянием  между двумя спектральными линиями, отнесённым к разности их длин волн :

Она показывает быстроту изменения угла дифракции  лучей в зависимости от изменения длины волны .

Отношение /, входящее в (7), можно найти, заменив его производной d /d , которую можно вычислить, используя соотношение (2), что даёт

. (8)

Для случая малых углов , когда cos  1, из (8) получаем

Наряду с угловой дисперсией D используют также линейную дисперсию D l , которая определяется линейным расстоянием l между спектральными линиями на экране, отнесённым к разности их длин волн :

где D – угловая дисперсия, f – фокусное расстояние линзы (см. рис. 1). Вторая формула (10) справедлива для малых углов  и получается, если учесть, что для таких углов l f .

Чем больше разрешающая способность R и дисперсия D , тем качественнее любой спектральный прибор, содержащий, в частности, дифракционную решётку. Формулы (5) и (9) показывают, что хорошая дифракционная решётка должна содержать большое число штрихов N и иметь малый период d . Кроме того, желательно использовать спектры больших порядков (с большими значениями k ). Однако, как отмечалось выше, такие спектры плохо видны.

Целью данной лабораторной работы является определение длины световых волн в различных областях спектра при помощи дифракционной решётки. Схема установки показана на рис. 4. Роль источника света играет прямоугольное отверстие (щель) А в шкале Шк, освещаемое лампой накаливания с матовым экраном S . Глаз наблюдателя Г, находящийся сзади дифракционной решётки ДР, наблюдает мнимое изображение щели в тех направлениях, в которых световые волны, идущие от различных щелей решётки, взаимно усиливаются, т. е. в направлениях главных максимумов.

Рис. 4. Схема лабораторной установки

Исследуются спектры не выше третьего порядка, для которых в случае используемой дифракционной решётки углы дифракции  малы, в связи с чем их синусы можно заменить тангенсами. В свою очередь, тангенс угла , как видно из рис. 4, равен отношению y /x , где y – расстояние от отверстия A до мнимого изображения спектральной линии на шкале, а x – расстояние от шкалы до решётки. Таким образом,

. (11)

Тогда вместо формулы (2) будем иметь , откуда

2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Установите, как показано на рис. 4, шкалу с отверстием А на один конец оптической скамьи вблизи от лампы накаливания S , а дифракционную решётку – на другой её конец. Включите лампу, перед которой находится матовый экран.

2. Передвигая решётку по скамье, добейтесь, чтобы красная граница правого спектра первого порядка (k = 1) совпала с каким-либо целым делением на шкале Шк; запишите его значение y в табл. 1.

3. Используя линейку, измерьте расстояние x для этого случая и также занесите его значение в табл. 1.

4. Проделайте те же операции для фиолетовой границы правого спектра первого порядка и для середины зелёного участка, расположенного в средней части спектра (в дальнейшем эта середина будет для краткости называться зелёной линией); значения x и y для этих случаев также занесите в табл. 1.

5. Аналогичные измерения проделайте для левого спектра первого порядка (k = 1), занося результаты измерений в табл. 1.

Учтите, что для левых спектров любого порядка k y.

6. Те же самые операции проделайте для красной и фиолетовой границ и для зелёной линии спектров второго порядка; данные измерений занесите в ту же таблицу.

7. Занесите в табл. 3 ширину дифракционной решётки L и значение периода решётки d , которые указаны на ней.

Таблица 1

Спектр лампы

накаливания

x , см

y , см

i , нм

 i =  i , нм

Фиолетовая

3. ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

    По формуле (12) рассчитайте длины волн  i для всех проведённых измерений

(d = 0,01 см). Внесите их значения в табл. 1.

2. Найдите средние значения длин волн отдельно для красной и фиолетовой границ сплошного спектра и изучаемой зелёной линии, а также средние арифметические ошибки определения  по формулам

где n = 4 – число измерений для каждого участка спектра. Занесите величины и в табл. 1.

3. Результаты измерений представьте в виде табл. 2, куда запишите границы видимого спектра и длину волны наблюдаемой зелёной линии, выраженные в нанометрах и ангстремах, взяв в качестве  средние значения полученных длин волн из табл. 1.

Таблица 2

4. По формуле (6) определите полное число штрихов решётки N , а затем с помощью формул (5) и (9) вычислите разрешающую способность R и угловую дисперсию решётки D для спектра второго порядка (k = 2).

5. Пользуясь формулой (3) и пояснением к ней, определите максимальное число спектров k max , которые можно получить с помощью данной дифракционной решётки, используя в качестве  среднюю длину волны наблюдаемой зелёной линии.

6. Вычислите частоту  наблюдаемой зелёной линии по формуле  = c /, где с – скорость света, взяв в качестве  также величину .

Все рассчитанные в пп. 46 величины занесите в табл. 3.

Таблица 3

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В чём состоит явление дифракции и когда дифракция наиболее заметно выражена?

Дифракцией волн называется огибание волнами препятствий. Дифракция света – это совокупность явлений, наблюдаемых при распространении света сквозь малые отверстия, вблизи границ непрозрачных тел и т.д. и обусловленных волновой природой света. Явление дифракции, общее для всех волновых процессов, имеет особенности для света, а именно здесь, как правило, длина волны λ много меньше размеров d преград (или отверстий). Поэтому наблюдать дифракцию можно только на достаточно больших расстояниях l от преграды (l > d 2 / λ).

2. Что такое дифракционная решётка и для чего подобные решётки используются?

Дифракционной решеткой называют всякую периодическую структуру, влияющую на распространение волн той или иной природы. Дифракционной решеткой осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

3. Что обычно представляет собой прозрачная дифракционная решётка?

Прозрачные дифракционные решетки обычно представляют собой стеклянную пластинку, на которой алмазом с помощью специальной делительной машины прочерчены полосы (штрихи). Эти штрихи являются почти полностью непрозрачными промежутками между неповрежденными частями стеклянной пластинки – щелями.

4. Каково назначение линзы, используемой вместе с дифракционной решёткой? Что служит линзой в данной работе?

Для сведения лучей, идущих под одним и тем же углом φ, в одну точку используется собирающая линза, обладающая свойством собирать параллельный пучок лучей в одной из точек своей фокальной плоскости, куда помещается экран. Роль линзы в данной работе играет хрусталик глаза наблюдателя.

5. Почему при освещении белым светом в центральной части дифракционной картины возникает белая полоса?

Белый свет является немонохроматическим светом, содержащим набор волн различных длин. В центральной части дифракционной картинки k = 0 образуется центральный максимум нулевого порядка, следовательно, возникает белая полоса.

6. Дайте определение разрешающей способности и угловой дисперсии дифракционной решётки.

Основными характеристиками дифракционной решетки являются её разрешающая способность R и дисперсия D.

Обычно для характеристики дифракционной решетки используют не минимальное значение Δλ, когда линии видны раздельно, а безразмерную величину

Угловая дисперсия D определяется угловым расстоянием δφ между двумя спектральными линиями, отнесенным к разности их длин волн δλ:

Она показывает быстроту изменения угла дифракции φ лучей в зависимости от изменения длины волны λ.

ПомощьюМетодичка >> Физика

Расчетной формулой для вычисления длин световых волн при помощи дифракционных решеток. Измерение длины волны сводится к определению угла отклонения лучей...

Лабораторная работа №2 (решеба, ответы) по физике 11 класс - Определение световой волны с помощью дифракционной решётки

2. Установите экран на расстоянии L ~ 45-50 см от дифракционной решётки. ИзмерьтеL не менее 5 раз, рассчитайте среднее значение . Данные занесите в таблицу.

5. Рассчитайте средние значения. Данные занесите в таблицу.

6. Рассчитайте период d решётки, запишите его значение в таблицу.

7. По измеренному расстоянию от центра щели в экране до положения красного края спектра и расстоянию от дифракционной решётки до экрана вычислите sin0кр, под которым наблюдается соответствующая полоса спектра.

8. Вычислите длину волны, соответствующую красной границе воспринимаемого глазом спектра.

9. Определите длину волны для фиолетового края спектра.

10. Рассчитайте абсолютные погрешности измерений расстояний L и l.

L = 0.0005 м + 0.0005 м = 0.001 м
l = 0.0005 м + 0.0005 м = 0.001 м

11. Рассчитайте абсолютную и относительную погрешности измерения длин волн.

Ответы на контрольные вопросы

1. Объясните принцип действия дифракционной решётки.

Принцип действия такой же, как и призмы - отклонение проходящего света на определённый угол. Угол зависит от длины волны падающего света. Чем больше длина волны, тем больше угол. Представляет собой систему из одинаковых параллельных щелей в плоском непрозрачном экране.

Нажмите, чтобы увеличить

2. Укажите порядок следования основных цветов в дифракционном спектре?

В дифракционном спектре: фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый и красный.

3. Как изменится дифракционный спектр, если использовать решётку с периодом, в 2 раза большим, чем в вашем опыте? В 2 раза меньшим?

Спектр в общем случае есть частотное распределение. Пространственная частота - величина, обратная периоду. Отсюда очевидно, что увеличение периода вдвое приводит к сжатию спектра, а уменьшение спектра приведёт к растяжению спектра вдвое.

Выводы: дифракционная решётка позволяет очень точно измерить длину световой волны.

ЛАБОРАТОРНАЯ РАБОТА

ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ

ДИФРАКЦИОННОЙ РЕШЕТКИ

ЦЕЛЬ РАБОТЫ: Определить длину световой волны красного и фиолетового цвета.

ОБОРУДОВАНИЕ: 1. Прибор для определения длины световой волны,

2. источник света, 3. дифракционная решетка.

ТЕОРИЯ: Параллельный пучок света, проходя через дифракционную решетку, вследствие дифракции за решеткой, распространяется по всевозможным направлениям и интерферирует. На экране, расположенном на пути интерферирующего света, можно наблюдать интерференционную картину. Максимумы света наблюдаются в точках экрана, для которых выполняется условие:  = n , где D – разность хода волн, n – номер максимума, l - длина световой волны. Центральный максимум называют нулевым; для него  = 0. Слева и справа от него располагаются максимумы высших порядков.

Дифракционная Экран

решетка

Условие возникновения максимума можно записать иначе:

n = dsin

где d – период дифракционной решетки, j – угол, под которым виден световой максимум (угол дифракции).

Так как углы дифракции, как правило, малы, то для них можно принять

sin  = tg , а tg  = a/b

Поэтому n×l = d×a/b

Белый свет по составу – сложный. Нулевой максимум для него – белая полоса, а максимум высших порядков – набор семи цветных полос, совокупность которых называют спектром соответственно 1 го , 2 го , … порядка, причем, чем больше длина волны, тем дальше максимум от нулевого.

Получить дифракционный спектр можно, используя прибор для определения длины световой волны.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:

    Установить на демонстрационном столе лампу и включить ее.

    Смотря через дифракционную решетку, направить прибор на лампу так, чтобы через окно экрана прибора была видна нить лампы.

    Экран прибора установить на расстоянии 400 мм от дифракционной решетки и получить на нем четкое изображение спектров 1 го и 2 го порядков.

    Определить расстояние от нулевого деления «0» шкалы экрана до середины фиолетовой полосы, как в левую сторону «а л », так и в правую «а п », для спектров первого порядка и вычислить среднее значение «а ср.ф »

а ср.ф1 = (а л + а п ) / 2

кр. ф. ф. кр.

дифракционная решетка

экран

    Опыт повторить со спектром второго порядка. Определить для него а ср.ф2

    Такие же измерения выполнить и для красных полос дифракционного спектра.

    Вычислить длину волны фиолетового света, длину волны красного света (для 1 го и 2 го порядков) по формуле:

= ,

где d = 10 -5 м – постоянная ( период) решетки,

n порядок спектра,

b – расстояние от дифракционной решетки до экрана, мм

8. Определить средние величины:

λ ф = ; λ кр =

9. Определить погрешности измерений:

абсолютные – Δ λ ф = |λ ср.ф. - λ таб.ф. | ; где λ таб.ф = 0,4 мкм

Δ λ кр = |λ ср.кр. - λ таб.кр. | ; где λ таб.кр = 0,76 мкм

относительные – δ λ ф = %; δ λ кр = %

10. Оформить отчет. Результаты измерений и вычислений занести в таблицу.

Порядок

спектра

граница спектра

фиолет. цвета

граница спектра

красн. цвета

длина световой волны

оп.

« а л »,

мм

« а п »,

мм

« а ср »

мм

« а л »,

мм

« а п »,

мм

« а ср »

мм

ф ,

кр ,

11. Сделать вывод.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

  1. Что такое дифракция света?

    Что такое дифракционная решетка?

    В каких точках экрана получаются 1, 2, 3 максимумы? Как они выглядят?

    Определить постоянную дифракционной решетки, если при освещении ее светом с длиной волны 600 нм максимум второго порядка виден под углом 7

    Определить длину волны, если максимум первого порядка отстоит от нулевого максимума на 36 мм, а дифракционная решетка с постоянной 0,01 мм, находится от экрана на расстоянии 500 мм.

    Определить длину волны, падающую на дифракционную решетку, на каждом миллиметре которой нанесено 400 штрихов. Дифракционная решетка с находится от экрана на расстоянии 25 см, максимум третьего порядка отстоит от нулевого максимума на 27,4 см.

Цель работы : Определить длину световой волны, используя дифракционную решетку .

Оборудование:

1. Прибор для определения длины световой волны, состоящий из линейки, пластины с дифракционной решеткой и движка со щелью.

2. Штатив.

3. Электрическая лампочка на напряжение 42 В в патроне.

Краткая теория

Как известно, свет представляет собой электромагнитные волны , которые характеризуются длиной световой волны. Дифракционная решетка служит для выделения из света с разными длинами волн света с определенной длиной волны или, как говорят, разложения света на его спектральные компоненты . Основой работы дифракционной решетки служат явления дифракции и интерференции света, и именно волновая природа света приводит к возникновению указанных выше двух явлений.

Дифракцией называется отклонение распространения света от прямолинейного в область, где при прямолинейном распространении света должна бы была быть тень.

Интерференцией называется сложение световых пучков, ведущее к образованию светлых и темных полос.

Дифракция. Дифракция наблюдается в случаях, когда свет проходит сквозь прозрачный материал, в котором есть непрозрачные небольшие препятствия, либо через небольшие отверстия в непрозрачном материале.

Различают два типа дифракции: дифракция в параллельных пучках света или дифракция Фраунгофера и дифракция в расходящемся пучке света – дифракция Френеля . В первом случае для наблюдения дифракционной картины используют либо солнечные лучи, которые являются параллельными, либо создают параллельный пучок света, используя простейшую оптическую систему – выпуклую линзу. Во втором случае используется точечный источник света, например, лампа с малыми размерами спирали.

Схема наблюдения дифракции Фраунгофера приведена на рис. 1.

Рис.1. Дифракция Фраунгофера.

В случае прямолинейного распространения света параллельный пучок лучей, сформированный линзой 1, пройдя через круглое отверстие в непрозрачном экране 1 и через фокусирующую линзу 2, должен был бы собраться в точку. Однако, из-за дифракции на экране 2 получается сложная дифракционная картина, состоящая из чередования светлых и темных колец.

Интерференция. При интерференции волны света с одинаковыми длинами волн максимально усиливают друг друга, когда приходят в точку наблюдения в одинаковой фазе , и ослабляют друг друга, когда приходят в противофазе . Суть явления интерференции поясняет рис.2.

Рис. 2. Интерференция от 2-х источников.

Точечные источники света В 1 и В 2 расположены друг от друга на расстоянии t. Колебания электромагнитного поля совершаются в этих точках в одной и той же фазе. Интерференция (т.е. сложение или вычитание колебаний) наблюдается в точках А и С на экране, находящемся на большом расстоянии L по сравнению t и l. В оптике установлено, что для максимального усиления волн разность хода (т.е. разность расстояний от источников до точки наблюдения) должно выполняться условие:

,

а для максимального ослабления волн:

, где n – целое число.

Из Рис. 2 можно определить разность хода . Тогда, используя предыдущие равенства, можно получить, что светлые полосы располагаются на расстоянии от точки А, расстояние между светлыми полосами , а темные полосы располагаются между светлыми. Очевидно, что в точке А разность хода равна нулю и в этой точке наблюдается сложение колебаний от источников света В 1 и В 2

Дифракционная решетка . Ряд прозрачных щелей, разделенных непрозрачными полосами, называется дифракционной решеткой . Дифракционная картина, которая имела место на одной щели при использовании дифракционной решетки, усложняется, так как кроме дифракции на каждой щели происходит еще и интерференция световых волн от щелей, которые можно рассматривать как источники света. На экране возникают максимумы и минимумы света, причем главные максимумы возникают при значении угла j , удовлетворяющих соотношению , где - период решетки равный сумме ширины щели и полосы. Положение 1-го максимума при определяется выражением

Из (1) видно, что для данной дифракционной решетки положения 1-го максимума для различных длин волн разное: чем больше длина волны света, тем больше угол отклонения наблюдаемого максимума от направления падающего пучка света.

Программа работы

Схема прибора приведена на рис.3.


Рис.3. Прибор для определения длины волны.

1. Включить электрическую лампочку.

2. Глядя через дифракционную решетку, направить прибор на лампочку так, чтобы через щель в движке была видна нить накала лампы. На черном фоне движка по обе стороны от нуля должны быть видны дифракционные спектры, состоящие из полос разного цвета. Если полосы располагаются не параллельно шкале, то это означает, что нить накала не параллельна штрихам на решетке. В этом случае надо повернуть немного либо дифракционную решетку, либо лампочку. Закрепить прибор.

3. Определить расстояние от щели на движке (нуля) до красной полосы слева на шкале.

4. Определить расстояние от щели на движке (нуля) до красной полосы справа на шкале. Записать это значение в таблицу.

5. Определить среднее значение расстояния до красной полосы по формуле:

Записать это значение в таблицу.

6. Определить расстояние от щели на движке (нуля) до фиолетовой полосы слева на шкале. Записать это значение в таблицу.

7. Определить расстояние от щели на движке (нуля) до фиолетовой полосы справа на шкале. Записать это значение в таблицу.

8. Определить среднее значение расстояния до фиолетовой полосы по формуле:

Записать это значение в таблицу.

9. Определить расстояние от дифракционной решетки до движка. Записать это значение в таблицу.

Определение длины световой волны с помощью дифракционной решетки

1. ДИФРАКЦИЯ СВЕТА

Дифракция света – явление огибания светом встречающихся на его пути препятствий, сопровождающееся пространственным перераспределением энергии световой волны - интерференцией.

Расчет распределения интенсивности света в дифракционной картине может быть осуществлен с помощью принципа Гюйгенса - Френеля. Согласно этому принципу каждая точка фронта световой волны, т. е. поверхности, до которой распространился свет, является источником вторичных когерентных световых волн (начальные фазы их и частоты одинаковы); результирующее колебание в любой точке пространства обусловлено интерференцией всех вторичных волн, приходящих в эту точку, с учетом их амплитуд и фаз.

Положение фронта световой волны в любой момент времени определяет огибающая всех вторичных волн; любая деформация фронта волны (она обусловлена взаимодействием света с препятствиями) приводит к отклонению световой волны от первоначального направления распространения – свет проникает в область геометрической тени.

2. Дифракционная решетка

Прозрачная дифракционная решетка представляет собой стеклянную пластинку или целлулоидную пленку, на которой через строго определенные расстояния специальным резцом нарезаны узкие шероховатые бороздки (штрихи), не пропускающие света. Сумма ширины ненарушенного, прозрачного промежутка (щели) и ширины бороздки называется постоянной или периодом решетки.

Пусть на решетку падает плоская монохроматическая световая волна с длиной волны (рассмотрим самый простой случай - нормальное падение волны на решетку). Каждая точка прозрачных промежутков решетки, до которой дойдет волна, согласно принципу Гюйгенса становится источником вторичных волн. За решеткой эти волны распространяются по всем направлениям. Угол отклонения света от нормали к решетке называется углом дифракции.

Поместим на пути вторичных волн собирающую линзу. Она сфокусирует в соответствующем месте своей фокальной поверхности все вторичные волны, распространяющиеся под одним и тем же углом дифракции.

Для того, чтобы все эти волны при наложении максимально усиливали друг друга, необходимо, чтобы разность фаз волн, приходящих от соответствующих точек двух соседних щелей, т. е. точек, отстоящих на одинаковых расстояниях от краев этих щелей, была равна четному числу или разность хода этих волн была равна целому числу m длин волн . Из рис.1 видно, что разность хода волн 1 и 2

для точки P равна:

Следовательно, условие максимумов интенсивности результирующей световой волны при дифракции от дифракционной решетки можно записать следующим образом:

, (2)

где знак плюс соответствует положительной разности хода , минус - отрицательной.

Максимумы, удовлетворяющие условию (2), называются главными, число m называется порядком главных максимумов или порядком спектра. Значению m =0 соответствует максимум нулевого порядка (центральный максимум). Максимум нулевого порядка один, максимумов первого, второго и более высоких порядков - по два слева и справа от нулевого.

Положение главных максимумов зависит от длины световой волны. Поэтому при освещении решетки белым светом максимумы всех порядков, кроме нулевого, соответствующие разным длинам волн, смещаются друг относительно друга, т. е. разлагаются в спектр. Фиолетовая (коротковолновая) граница этого спектра обращена к центру дифракционной картины, красная (длинноволновая) - к периферии.

3. Описание установки

Работа проводится на спектрогониометре ГС-5 с установленной на нем дифракционной решеткой. Гониометр - прибор, предназначенный для точного измерения углов. Внешний вид спектрогониометра ГС-5 изображен на рис.2.

Рис.2

Коллиматор 1, снабженный регулируемой микрометрическим винтом 2 спектральной щелью, крепится на неподвижной стойке. Щель обращена к (ртутной лампе). На предметном столике 3 устанавливается прозрачная дифракционная решетка 4.

Наблюдение дифракционной картины производится через окуляр 5 зрительной трубы 6.

Целью работы является изучение дифракционной решетки, нахождение ее характеристик и определение с ее помощью длины световых волн спектра излучения паров ртути.

В лаборатории физического практикума кафедры физики УГТУ-УПИ в качестве источника линейчатого спектра в лабораторной работе № 29 используется ртутная лампа, в которой при электрическом разряде генерируется линейчатый спектр излучения, которое пройдя коллиматор спектрогониометра ГС-5 падает на дифракционную решетку (фотография ГС-5 приведена на титульном файле). Экспериментатор определяет угол дифракции с точностью до нескольких секунд, наводя визирную линию окуляра на соответствующую линию спектра, затем по вышеописанной методике вычисляет длину волны выбранной линии.

В компьютерном варианте данной работы достаточно точно моделируются условия проведения опытов. На экране дисплея воспроизводится окуляр, визирную линию которого следует наводить на любую выбранную спектральную линию, точнее говоря на середину цветовой полоски, что повышает точность измерения углов до нескольких угловых секунд.

Как и реальном спектре паров ртути, в компьютерной работе также “генерируются” четыре наиболее ярких видимых линий спектра: фиолетовая, зеленая и две желтых линии. Спектры расположены зеркально симметрично относительно центрального (белого) максимума. Внизу под окуляром для лучшей ориентации на тонкой черной полоске приведены все линии спектра ртути. Причем две желтые линии сливаются в одну. Дело в том, что эти линии расположены рядом и имеют близкие значения длин волн – так называемый дуплет, однако на хорошей дифракционной решетке они разделяются (разрешаются), что видно в окуляре. В данной работе одной из задач и является определение разрешающей способности дифракционной решетки.

Итак, наведя курсор на «Измерения» и нажав левую клавишу мышки, можно приступать к измерениям. «Вращать» окуляр можно в четырех различных режимах как влево, так и вправо, до тех пор, пока в поле зрения окуляра не покажется цветная вертикальная линия. Следует навести черную вертикальную визирную линию окуляра на центральную часть цветной полоски, при этом на цифровом табло высвечиваются значения угла дифракции с точностью до нескольких угловых секунд. Спектральные линии расположены примерно от 60 до 150 градусов. При этом от тщательности проведения опытов зависит точность числовых значений углов и, как следствие, правильность полученных результатов. Экспериментатору предоставляется возможность самому выбирать последовательность выполнения измерений

Результаты измерений надо занести в соответствующие таблицы отчета и произвести необходимые вычисления.

4.1.Определение длины волны спектральных линий паров ртути.

Измерения проводятся для линий спектра первого порядка (m=1). Постоянная решетки d=833,3 нм., ее длина (ширина) равна 40 мм. Значение синуса угла можно определить по соответствующим таблицам или с помощью калькулятора, однако следует иметь в виду, что угловые секунды и минуты нужно переводить в десятичные разряды градусов, т. е. 30 минут равны 0,5 градуса и т. п.

Результаты измерений заносятся в таблицу 2 отчета (смотри Приложение). Значение длины волны получают, используя формулу (2):

4.2.Расчет характеристик дифракционной решетки.

Максимальное значение порядка m дифракционных спектров для какой-либо дифракционной решетки может быть определено в случае нормального падения света на решетку по следующей формуле:

Значение m max определяется для наибольшей длины волны - в данной работе для второй желтой линии ж. Наивысший порядок спектров равен целой части (без округления!) отношения .

Разрешающая способность R дифракционной решетки характеризует ее способность разделять (разрешать) спектральные линии, мало отличающиеся по длинам волн. По определению

где - длина волны, вблизи которой производится измерение;

Минимальная разность длин волн двух спектральных линий, воспринимаемых в спектре раздельно.

Величина обычно определяется критерием Рэлея: две спектральные линии и считаются разрешенными, если максимум порядка m одной из них (с большей длиной волны), определяемый условием

,

совпадает с первым добавочным минимумом в спектре этого же порядка m для другой линии , определяемым условием:

.

Из этих уравнений следует, что

,

и разрешающая способность решетки оказывается равной

(6)

Таким образом, разрешающая способность решетки зависит от порядка m спектра и от общего числа N штрихов рабочей части решетки, т. е. той части, через которую проходит исследуемое излучение и от которой зависит результирующая дифракционная картина. По формуле (5) находится разрешающая сила R используемой дифракционной решетки для спектра первого порядка (m =1).

Из (5) следует, что две спектральные линии и разрешаются дифракционной решеткой в спектре m - го порядка, если:

. (7)

Используя найденное значение R , по формуле (5) вычисляется (в нанометрах) линейное разрешение спектральных линий вблизи линий ф, з,ж спектра

(9)

где - угловое расстояние между двумя спектральными линиями, отличающимися по длинам волн на .

Формула для D получается дифференцированием соотношения(2): левой части по углу дифракции , а правой - по длине волны :

,

(10)

Таким образом, угловая дисперсия решетки зависит от порядка m спектра, постоянной d решетки и от угла дифракции .

По формуле (8) находится (в “/нм- угловых секундах на нанометр) угловая дисперсия используемой дифракционной решетки для углов дифракции, соответствующих всем измеряемым длинам волн спектра.

Полученные результаты записываются в таблицу 2 отчета (смотри Приложение).

5. Kонтрольные вопросы

1. В чем состоит явление дифракции света?

2. Сформулируйте принцип Гюйгенса-Френеля.

3. Что такое разрешающая способность дифракционной решетки и от чего она зависит?

4. Как экспериментально определить угловую дисперсию D дифракционной решетки?

5. Какой вид имеет дифракционная картина, полученная от прозрачной решетки?

ПРИЛОЖЕНИЕ

ФОРМА ОТЧЕТА

Титульный лист:

У Г Т У - У П И

Кафедра физики

О Т Ч Е Т

по лабораторной работе 29

Изучение дифракционных решеток. Определение длины световой волны с помощью дифракционной решетки

Студент______________________________

Группа ______________________________

Дата _________________________________

Преподаватель……………………….

На внутренних страницах :

1. Расчетные формулы:

где - длина волны;

m – порядок спектра (m=1).

2. Источник излучения – ртутная лампа.

3. Ход лучей

4. Результаты измерений углов дифракции и длин волн

спектральных линий паров ртути. Таблица 1

Спектроальная линия

Порядок максимума, m

5. Расчет искомых величин.

Таблица 2 Xарактеристики дифракционной решетки

Период d

Наивысший

Порядок m

Спектров

Разрешающая

Линейное

Разрешение

Угловая дисперсия

D для линий

ртути, ”/ нм

6. Оценка погрешностей измерений длин волн рассчитывается по формуле:

Табличные значения длин волн спектральных линий паров ртути:

Фиолетовая – 436 нм,

Зеленая - 546 нм,

1 желтая – 577 нм,

2 желтая - 579 нм.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ