Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Силикаты

природные (от лат. silex - кремень), класс наиболее распространённых минералов; природные химические соединения с комплексным кремнекислородным радикалом. С. слагают более 75% земной коры (а вместе с кварцем около 87%) и более 95% изверженных горных пород. С. включают около 500 минеральных видов, в том числе важнейшие породообразующие - полевые шпаты, пироксены, амфиболы, слюды и др.

Современная классификация С. основана на кристаллохимических данных, обобщающих результаты химических и рентгенографических исследований структур силикатных минералов (см. Кристаллохимия).

В основе структур всех С. лежит кремнекислородный радикал 4- в форме тетраэдра. Важной особенностью С. является способность к взаимному сочетанию (полимеризации) двух или нескольких кремнекислородных тетраэдров через общий атом кислорода. Характер этого сочетания учитывается при классификации С. Кроме того, в классификации С. учитываются состав радикалов (Si, Al, В, Be, Ti, Zr, U) и состав катионов (К, Na, Ca, Mg, Fe, Mn, Al), наличие и характер в составе С. воды или гидроксильных групп, наличие дополнительных анионных групп.

В случаях, когда в структуре С. другие тетраэдрические радикалы играют одинаковую роль с тетраэдрами 4- , выделяют алюмосиликаты, боросиликаты и бериллосиликаты, а также гетерогенные каркасные и слоистые титано- и цирконосиликаты. В номенклатуре С. наряду со структурными обозначениями, связанными с типом сочетаний кремнекислородных тетраэдров, иногда используются названия, сохранившиеся от представлений о них как о солях кремниевых кислот: ортосиликаты - соли ортокремниевой кислоты, метасиликаты - соли метакремниевой кислоты и др.

Структура С. По характеру сочетания кремнекислородных тетраэдров выделяется 5 подклассов С.: островные, кольцевые, цепочечные, слоистые, каркасные.

Островные С. Сюда относятся С. с изолированными тетраэдрами ^» - ортосиликаты, связанные посредством расположенных между ними октаэдрических катионов (рис. , 1), или с изолированными парами тетраэдров 6- - диортосиликаты, которые возникли в результате соединения двух кремнекислородных тетраэдров (рис. , 2).

К ортосиликатам относятся группы Оливин а (MgFe) 2 , Циркон а Zr , Гранат ов, Фенакит а Be 2 и др. (без воды и добавочных анионов), Топаз а Al 2 F 2 , Андалузит а Al 2 O, Титанит а CaTi O и др. (с добавочными анионами F - , O 2- , OH -); к диортосиликатам - группы Бертрандит а Be 4 O (OH) и др.; к ортодиортосиликатам относятся группы Везувиан а Ca 19 Mg 3 Al 10 4 ․ 10 O 2 (OH) 6 , эпидота Са, Ce, Fe 3+ , Fe 2+ , Al 2 ․ O․(OH) и др.

Кольцевые С. характеризуются кольцевой структурой, в которой группы 4- не изолированы, а соединяются общими ионами кислорода в кольца (рис. , 3). При этом различают кольца двух типов - простые и двойные («двухэтажные»). К первым относятся кольца типа 6- - группа волластонита Ca 3 , типа 8- - группа тарамеллита Ba 2 Fe 2 (OH) 2 , типа 12- - группы Берилл а Be 3 Al 2 , Кордиерит а Mg 2 Al 3 и др.; типа 12- - группа мьюкрита Ba 10 CaMnTi 2 ․(Cl, OH, O) 12 ․4H 2 O. Ко вторым относятся кольца типа 12- - группа эканита Ca 2 Th , и типа 12- - группа миларита KCa 2 Be 2 AI .

Цепочечные С. Простейшие и наиболее распространённые из них представлены непрерывными цепочками кремнекислородных тетраэдров, соединённых вершинами, типа 2- или сдвоенными цепочками-лентами типа 6- (рис. , 4 и 5). К ним принадлежат группы пироксенов (См. Пироксены), амфиболов (См. Амфиболы), рамзаита Na 2 O 3 и др.

Слоистые С. характеризуются непрерывными в двух направлениях слоями кремнекислородных тетраэдров, образующими бесконечные двухмерные радикалы, которые в зависимости от пространственного положения кремнекислородных тетраэдров в слое имеют различную формулу; для слоя, состоящего из шестерных колец, характерен радикал типа 4- (рис. , 6); при этом в шестерном кольце тетраэдров слоя каждый из шести атомов кремния принадлежит трём таким кольцам, т. е. по два кремния на каждое кольцо. К этому подклассу относятся Слюды группы Мусковит а и Биотит а K (Mg, Fe 2- 3)․(OH, F) 2 , группы Пирофиллит а Al 2 (OH) 2 и Талька Mg 3 ․(OH) 2 , Каолинит а Al 4 (OH) 8 и Серпентин а Mg 6 (OH) 8 , Галлуазит а Al 4 (H 2 O) 4 (OH) 8 , хлоритов (См. Хлориты); к слоистым относится гадолинит FeY 2 ․; к титаносиликатам - астрофиллит (К, Na) 3 (Mn, Fe) 7 2 ․3H 2 O и др.

Каркасные С. характеризуются трёхмерным бесконечным каркасом кремнекислородных тетраэдров типа 4- , соединённых всеми четырьмя вершинами друг с другом так, что каждый атом кислорода одновременно принадлежит только двум таким тетраэдрам; общая формула m- . К ним относятся минералы группы полевых шпатов (См. Полевые шпаты) Na - K - Ca , Нефелин а KNa 3 , петалита Li , данбурита Ca 3 Cl, гельвина Mn 4 3 S (см. Содалита группа) и др.

В структурах С. установлено значительное число различных типов цепочек, лент, сеток и каркасов из тетраэдров.

По составу тетраэдрических радикалов различаются простые С. с кремнекислородным радикалом 4- и сложные С., в которых вместе с 4- присутствуют тетраэдрические группы алюминия (Алюмосиликаты), бериллия (бериллосиликаты), бора (боросиликаты), титана (титаносиликаты), циркония (цирконосиликаты), урана (ураносиликаты). Наряду с этим выделяются силикаты Al, Be, Ti, Zr, в которых эти элементы играют роль таких же катионов, как Mg, Fe и др., соединяясь с кремнекислородными тетраэдрами не вершинами, а ребрами или через вершины, поделенные между двумя тетраэдрами.

Катионы, входящие в состав С., разделяются прежде всего на 2 группы: малые катионы - Mg 2+ , Al 3+ , Fe 2+ , Mn 2+ и др., частично Ca 2+ , имеющие обычно октаэдрическую координацию (содержащие их соединения составляют первую главу кристаллохимии С., по Н. В. Белову, 1961), и крупные катионы - К + , Na + , Ca 2+ , Ba 2+ , Sr 2+ , редкоземельных элементов, образующие соответственно более крупные координационные полиэдры: 8-, 9-, 12-вершинники, ребра которых соизмеримы уже с размерами не одиночных 4- тетраэдров, а групп 6- (с этими соединениями связана вторая глава кристаллохимии С.).

Большинство С. в связи с их сложным строением имеет низкую симметрию: около 45% кристаллизуется в моноклинной, 20% имеют ромбическую симметрию, 9% - триклинную, 7% - тетрагональную, 10% - тригональную и гексагональную и 9% - кубическую.

Свойства С. определяются прежде всего типом кремнекислородного тетраэдра: спайность (несовершенная в островных и кольцевых С., совершенная и зависящая от ориентировки кремнекислородных группировок в цепочечных, слоистых, каркасных С.); твёрдость обычно 5,5-7, кроме слоистых С., в которых она понижается до 2-1; плотность около 2500-3500 кг/м 3 . Цвет большинства С. определяется ионами железа (Fe 2+ - зелёный, Fe 3+ - бурый, красный, жёлтый, Fe 2+ и Fe 3+ - синий и др.), в отдельных группах - ионами Ti 3+ , V 4+ , Cr 3+ , Mn 2+ , Co 2+ , Ni 2+ , Cu 2+ и их сочетаниями с ионами железа и др.; в некоторых минералах - электронно-дырочными центрами. В ряде случаев окраска связана с микровключениями окрашенных минералов.

Большое значение для точной диагностики С. имеют их оптические свойства - преломление, оптическая ориентировка и др., измеряемые с помощью Федорова столика (См. Фёдорова столик), иммерсионного метода и др.

Происхождение С. весьма разнообразно: они возникают при кристаллизации магмы, метаморфических и метасоматических процессах; реже С. образуются в гидротермальных жилах. Крупные кристаллы С. возникают в пегматитах.

Физико-химические особенности образования С. в природных условиях определяются с помощью парагенетического анализа минеральных ассоциаций (см. Парагенезис минералов) с учётом данных детально изученных диаграмм состоянии (См. Диаграмма состояния) силикатных систем. При выветривании происходит разрушение большинства С. с образованием осадочных горных пород, с выщелачиванием основных соединений, освобождением кремнезёма, возникновением за счёт алюмосиликатов водных силикатов алюминия, образованием глинистых минералов, нонтронита, гарниерита и др., а также окислов железа, карбонатов и др.

С. (плагиоклазы, оливин, пироксены и др.) являются также главными минералами лунных пород, входят в состав метеоритов (См. Метеориты). Полагают, что оливин и плотная модификация со Шпинели составляют почти полностью мантию Земли.

Применение С. определяется тем, что многие из них являются важнейшими среди полезных ископаемых. Существенное значение имеют силикатные минералы, составляющие литиевые, бериллиевые руды, руды рассеянных элементов, силикатные никелевые руды. Месторождения нефелина поставляют комплексное сырьё для получения алюминия, поташа, соды. Большую долю составляют С. в нерудных полезных ископаемых (См. Нерудные полезные ископаемые) (полевые шпаты, слюды, асбест, тальк, цеолиты, гранаты, бентонитовые и огнеупорные глины), в драгоценных и поделочных камнях (См. Драгоценные и поделочные камни) (изумруд, аквамарин, топаз, хризолит, турмалин и др.).

Исследование С. как главнейших минералов Земли и Луны, содержащих многие ценные элементы в качестве основных компонентов или примесей, составляет важное направление современной минералогии, тесно связанное с геохимией, литологией, геофизикой и исследованием вещественного состава месторождений полезных ископаемых.

Лит.: Соболев B. С., Введение в минералогию силикатов, Львов, 1949; Белов Н. В., Кристаллохимия силикатов с крупными катионами, М., 1961; Эйтель В., Физическая химия силикатов, пер. с англ., М., 1962; Дир У.-А., Хауи Р.-А., 3усман Дж., Породообразующие минералы, пер. с англ., т. 1-4, М., 1965 - 66; Поваренных А. С., Кристаллохимическая классификация минеральных видов, К., 1966; Минералы. Справочник, т. 3, в. 1, М., 1972; Коржинский Д. С., Теоретические основы анализа парагенезисов минералов, М., 1973; Марфунин А. С., Введение в физику минералов, М., 1974.

А. С. Марфунин.

Основные типы связи кремнекислородных радикалов: 1 - изолированные тетраэдры 4- с октаэдрами Mg, Fe, Ca; 2 - группы 6- из двух тетраэдов; 3 - шестерные кольца 6- ; 4 - цепочки 2- ; 5 - ленты 6- ; 6 - слои из шестерных колец 4- .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

К силикатам относятся соли различных кислот кремния. Это наиболее многочисленный класс минералов. На долю силикатов приходится 1/3 всех известных минералов. По подсчетам В. И. Вернадского, земная кора до глубины приблизительно 16 км от земной поверхности на 85% состоит из силикатов, являясь по сути кремнекислородной оболочкой. Этот факт в значительной степени объясняется тем, что содержат , на долю которого приходится 27,59% всей массы земной коры. В природных условиях образует три устойчивых изотопа Si 28 , Si 29 и Si 30 с таким соотношением: Si 28 -92,27%, Si 29 -4,68%, Si 30 -3,05%. Для познания процессов минералообразования важным является соотношение Si 28: Si 30 , изучение которого показывает, что Si 80 концентрируется в образованиях, возникающих при пониженных температурах.

Имеют большое значение не только благодаря широкому распространению, но и потому, что многие из них являются полезными ископаемыми. входят как преобладающая составная часть почти во все магматические и метаморфические породы. Они играют значительную роль также в осадочных породах. Если состав большинства рассмотренных выше минералов изображается довольно простыми стехиометрическими формулами, состав силикатов, как правило, трудно укладывается в обычные формулы. Объясняется это тем, что силикаты, несмотря на разнообразие и отличие их свойств, состоят из немногих элементов.Кроме того, анализ и синтез силикатов достаточно затруднен, поскольку состав этих минералов претерпевает изменения.

Поэтому для силикатов многие теоретические построения являются в значительной мере гипотетическими. Экспериментальными исследованиями силикатов особенно много занимались С. Тугутт,С. Вейберг, И. Морозевич и др. Раньше формулы силикатов писались в виде окислов. По отношению количества атомов кислорода, связанных с кремнием, к количеству атомов кислорода в основаниях в соответствующих солях выделялись такие группы силикатов:

1. Моносиликаты, например SiО 2 2MgO - (указанное отношение равно 1).

2. Дисиликаты, например SiО 2 MgO- энстатит (отношение равно 2).

3. Трисиликаты, в частности 6SiО 2 NaO Al 2 О 3 - альбит (отношение равно 3).

4. Субсиликаты (отношение меньше 1).

Многие силикаты имеют в своем составе и его аналоги (Fe, Сr и др.). В связи с ролью, отводящейся разными исследователями алюминию и его аналогам в минералогии силикатов определились два направления: алюмоосновное и алюмокислотное. Согласно алюмоосновному направлению, главным представителем которого был П. Грот, и его аналоги считаются элементами оснований, способных замещать разных кремниевых кислот.

Химическая структура комплексного ангидрида, лежащего в основе многих алюмосиликатов и названного В.И. Вернадским каолинитовым ядром.

Кольцевое строение каолинитового ядра свидетельствует о его устойчивости в природных и лабораторных условиях. Из структуры ядра видно, что связь между атомами Si и Аl осуществляется не непосредственно, а через атомы кислорода. Тетраэдрическое строение комплексного ангидрида, установленное рентгенометрически, натолкнуло В. И. Вернадского придать Аl четвертую , что соответствует современной четверной координации Аl. Два атома кислорода в формуле каолинита присоединены к кремнию двойной связью. Из органической химии известно, что соединения с такими двойными связями способны сравнительно легко давать продукты присоединения. Например, для каолинита:

Поскольку и в полученной алюмокремниевой кислоте существуют такие же двойные связи, как и у каолинита, процесс присоединения может повторяться. Теоретически можно допустить существование ряда алюмокремниевых кислот, причем некоторые из них существуют в природе или в свободном состоянии, или в виде солей.

Кислоты

H2Al 2 Si20 8 H 8 0 -

Н 2 Аl 2 Si 4 O l2 -

H 2 Al 2 Si 6 0 16 х6H 2 0 -термьерит

Соли

(Н, K)2Al 2 Si 2 0 8 -

K 2 Al 2 Si 4 0 12 -лейцит

K2Al2Si 6 0 I6 - ортоклаз

Присоединение в местах двойных связей вызывает возникновение так называемых боковых цепочек каолинитового ядра. При этом могут присоединяться не только новые количества SiO 2 , но и другие компоненты (СаО, CaSiO 3 , Na 2 SO 4). Примером может быть - CaAl 2 Si 2 O 8 CaSiO 3 H 2 O.

Большой заслугой В. И. Вернадского является утверждение за алюминием в природных условиях такой же роли, как и за кремнием. На близость свойств этих элементов обращал внимание еще Д. И. Менделеев. Алюмокис-лотная теория в современном трактовании позволяет объяснить таких минералов, как альбит и анортит. Известно еще со времен Г. Чермака, что известково-натриевые , или плагиоклазы, представляют собой изоморфный ряд с крайними членами альбитом - Na и анортитом - Ca, которые могут смешиваться друг с другом во всех пропорциях. Из приведенных формул видно, что пятивалентная группа NaSi в первой формуле замещена пятивалентной группой СаАl в другой. Таким образом, Са анортита играет ту же роль, что и альбита, а Аl анортита - роль Si альбита.

Рис. Кремнекислородный тетраэдр

С точки зрения алюмоосновной теории эти два минерала входят в разные группы. Альбит является солью первой трикремниевой кислоты - H 4 Si 3 O 8 , а анортит - диортокремниевой кислоты - H 6 Si 2 O 7 .

Несмотря на целый ряд положительных сторон алюмокислотной теории, она, как и алюмоосновная, оказывается в затруднении при решении вопроса о химическом характере силикатов, содержащих в своем составе воду. Это наглядно видно из примера с серпентином. Химические анализы этого минерала обнаруживают такой его состав: 3MgOx 2SiO 2 x2H 2 O. Не зная, какой характер имеет в минерале , формулу серпентина можно писать: H 4 Mg 3 Si 2 O 9 (кислая соль ортокремниевой кислоты) H 2 Mg 3 Si 2 O 8 Н 2 O (кислый ортосиликат Mg, содержащий кристаллогидрат-ную воду), Mg 3 Si 2 0 7 -2Н 2 О (соль диортокремниевой кислоты) или, как принято теперь, Mg 6 (OH) 8 (основная соль диметакремниевой кислоты). В результате для многих минералов было предложено более десяти конституционных формул, построенных на основании второстепенных фактов.

Появление в 1912 г. рентгеноструктурного метода позволило разрешить основной вопрос химической конституции силикатов. Рентгеноструктурный анализ показал, что в кристаллической решетке минералов нет молекул, а имеются связанные между собой атомы или ионы. В. Л. Брэггом и Е. Шибольдом (1937) было доказано, что основой структуры силикатов является кремнекислородный тетраэдр. В центре его находится атом Si, а в вершинах - атомы кислорода (рис. 188). Расстояние Si - О равно в среднем 1,62-1,66 А, расстояние О - О - 2,65 А. У разных минералов эти расстояния несколько варьируют. Исследования В. Л. Брэгга и Е. Ши-больда заложили основы кристаллохимии силикатов и подтвердили основную идею учения о силикатах В. И. Вернадского об одинаковой роли в них алюминия и кремния. По выражению Е. Шибольда, эта одинаковая роль Si и Аl, «предугаданная с гениальной интуицией» В. И. Вернадским, не только подтвердилась, но лежит в основе современной кристаллохимии силикатов.

Исследования В. Л. Брэгга и Е. Шибольда относятся к силикатам с малыми катионами: Mg, Al(Fe, Ti), которые находятся в октаэдрическом окружении ионами кислорода и связывают тетраэдры в общую структуру минералов. Эти исследования Н. В. Белов выделяет как первую главу кристаллохимии силикатов. В первой главе за основную кремнекислородную единицу принимается радикал , соотношение которого с малыми катионами определяется «соизмеримостью» ребра Si-тетраэдра (2,55-2,75 А) с ребром Mg, Al октаэдра (2,7-2,9 А). Указанная соизмеримость показала, что силикаты представляют собой плотнейшую (главным образом кубическую) упаковку из атомов O(OН, F), в которой октаэдрические пустоты заселены катионами Mg, Al(Fe, Ti), а тетраэдры - атомами Si(Al).

Вторая глава кристаллохимии силикатов, созданная Н. В. Беловым, связана с крупными катионами, главным образом Са, Na и TR. В октаэдрах они имеют ребра 3,7-3,8 А, т. е. несоизмеримые с ребром одиночного

Si-тетраэдра (2,55-2,75 А) и основной единицей во второй главе крисф. химии силикатов, соответствующей крупным катионам, оказывается [ S 12 O 7 ] здесь сумма продолжающих друг друга высот двух Si-тетраэдров соста вляет ~4,0 А, т.е. является соизмеримой с ребром Са, Na, TR-октаэдра

В процессе конденсации (обобществления некоторых ионов О) возникают двухэтажные кольца, пироксеноидные цепочки, ксонотлитовые ленты и восьмимерные кольца в листоватых силикатах.

Важнейшей особенностью силикатов является тенденция кремнекислородных тетраэдров к ассоциации в группы (рис. 5) и, что особенно важно;

Рис.5 Типы отдельных групп кремнекислородных тетраэдров (в двух изображениях):

а - одиночный изолированный тетраэдр 4 -, б - группа из двух тетраэдров 6 -, свя занных общей вершиной, в - группа из трех тетраэдров, связанных в кольцо 6- , г - группа из четырех тетраэдров, связанных в кольцо 8 -, д - группа из шести тетраэдров, связанных в кольцо в бесконечные кремнекислородные построения (цепочки, ленты, слои, каркасы), стехиометрические формулы которых и отвечают разным кремне-кислородным радикалам. На основании изложенных исследований среди силикатов можно выделить такие структурные типы.

1. Отдельные группы SiO 4 . Каждый атом кремния в этой структуре окружен четырьмя атомами кислорода, размещенными в вершинах правильного тетраэдра. Атомы кислорода здесь не связаны с каким-либо другим атомом кремния и по своему значению одинаковы. Каждый из них имеет свободную отрицательную , равную единице, которая должна быть уравновешена металлическими катионами. Такие структуры характерны для так называемых ортосиликатов (группы оливина, хондродита, фенакита).

4. Кремнекислородные листы. Кремнекислородные листы образуются при соединении трех вершин каждого тетраэдра с окружающими тетраэдрами. Ионами кислорода, находящимися в вершинах шестиугольников и имеющих свободную , отдельные листы через ионы металлов соединяются один с другим в кристаллические решетки (рис.). Формула кремнекислородного листа - 2- . Такие кремнекислородные листы являются основой структуры разнообразных пластинчатых минералов, в частности талька и . В слюде часть кремния замещена алюминием соответственно формуле .

5. Кремнекислородные каркасы. Эти структуры представляют собой непрерывный каркас (имеющий три измерения в пространстве) связанных между собой тетраэдров. Такой каркас известен для кварца, тридимита,

Рис. Кремнекислородный лист: а- разреженная модель, б - в тетраэдрах

кристобалита. Некоторая часть ионов кремния может быть замещена здесь ионами алюминия, и тогда равновесие в структуре должно достигаться связью с металлическими катионами (рис.2). Формула кремнекислородного каркаса - [(Si, Аl) n O 2n ]. В качестве примера можно назвать альбит - Na. В некоторых случаях в промежутках структуры силикатов размещаются такие группы, как NaCl, СаСO 3 , и т. д. (например, в содалите, канкрините). Эти группы, очевидно, образуют твердый раствор в структуре . Таким образом, все разнообразие структур, встречающихся в силикатах, может быть сведено к типам, указанным в табл. .

Типы структур силикатов

Тип структуры Формула Si: 0 Заряд комплекса Заряд на один ион Si
Тетраэдр 1:4 -4 -4
Сдвоенный тетраэдр …….. 2: 7 -6 -3
Кольцо тройное 1: 3 -6 -2
Кольцо шестерное 1: 3 - 12 -2
Цепочка 1:3 -2 -2
Лента …………… 4: 11 -6 -1,5
Лист. ……….. 2: 5 -2 - 1
Каркас |Al m Si n _ m 0 2n l - m

В силикатах очень развито явление изоморфизма, причем имеет как изовалентный, так и гетеровалентный характер. Наиболее распространенные случаи изовалентного изоморфизма в силикатах приведены в табл. 2.

Ряды изовалентного изоморфизма в силикатах

Ряды Элементы и размеры ионных радиусов, А
Двухвалентные Mg 0,74 Ni0,74 Fe 0,80 Mn 0,91 Ca 1,04
Трёхвалентные Al 0,57 Fe 0,67
Четырёхвалентные Ti 0,64 Zr 0,82 Hf 0,80 (Si) 0,39
Одновалентные К 1,33 Na 0,98 Rb 1,49 Cs 1,65

Гетеровалентный происходит с соответствующей компенсацией валентности. Например.

1) 3 Mg 2 + ⇄2Al 3+ , 2) Si 4+ ⇄ Al 3+ Na 1+ и т. д.

Силикаты, в которых часть Si 4+ в тетраэдрах замещена А1 3+ , называются алюмосиликатами, В 3+ - боросиликатами, Ве 2+ - бериллосиликатами, Zr 4+ - цирконосиликатами и 2+ - ураносиликатами.

В составе силикатов значительную роль играют так называемые дополнительные ионы, которые могут быть простыми или комплексными. К первым относятся О 2- , F 1- , С1 1- и S 2 , а ко вторым - (ОН) — , 3- , 2- , [СO 3 ] 2- , а также , которая может быть кристаллизационной, цеолитной и гигроскопической. Как и , силикаты - устойчивые , труднорастворимые в кислотах. Морфологические особенности силикатов определяются в первую очередь тем, что они кристаллизуются в большин-стве случаев в низших сингониях (73%), среди которых явно преобладает моноклинная (43%). На долю средних сингоний приходится 18%, а на долю кубической - только 9% минералов этого класса.

Рис. Алюмокремнекислородный каркас в структуре нозеана

Для силикатов характерны закономерные срастания (параллельные и эпитаксические) и двойники, а для некоторых - миметичность (например, для цеолитов). Часто встречаются двойники срастания и особенно полисинтетические двойники. Тип агрегатов силикатов обусловлен их внутренним строением. Островные, каркасные и кольцевые силикаты образуют зернистые агрегаты, цепочечные - волокнистые, ленточные - игольчатые, лучистые и сноповидные агрегаты, а для слоистых силикатов характерны пластинчатые и чешуйчатые агрегаты.

В полной зависимости от структуры находятся также и физические свойства силикатов. Силикаты слоистого строения имеют совершенную спайность, проходящую в одном направлении, цепочечные и ленточные - по призме. В силикатах кольцевого строения спайность обычно проявляется плохо: в большинстве случаев она параллельна плоскости колец, реже перпендикулярна к ней. В островных силикатах спайность несовершенная.

Твердость только в незначительной мере снижается при переходе от островных силикатов к цепочечным и ленточным, для которых равна в среднем 5,5-7. Однако твердость резко снижается в силикатах слоистого типа, доходя даже до 1. Среди силикатов преобладают с низкой

(до 2,6) и особенно средней плотностью (до 3,5). Силикаты с высокой плотностью (выше 3,5) встречаются реже и представлены ортосиликатами с наиболее плотной упаковкой и содержанием тяжелых катионов Fe, Pb и Bi.

Цвет силикатов разнообразный и полностью определяется хромофорами, входящими в их состав. В шлифах и в порошке все силикаты прозрачны.

Показатель преломления силикатов находится в тесной связи с их плотностью и химическим составом. Самый низкий показатель преломления имеют (от 1,48 до 1,6), самый высокий - островные и цепочечные, средний показатель преломления характерен для кольцевых, ленточных и слоистых силикатов. Двупреломление, как правило, невысокое. Самое низкое - у каркасных алюмосиликатов (почти всегда ниже 0,10 и лишь иногда повышается до 0,015), а также у кольцевых (до 0,010, иногда до 0,020) и слоистых силикатов. Сравнительно высокое двупреломление наблюдается у островных силикатов (до 0,035). Присутствие различных катионов, например Са и Mg вместо Na и Аl, повышает двупреломление. Такую же роль играют Fe 2+ , Fe 3+ , Ti 4+ .

Исследованию связи между химическим составом и физическими свойствами минералов посвящены работы А. Винчелла, П. Н. Чирвинского и др. По своему происхождению силикаты главным образом связаны с эндогенными процессами, среди которых исключительное значение имеют собственно магматические и пегматитовые, и значительно реже - с метаморфическими и экзогенными процессами. Несмотря на , что силикаты относятся к менее растворимым в воде веществам, на земной поверхности они со временем разрушаются и переходят в разнообразные вторичные продукты, среди которых особенно распространены различные слоистые глинистые образования.

За основу классификации силикатов мы приняли характер кремне-кислородных радикалов, соответственно которым можно выделить такие подклассы: 1) силикаты с трехмерными каркасами (силикаты каркасного строения), 2) силикаты с изолированными тетраэдрами и группами тетраэдров (так называемые островные орто- и диортосиликаты); 3) силикаты с кольцевыми анионными радикалами (кольцевые мета- и диметасиликаты), 4) силикаты с непрерывными цепочками тетраэдров (цепочечные метасиликаты), 5) силикаты с непрерывными слоями тетраэдров (слоистые диметасиликаты).

В виде (OH) 1− или H 2 O и др.

Схемы расположения кремния и кислорода в силикатах.

Общее количество минеральных видов силикатов около 800. По распространённости на их долю приходится более 90 % минералов литосферы. Силикаты и алюмосиликаты являются породообразующими минералами. из них сложена основная масса горных пород: полевые шпаты , кварц , слюды , роговые обманки , пироксены , оливин и др. Самыми распространёнными являются минералы группы полевых шпатов и затем кварц , на долю которого приходится около 12 % от всех минералов .

Структурные типы силикатов

В основе структурного строения всех силикатов лежит тесная связь кремния и кислорода; эта связь исходит из кристаллохимического принципа, а именно из отношения радиусов ионов Si (0.39Å) и O (1.32Å). Каждый атом кремния окружён тетраэдрически расположенными вокруг него атомами кислорода. Таким образом, в основе всех силикатов находятся кислородные тетраэдры или группы 3 , которые различно сочетаются друг с другом. В зависимости от того, как сочетаются между собой кремнекислородные тетраэдры, различают следующие структурные типы силикатов.

1. Островные силикаты , то есть силикаты с изолированными тетраэдрами 4− и изолированными группами тетраэдров: а) силикаты с изолированными кремнекислородными тетраэдрами (См. схему, а). Их радикал 4− , так как каждый их четырёх кислородов имеет одну валентность. Между собой эти тетраэдры непосредственно не связаны, связь происходит через катионы; б) Островные силикаты с добавочными анионами О 2− , ОН 1− , F 1− и др. в) Силикаты со сдвоенными тетраэдрами . Отличаются обособленными парами кремнекислородных тетраэдров 6− . Один из атомов кислорода у них общий (см. Схему, б), остальные связаны с катионами. г) Кольцевые силикаты . Характеризуются обособлением трёх, четырёх или шести групп кремнекислородных тетраэдров, образующих кроме простых колец (см. Схему в, г), также и «двухэтажные». Радикалы их 6− , 8− , 2− , 18− . Представители : оливины , гранаты , циркон , титанит , топаз , дистен , андалузит , ставролит , везувиан , каламин, эпидот , цоизит , ортит , родонит , берилл , кордиерит , турмалин и др.

2. Цепочечные силикаты , силикаты с непрерывными цепочками из кремнекислородных тетраэдров (см. Схему, д, е). Тетраэдры сочленяются в виде непрерывных обособленных цепочек. Их радикалы 4− и 6− . Представители : пироксены ромбические (энстатит , гиперстен) и моноклинные (диопсид , салит, геденбергит , авгит , эгирин , сподумен , волластонит , силлиманит). Цепочечные силикаты характеризуются средними плотностью и твердостью и совершенной спайностью по граням призмы. Встречаются в магматических и метаморфических горных породах.

3. Поясные (Ленточные) силикаты , это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров (см. Схему, ж). Они имеют вид сдвоенных, не связанных друг с другом цепочек, лент или поясов. Радикал структуры 6− . Представители : тремолит , актинолит , жадеит , роговая обманка .

4. Листовые силикаты , это силикаты с непрерывными слоями кремнекислородных тетраэдров. (см. Схему, з). Радикал структуры 2− . Слои кремнекислородных тетраэдров обособлены друг от друга и связаны катионами. Представители : тальк , серпентин , хризотил-асбест, ревдинскит, полыгорскит, слюды (мусковит , флогопит , биотит), гидрослюды (вермикулит , глауконит), хлориты (пеннит, клинохлор и др), минералы глин (каолинит , хризоколла , гарниерит и др.), мурманит .

5. Силикаты с непрерывными трёхмерными каркасами, или каркасные силикаты (см. Схему, и). В этом случае все атомы кислорода общие. Такой каркас нейтрален. Радикал 0 . Именно такой каркас отвечает структуре кварца . На этом основании его относят не к окислам , а к силикатам. Разнообразие каркасных силикатов объясняется тем, что в них присутствуют алюмокислородные тетраэдры. Замена четырёхвалентного кремния на трехвалентный алюминий вызывает появление одной свободной валентности , что в свою очередь влечет за собой вхождение других катионов (например калия и натрия). Обычно отношение Al к Si равно 1:3 или 1:1.

Зависимость облика и свойств от структуры

Силикаты, структура которых представлена обособленными кремнекислородными тетраэдрами, имеют изометрический облик (гранаты), гексагональный берилл имеет обособленные шестерные кольца кремнекислородных тетраэдров, силикаты цепочечной и поясной структур обычно вытянуты (амфиболы, пироксены). Особенно наглядны в этом отношении листовые силикаты (слюды, тальк, хлориты). Слои кремнекислородных тетраэдров являются очень прочными, а их связи друг с другом через катионы менее прочная. Расщепить их легко вдоль слоёв. Этим вызывается их спайность и листоватый облик.

Полезные ископаемые

Силикаты - важные неметаллические полезные ископаемые: асбест, тальк, слюды, каолин, керамическое и огнеупорное сырьё, строительные материалы. Они также являются рудами на бериллий , литий , цезий , цирконий , никель , цинк и редкие земли . Кроме того они широко известны как драгоценные и поделочные камни: изумруд , аквамарин , топаз , нефрит , родонит и др.

Происхождение (генезис)

Эндогенное, главным образом магматическое (пироксены, полевые шпаты), они также характерны для пегматитов (слюды, турмалин, берилл и др.) и скарнов (гранаты, волластонит). Широко распространены в метаморфических породах - сланцах и гнейсах (гранаты, дистен, хлорит). Силикаты экзогенного происхождения представляют собой продукты выветривания или изменения первичных (эндогенных) минералов (каолинит, глауконит, хризоколла)

Литература

Миловский А.В. Минералогия и петрография. - М .: Государственное научно-техническое издательство литературы по геологии и охране недр, 1958. - С. 83-88.


Wikimedia Foundation . 2010 .

Силикаты и алюмосиликаты – наиболее распространенный и разнообразный класс минералов. Для них характерен сложный химический состав и изоморфные замещения одних элементов и комплексов элементов другими. Главными химическими элементами, входящими в состав силикатов, являются Si, O, Al, Fe 2+ , Fe 3+ , Mg, Mn, Ca, Na, K, а также Li, B, Be, Zr, Ti, F, H, в виде (OH)− или H 2 O и др.

Общее количество минеральных видов силикатов около 800. По распространённости на их долю приходится более 90 % минералов литосферы. Силикаты и алюмосиликаты являются породообразующими минералами. Из них сложена основная масса горных пород: полевые шпаты, кварц, слюды, роговые обманки, пироксены, оливин и др. Самыми распространёнными являются минералы группы полевых шпатов и затем кварц, на долю которого приходится около 12 % от всех минералов.

В основе структурного строения всех силикатов лежит тесная связь кремния и кислорода; эта связь исходит из кристаллохимического принципа, а именно из отношения радиусов ионов Si (0.39Å) и O (1.32Å). Каждый атом кремния окружён тетраэдрически расположенными вокруг него атомами кислорода. Таким образом, в основе всех силикатов находятся кислородные тетраэдры или группы 3 , которые различно сочетаются друг с другом.

Поэтому в основе систематики силикатов – кремнекислородный тетраэдр -4 . В зависимости от того, как сочетаются между собой кремнекислородные тетраэдры, различают следующие структурные типы силикатов.

В зависимости от структуры, которую они образуют, соединяясь друг с другом, все силикаты делятся на островные, слоевые, ленточные, цепочечные и каркасные.

Схемы расположения кремния и кислорода в силикатах

А-з — островные силикаты: а — силикаты с изолированными кремнекислородными тетраэдрами; б — силикаты со сдвоенными кремнекислородными тетраэдрами; в, г — силикаты кольцевой структуры; д, е — силикаты с непрерывными цепочками из кремнекислородных тетраэдров (цепочечные силикаты); ж — силикаты с непрерывными поясами на кремнекислородных тетраэдрах (поясные силикаты); а — каркас из кремнекислородных тетраэдров (каркасные силикаты). Черный кружок — кремний, светлый кружок — кислород

оливин

топаз

гранаты

берилл

турмалин

Островные силикаты , то есть силикаты с изолированными тетраэдрами 4− и изолированными группами тетраэдров:

а) силикаты с изолированными кремнекислородными тетраэдрами (См. схему, а ). Их радикал 4− , так как каждый их четырёх кислородов имеет одну валентность. Между собой эти тетраэдры непосредственно не связаны, связь происходит через катионы;

б) островные силикаты с добавочными анионами О 2− , ОН − , F − и др. в) Силикаты со сдвоенными тетраэдрами. Отличаются обособленными парами кремнекислородных тетраэдров 6− . Один из атомов кислорода у них общий (см. Схему, б ), остальные связаны с катионами.

г) Кольцевые силикаты . Характеризуются обособлением трёх, четырёх или шести групп кремнекислородных тетраэдров, образующих кроме простых колец (см. Схему в, г ), также и «двухэтажные». Радикалы их 6− , 8− , 2− , 18− . Представители: оливины, гранаты, циркон, титанит, топаз, дистен, андалузит, ставролит, везувиан, каламин, эпидот, цоизит, ортит, родонит, берилл, кордиерит, турмалин и др.

Цепочечные силикаты , силикаты с непрерывными цепочками из кремнекислородных тетраэдров (см. Схему, д, е ). Тетраэдры сочленяются в виде непрерывных обособленных цепочек. Их радикалы 4− и 6− . Представители: пироксены ромбические (энстатит, гиперстен) и моноклинные (диопсид, содалит, геденбергит, авгит, эгирин, сподумен, волластонит, силлиманит). Цепочечные силикаты характеризуются средними плотностью и твердостью и совершенной спайностью по граням призмы. Встречаются в магматических и метаморфических горных породах.

энстатит

гиперстен

диопсид

содалит

геденбергит

авгит

эгирин

сподумен

Поясные (Ленточные) силикаты , это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров (см. Схему, ж ). Они имеют вид сдвоенных, не связанных друг с другом цепочек, лент или поясов.

Цепочечные и ленточные – тетраэдры образуют цепочки одинарные или сдвоенные (ленты).

Цепочечные – имеют общий радикал 4- и включают группу пироксенов .

Пироксены являются исключительно распространенными минералами. Они слагают примерно 4 % массы континентальной земной коры. В океанической коре и мантии их роль значительно больше.

В поверхностных условиях пироксены неустойчивы. При метаморфизме пироксены появляются в эпидот-амфиболитовой фракции. С увеличением температуры они устойчивы вплоть до полного плавления пород. С увеличением давления меняется состав пироксенов, но не убывает их роль в горных породах. Они исчезают лишь на глубинах больше 200 км.

Пироксены встречаются почти во всех типах земных пород. Одно из объяснений этого факта заключается в том, что средний состав земной коры близок к составу авгитового пироксена.

Подавляющее большинство пироксенов не представляет никакого практического интереса. Только сподумен является главным рудным минералом лития, а некоторые редкие разновидности пироксенов применяются в ювелирно-поделочном деле. Наиболее часто для изготовления ювелирных украшений применяется жадеит , и жадеитовые породы. Он был священным камнем у некоторых народов Южной Америки - майя и ольмеков.

Также применяется хромдиопсид - ярко-зеленый диопсид с небольшой примесью хрома. Хромдиопсид типичен для мантийных лерцолитов и кимберлитовые трубки являются важным источником этого минерала. Другой тип месторождений хромдиопсида связан с пегматоидными обособлениями в дунитах.

Серьёзным недостатком хромдиопсида является его относительно низкая твердость. Это значительно ограничивает применение в ювелирном деле этого редкого камня.

Иногда гранятся диопсиды слюдянки, которые имеют большую коллекционную ценность. Кроме того, высоко ценятся редкие звездчатые диопсиды из южной Индии.

Ленточные силикаты с радикалом 6 – объединяют минералы группы амфиболов . Представители: тремолит, актинолит, жадеит, роговая обманка.


Амфиболы
(от др.-греч. ἀμφίβολος - двусмысленный, неясный - из-за сложного переменного состава) - группа породообразующих минералов подкласса ленточных силикатов. Общая формула: R 7 2 (OH) 2 , где R = Ca, Mg, Fe.

Амфиболы имеют вытянутый, вплоть до игольчатого, реже короткостолбчатый облик кристаллов, совершенную призматическую спайность, псевдогексагональную форму поперечного сечения кристаллов. Для многих амфиболов характерны асбестовидные агрегаты. Могут образовывать также плотные массы (например, нефрит).

Амфиболы являются более поздними, чем пироксены, продуктами магматической кристаллизации и более ранними минералами метаморфизма. Роговая обманка, тремолит, актинолит - типичные минералы скарнов. Поздними гидротермальными процессами амфиболы изменяются в биотит, хлорит и серпентин. В поверхностных условиях переходят в монтмориллонит, нонтронит, галлуазит, карбонаты, лимонит, опал.

Листовые силикаты , это силикаты с непрерывными слоями кремнекислородных тетраэдров. (см. Схему, з ). Радикал структуры 2− . Слои кремнекислородных тетраэдров обособлены друг от друга и связаны катионами. Представители: тальк, серпентин, хризотил-асбест, ревдинскит, палыгорскит, слюды (мусковит, флогопит, биотит), гидрослюды (вермикулит, глауконит), хлориты (пеннит, клинохлор и др), минералы глин (каолинит, хризоколла, гарниерит и др.), мурманит.

img class=»alignleft wp-image-17146″ alt=»hromdiopsid» src=»http://сайт/wp-content/uploads/2014/07/hromdiopsid-300×225.jpg» width=»240″ height=»180″ //sub

серпентин

хризотил-асбест

мусковит

биотит

Силикаты с непрерывными трёхмерными каркасами, или каркасные силикаты (см. Схему, и ). В этом случае все атомы кислорода общие. Такой каркас нейтрален. Радикал 0 . Именно такой каркас отвечает структуре кварца. На этом основании его относят не к окислам, а к силикатам. Разнообразие каркасных силикатов объясняется тем, что в них присутствуют алюмокислородные тетраэдры. Замена четырёхвалентного кремния на трехвалентный алюминий вызывает появление одной свободной валентности, что в свою очередь влечет за собой вхождение других катионов (например калия и натрия). Обычно отношение Al к Si равно 1:3 или 1:1.

В каркасных силикатах тетраэдры соединяются между собой всеми атомами кислорода, образуя каркас с радикалом . В эту группу входят – полевые шпаты и плагиоклазы .



Полевые шпаты
объединяют минералы с катионами Na и K. Это минералы микроклин и ортоклаз.

Полевые шпаты объединяют минералы с катионами Na и K. Это минералы микроклин и ортоклаз. В плагиоклазах в качестве катионов выступают Са и Na, при этом соотношение между этими элементами не постоянно. Поэтому плагиоклазы представляют собой изоморфный ряд минералов: альбит – олигоклаз – андезин – лабрадор – битовнит – анортит. От альбита к анортиту увеличивается содержание Са.

Большинство полевых шпатов - представители твёрдых растворов тройной системы изоморфного ряда К - Na - Са, конечные члены которой соответственно - ортоклаз (Or), альбит (Ab), анортит (An). Выделяют два изоморфных ряда: альбит (Ab) - ортоклаз (Or) и альбит (Ab) - анортит (An). Минералы первого из них могут содержать не более 10 % An, а второго - не более 10 % Or. Лишь в натриевых полевых шпатах, близких к Ab, растворимость Or и An возрастает. Члены первого ряда называются щелочными (К-Na полевые шпаты), второго - плагиоклазами (Са-Na полевые шпаты). Непрерывность ряда Ab-Or проявляется лишь при высоких температурах, при низких - происходит разрыв смесимости с образованием пертитов.

Наряду с санидином, являющимся высокотемпературным, выделяются низкотемпературные калиевые полевые шпаты - микроклин и ортоклаз.

Полевые шпаты - наиболее распространенные породообразующие минералы, они составляют около 50 % от массы земной коры.

Слоевые силикаты – представляют непрерывные слои, где тетраэдры связаны ионами кислорода, а между слоями связь осуществляется через катионы. Общий радикал в формуле 4– Эта группа объединяет минералы-слюды: биотит, тальк, мусковит, серпентин.

В составе катионов в силикатах наиболее часто присутствуют: Mg, Fe, Mn, Al, Ti, Ca, K, Na, Be, реже Zr, Cr, B, Zn редкие и радиоактивные элементы. Необходимо отметить, что часть кремния в тетраэдрах может замещаться Al и тогда мы относим минералы к алюмосиликатам.

Сложный химический состав и разнообразие кристаллической структуры в сочетании дают большой разброс показателей физических свойств. Даже на примере шкалы Мооса видно, что твердость у силикатов от 1 до 9.

Спайность от весьма совершенной до несовершенной. Об окраске и говорить нечего – широчайший спектр цветов и оттенков.

В тоже время, внутри каждой структурной группы свойства близки и всегда есть какой-то один или два признака, по которым можно определить минерал. Например, слюды определяют по спайности и низкой твердости.

Часто силикаты группируются по окраске – темноокрашенные, светлоокрашенные. Особенно широко это применяется к силикатам – породообразующим минералам.

Силикаты образуются в основном при формировании магматических и метаморфических пород в эндогенных процессах. Большая группа глинистых минералов (каолин и др.) образуется в экзогенных условиях при выветривании силикатных горных пород.

Многие силикаты являются полезными ископаемыми. Это строительные материалы, облицовочные, поделочные и драгоценные камни (топаз, гранаты, изумруд, турмалин и др.), руды металлов (Ве, Zr, Al) и не, это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров (см. Схему, металлов (В), редкоземельных элементов. Они находят применение в резиновой, бумажной промышленности, как огнеупоры и керамическое сырье.

Силикаты и алюмосиликаты объединяют около 800 минералов, многим из которых принадлежит огромное породообразующее значение, ведь представители этого класса составляют до 80 % массы земной коры. Если же к числу силикатов относить и кварц, являющийся типичным силикатом по строению кристаллической решетки (но не по химическому составу), то доля превысит 90 %. Происхождение минералов данного класса разное. Основу кристаллической решетки в минералах составляет кремний-кислородный тетраэдр. В зависимости от сочетаний этих тетраэдров, все силикаты разделяются на большое количество групп.

Островные силикаты сложены изолированными тетраэдрами. Самый распространенный представитель, имеющий огромное породообразующее значение – магматического происхождения оливин (MgFe) 2 .

Цепочечные силикаты объединяют минералы группы пироксенов , в которых тетраэдры соединены в непрерывные цепочки. Наиболее распространен породообразующий алюмосиликат авгит
(Ca, Na) (Mg, Fe 2+ , Al, Fe 3+) [(Si, Al) 2 O 6 ].

Кольцевые силикаты обладают соединенными в замкнутые кольца тетраэдрами. Представитель – берилл Be 3 Al 2 .

Ленточные силикаты содержат соединенные в обособленные ленты тетраэдры. Здесь выделяется группа амфиболов – минералов с непостоянным химическим составом, среди которых наиболее распространен породообразующий минерал роговая обманка .

Листовые (слоевые) силикаты представлены минералами, в которых тетраэдры объединены в ленты, образующие единый непрерывный слой. Наибольшим распространением среди них пользуются такие породообразующие минералы, как слюды : бесцветный мусковит.

KAl 2 (OH) 2 и его мелкочешуйчатая разновидность серицит , черный биотит K(Mg, Fe) 3 (OH, F) 2 . Кроме них часто встречаются метаморфического происхождения серпентин (змеевик) Mg 6 (OH) 8 , тальк Mg 3 (OH) 2 и непостоянного состава хлориты . Эти минералы возникают при воздействии на ультраосновные породы горячих растворов и газов. Другая часть листовых силикатов образуется в результате гипергенеза – выветривания содержащих полевые шпаты и слюды магматических и метаморфических пород. Так возникают глинистые минералы каолин Al 4 (OH) 8 , монтмориллонит (Mg 3 , Al 2) (OH) 2 x nH 2 O, бейделлит Al 2 (OH) 2 x nH 2 O, нонтронит (Fe, Al 2) (OH) 2 x nH 2 O, а также гидрослюды – минералы непостоянного состава. Среди листовых силикатов выделяется также глауконит – водный алюмосиликат K, Fe, Al, образующийся в шельфовой зоне на глубинах 200 – 300 м.

Каркасные силикаты представлены группами полевых шпатов и нефелина. Важнейшей из них является группа полевых шпатов , доля которых в массе земной коре достигает 50 %. Каркас полевых шпатов создан тетраэдрами, сцепленными всеми четырьмя вершинами. Группа подразделяется на калиево -натриевые и кальциево -натриевые полевые шпаты. Первые представлены ортоклазом K. Вторые – разновидностями плагиоклазов , в которых наблюдается последовательное уменьшение содержания SiO 2 . В соответствии с этим плагиоклазы включают ряд минералов: от натриевого (кислого по составу) альбита Na – его сокращенная запись Ab, до кальциевого (основного) анортита Ca – его сокращенная запись An. Промежуточное расположение занимает кальциево-натриевый (средний по составу) лабрадор Ab 50 An 50 – иризирующий плагиоклаз. Помимо полевых шпатов, в числе каркасных силикатов выделяют группу нефелина Na 3 K 4 – породообразующего алюмосиликата магматического и пегматитового происхождения.



15. Минералы, применяемые в строительстве. Их свойства.

В строительстве: кальцит, доломит, гипс

Свойства кальцита: Название кальцит произошло от греческого слова, означающего «известь». Другие названия минерала и его разновидностей: каменный цветок, каменная роза, бумажный шпат, сталактит, сталагмит, небесный камень, папиршпат, антраконит.

Физические свойства :
а) цвет: белый, желтый, розовый, зеленоватый,
б) твердость: 3,
в) плотность: 2,6 - 2,8 г/см3,
г) степень прозрачности: прозрачный (исландский шпат), просвечивающий, непрозрачный,
д) черта - белая, светло-серая,
е) блеск - стеклянный, матовый,
ж) излом - ступенчатый,
з) сингония - тригональная, дитригонально-скаленоэдрический вид симметрии,
и) спайность-совершенная по (1011).

Основные месторождения . Дальнегорское месторождение в Приморье, Эвенкия.

Свойства доломита:

Доломит является природным карбонатом магния и кальция. Своему названию этот минерал обязан французскому минералогу и химику Д. Доломье (1750-1801), которым он и был открыт в 1791 году во время путешествия по Альпам. Доломит образует ромбоэдрические кристаллы имеющие белый, сероватый или блекло-желтый цвет. Грани его часто искривлены. Доломит внешне очень напоминает известняк и чтобы совершенно быть уверенным, что этот минерал именно доломит, нужно подвергнуть его химическому анализу. Это тем более необходимо еще и по той причине, что в природе известняк так же часто встречается как и доломит.

О происхождении доломита у геологов существует несколько версий, но к единственно верному мнению они пока что не пришли. Горную породу доломит широко используют в строительстве. Из доломита изготовляют огнеупорные кирпичи, удобрения. Известные залежи этого минерала находятся в Канаде, США, Испании, Швейцарии и Мексике.

Свойства гипс:

Строительным гипсом называют воздушное вяжущее вещество, представляющее собой продукт, состоящий преимущественно из полуводного гипса. Получают его термической обработкой гипсового камня и помолом до или после этой обработки. Известны и другие продукты, состоящие из полуводного гипса, например формовочный гипс, технический (высокопрочный) и медицинский гипс.

Основным процессом при термической обработке двуводного гипса является его дегидратация.

Для превращения 1 кг двуводного гипса в полуводный теоретически требуется затратить 582 кДж.

При повышении температуры обжига до 2200C гипс постепенно переходит в безводный, образуя растворимый ангидрит, который при вылеживании на воздухе поглощает влагу и превращается в полугидрат. При дальнейшем повышении температуры растворимый ангидрит переходит в нерастворимый. Учитывая необходимость ускорения процесса, обжиг строительного гипса на заводах ведут обычно при температуре 140-1900C Это - температура обжигаемого материала, а не печного пространства; температура печного пространства может быть значительно выше.

Строительный гипс может содержать наряду с полуводным и некоторое количество растворимого ангидрита, а в отдельных случаях также примеси нерастворимого ангидрита и исходного двуводного гипса. Присутствие двуводного гипса ускоряет схватывание из-за того, что он создает центры кристаллизации при затворении строительного гипса водой.

Как строительный, так и высокопрочный гипс маркируются по прочности образцов, изготовленных из раствора пластичной консистенции без песка (1:0). Начало схватывания строительного гипса должно наступать не ранее 4 мин, а конец схватывания - не ранее 6 мин и не позднее 30 мин после начала затворения гипсового теста.

Приведенные данные показывают, что полуводный гипс всех видов быстро твердеет, достигая в сравнительно короткий срок конечной прочности. Тонкость помела рассматриваемых гипсовых вяжущих сравнительно невелика, а сроки схватывания весьма коротки. Учитывая, что затворенные водой вяжущие необходимо использовать до начала схватывания, в полуводный гипс вводят различные замедлители схватывания, как-то: кератиновый (продукт обработки копыт и несортовых рогов щелочным раствором), известково-клеевой замедлитель, сульфитно-спиртовую барду и некоторые другие вещества. Быстрые сроки схватывания необходимы при заводском изготовлении из строительного гипса различных строительных изделий. В этом случае приходится даже добавлять ускорители схватывания в виде двуводного гипса, поваренной соли, сульфата натрия и некоторых других веществ.

Для превращения в процессе твердения полуводного гипса в двугидрат теоретически необходимо только 18,6% воды. Практически же для получения из строительного и формовочного гипса теста нормальной густоты требуется 60-80% воды, а из высокопрочного - 35-45% воды. Избыточное количество воды остается в порах затвердевшего материала и в дальнейшем постепенно испаряется, вызывая характерную для гипсовых изделий пористость.

В высокопрочном гипсе более крупные, чем у обычного гипса, кристаллы неволокнистого строения, поэтому водопотребность его меньше. Уменьшение водопотребности и вызываемое этим повышение прочности гипса имеют значение только для литых изделий, когда же применяют массу жесткой консистенции, как, например, при вибрировании, для получения материала нужной консистенции из обычного и высокопрочного гипса требуется примерно равное количество воды, вследствие чего изделия из гипса обоих видов имеют приблизительно одинаковую прочность.

Строительный гипс применяют главным образом для производства гипсовых строительных деталей (перегородочных плит и панелей, сухой штукатурки, стеновых гипсобетонный камней и ряда других), а также для изготовления известково-гипсовых растворов для штукатурных работ. Гипс можно применять и в чистом виде без заполнителей, так как при его твердении не образуется трещин. В известково-гипсовых растворах известь замедляет схватывание и увеличивает пластичность раствора. Для того чтобы уменьшить расход вяжущего и избежать вызываемого известью растрескивания, к известково-гипсовым растворам добавляют песок или другой заполнитель.

Технический и медицинский гипс отличаются от строительного более тонким помолом, иными сроками схватывания и большей прочностью.


16. Определение горной породы. Какие признаки лежат в основе классификации горных пород?

Горные породы - главный источник получения строительных материалов. Горные породы используют в промышленности строительных материалов как сырье для изготовления керамики, стекла, теплоизоляционных и других изделий, а также для производства неорганических вяжущих веществ - цементов, извести и гипсовых.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ