Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

§ 138. Условия возникновения индукционного тока.

Напомним некоторые простейшие опыты, в которых наблюдается возникновение электрического тока в результате электромагнитной индукции.

Один из таких опытов изображен на рис. 253. Если катушку, состоящую из большого числа витков проволоки, быстро надевать на магнит или сдергивать с него (рис. 253,а), то в ней возникает кратковременный индукционный ток, который можно обнаружить по отбросу стрелки гальванометра, соединенного с концами катушки. То же имеет место, если магнит быстро вдвигать в катушку или выдергивать из нее (рис. 253,б). Значение имеет, очевидно, только относительное движение катушки и магнитного поля. Ток прекращается, когда прекращается это движение.

Рис. 253. При относительном перемещении катушки и магнита в катушке возникает индукционный ток: а) катушка надевается на магнит; б) магнит вдвигается в катушку

Рассмотрим теперь несколько...

0 0

Помогите пожалуйста с Л.Р. по физике!
Лабораторная работа №4

Указания к работе

4. На основании ваших...

0 0

Лабораторная работа №4
Изучение явления электромагнитной индукции

Цель работы: изучить явление электромагнитной индукции.

Оборудование: миллиамперметр, катушка-моток, магнит дуго образный, источник питания, катушка с железным сердечником от разборного электромагнита, реостат, ключ, провода соединительные, модель генератора электрического тока (одна на класс).

Указания к работе

1. Подключите катушку-моток к зажимам миллиамперметра.

2. Наблюдая за показаниями миллиамперметра, подводите один из полюсов магнита к катушке, потом на несколько секунд останови те магнит, а затем вновь приближайте его к катушке, вдвигая в нее (рис. 184). Запишите, возникал ли в катушке индукционный ток во вре мя движения магнита относительно катушки; во время его остановки.

3. Запишите, менялся ли маг нитный поток Ф, пронизывающий катушку, во время движения маг нита; во время его остановки.

4. На основании ваших ответов на предыдущий вопрос сделайте и...

0 0

Цель работы: изучить явление электромагнитной индукции.

Как известно, явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом проводнике при изменении магнитного потока, пронизывающего охваченную проводником площадь.

Пример выполнения работы.

1. Сборка установки (рис. 152 учебника).

2. В первом опыте индукционный ток возникал в катушке в случае когда, магнит двигался относительно катушки. При торможении магнита

сила индукционного тока резко возрастала и падала до нуля, когда магнит останавливался (покоился).

3. Изменение магнитного потока является причиной возникновения индукционного тока. Т.е. магнитный поток Ф, пронизывающий катушку, менялся вместе с индукционным током, т.е. во время движения магнита.

4. Индукционный ток возникал в катушке при изменении магнитного потока, пронизывающего эту катушку.

5. При приближении магнита к катушке магнитный поток менялся, т.к. магнитный поток...

0 0

«Верховным судьей всякой

физической теории является опыт…»

Лев Давидович Ландау

Цель работы: изучить явление электромагнитной индукции.

Оборудование: миллиамперметр, катушка-моток, магнит, источник питания, катушка с железным сердечником от разборного электромагнита, реостат, ключ, провода соединительные, модель генератора электрического тока.

Прежде чем приступить к выполнению работы, вспомним основные положения, касающиеся явления электромагнитной индукции.

Явление электромагнитной индукции заключается в том, что при всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока.

Полученный таким способом ток называется индукционным током.

Значение индукционного тока не зависит от причины изменения магнитного потока. Существенное значение имеет лишь скорость его...

0 0

Электромагнитная индукция. Опыты Фарадея

Мы видели, что вокруг проводника с током всегда существует магнитное поле.

А нельзя ли с помощью магнитного поля создать ток в проводнике?

Эту задачу решил М. Фарадей. После напряженных исканий, затратив много труда и изобретательности, он пришел к выводу: только меняющееся со временем магнитное поле может породить электрический ток.

Опыты Фарадея состояли в следующем. Если постоянный магнит вдвигать внутрь катушки, к которой присоединен гальванометр (рис. 2. а), то в цепи возникает электрический ток. Если магнит выдвигать из катушки, гальванометр также показывает ток, но противоположного направления (рис. 2, б). Электрический ток возникает и в том случае, когда магнит неподвижен, а движется катушка (вверх или вниз). Как только движение прекращается, ток тотчас же исчезает. Однако не при всяком движении магнита (или катушки) возникает электрический ток. Если вращать магнит вокруг вертикальной оси (рис. 2, в),...

0 0

Вы уже знаете, что вокруг электрического тока всегда существует магнитное поле. Электрический ток и магнитное поле неотделимы друг от друга.

Но если электрический ток, как говорят, «создаёт» магнитное поле, то не существует ли обратного явления? Нельзя ли с помощью магнитного поля «создать» электрический ток?

Такую задачу в начале XIX в. пытались решить многие учёные. Поставил её перед собой и английский учёный Майкл Фарадей. «Превратить магнетизм в электричество» - так записал в своём дневнике эту задачу Фарадей в 1822 г. Почти 10 лет упорной работы потребовалось учёному для её решения.

Майкл Фарадей (1791-1867)
Английский физик. Открыл явление электромагнитной индукции, экстратоки при замыкании и размыкании

Чтобы понять, как Фарадею удалось «превратить магнетизм в электричество», выполним некоторые опыты Фарадея, используя современные приборы.

На рисунке 119, а показано, что если в катушку, замкнутую на гальванометр, вдвигается магнит, то...

0 0

Индукционный ток. Определение. Условия возникновения. Величина и направление.

Индукционный ток это такой ток, который возникает в замкнутом проводящем контуре, находящемся в переменном магнитном поле. Этот ток может возникать в двух случаях. Если имеется неподвижный контур, пронизываемый изменяющимся потоком магнитной индукции. Либо когда в неизменном магнитном поле движется проводящий контур, что также вызывает изменение магнитного потока пронизывающего контур.

Рисунок 1 - Проводник перемещается в неизменном магнитном поле

Причиной возникновения индукционного тока является вихревое электрическое поле, которое порождается магнитным полем. Это электрическое поле действует на свободные заряды, находящиеся в проводнике, помещенном в это вихревое электрическое поле.

Рисунок 2 - вихревое электрическое поле

Также можно встретить и такое определение. Индукционный ток это электрический ток, который возникает вследствие действия...

0 0

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

§ 1. Взаимоиндукция

В 1820 г. датский физик экспериментально установил связь между электрическим током и магнитным полем. Суть опытов Эрстеда состояла в том, что если по проводнику проходил электрический ток, вокруг проводника возникало магнитное поле, которое можно было исследовать с помощью магнитной стрелки.

Говоря не очень точным языком, науки того времени, когда впервые были проведены аналогичные опыты, «Электричество порождало магнетизм».

Открытие Эрстеда, сделанное в результате простого эксперимента, послужило толчком к развитию нового направления в естествознании - учения об электромагнетизме. Кроме того, что это открытие повлекло за собой цепь новых фундаментальных экспериментов в области исследования связей между электрическими и магнитными явлениями (изучение взаимодействия параллельных токов А. Ампером), оно привело к ряду важнейших изобретений, в частности, электромагнита (1820 г., Ф. Араго),...

0 0

10

Учитель физики ГБОУ СОШ №58 г. Севастополя Сафроненко Н.И.

Тема урока: Опыты Фарадея. Электромагнитная индукция.

Лабораторная работа «Исследование явления электромагнитной индукции»

Цели урока: Знать/понимать: определение явления электромагнитной индукции. Уметь описывать и объяснять электромагнитную индукцию, уметь проводить наблюдения природных явлений, использовать простые измерительные приборы для изучения физических явлений.

Развивающая: развивать логическое мышление, познавательный интерес, наблюдательность.

Воспитательная: Формировать убеждённость в возможности познания природы, необходимость разумного использования достижений науки для дальнейшего развития человеческого общества, уважения к творцам науки и техники.

Оборудование: Электромагнитная индукция: катушка с гальванометром, магнит, катушка с сердечником, источник тока, реостат, катушка с сердечником по которой течет переменный ток, сплошное и кольцо с прорезью, катушка...

0 0

11

Первая часть статьи: Катушки индуктивности и магнитные поля

Взаимосвязь электрических и магнитных полей

Электрические и магнитные явления изучались давно, вот только никому не приходило в голову каким-то образом связать эти исследования между собой. И только в 1820 году было обнаружено, что проводник с током действует на стрелку компаса. Это открытие принадлежало датскому физику Хансу Кристиану Эрстеду. Впоследствии его именем была названа единица измерения напряженности магнитного поля в системе СГС: русское обозначение Э (Эрстед), англоязычное – Oe. Такую напряженность магнитное поле имеет в вакууме при индукции в 1 Гаусс.

Это открытие наводило на мысль о том, что из электрического тока можно получить магнитное поле. Но вместе с тем возникали мысли и по поводу обратного преобразования, а именно, как из магнитного поля получить электрический ток. Ведь многие процессы в природе обратимы: из воды получается лед, который можно снова растопить в воду.

0 0

Индукционный ток это такой ток, который возникает в замкнутом проводящем контуре, находящемся в переменном магнитном поле. Этот ток может возникать в двух случаях. Если имеется неподвижный контур, пронизываемый изменяющимся потоком магнитной индукции. Либо когда в неизменном магнитном поле движется проводящий контур, что также вызывает изменение магнитного потока пронизывающего контур.

Рисунок 1 — Проводник перемещается в неизменном магнитном поле

Причиной возникновения индукционного тока является вихревое электрическое поле, которое порождается магнитным полем. Это электрическое поле действует на свободные заряды, находящиеся в проводнике, помещенном в это вихревое электрическое поле.

Рисунок 2 — вихревое электрическое поле

Также можно встретить и такое определение. Индукционный ток это электрический ток, который возникает вследствие действия электромагнитной индукции. Если не углубляется в тонкости закона электромагнитной индукции, то в двух словах ее можно описать так. Электромагнитная индукция это явление возникновение тока в проводящем контуре под действие переменного магнитного поля.

С помощью этого закона можно определить и величину индукционного тока. Так как он нам дает значение ЭДС, которая возникает в контуре под действие переменного магнитного поля.

Формула 1 — ЭДС индукции магнитного поля .

Как видно из формулы 1 величина ЭДС индукции, а значит и индукционного тока зависит от скорости изменения магнитного потока пронизывающего контур. То есть чем быстрее будет меняться магнитный поток, тем больший индукционный ток можно получить. В случае, когда мы имеем постоянное магнитное поле, в котором движется проводящий контур, то величина ЭДС будет зависеть от скорости движения контура.

Чтобы определить направление индукционного тока используют правило Ленца. Которое гласит что, индукционный ток направлен навстречу тому току, который его вызвал. Отсюда и знак минус в формуле для определения ЭДС индукции.

Индукционный ток играет важную роль в современной электротехнике. Например, индукционный ток, возникающий в роторе асинхронного двигателя, взаимодействует с током, подводимым от источника питания в его статоре, вследствие чего ротор вращается. На этом принципе построены современные электродвигатели.

Рисунок 3 — асинхронный двигатель.

В трансформаторе же индукционный ток, возникающий во вторичной обмотке, используется для питания различных электротехнических приборов. Величина этого тока может быть задана параметрами трансформатора.

Рисунок 4 — электрический трансформатор.

И наконец, индукционные токи могут возникать и в массивных проводниках. Это так называемые токи Фуко. Благодаря им можно производить индукционную плавку металлов. То есть вихревые токи, текущие в проводнике вызывают его разогрев. В зависимости от величины этих токов проводник может разогреваться выше точки плавления.

Рисунок 5 — индукционная плавка металлов.

Итак, мы выяснили, что индукционный ток может оказывать механическое, электрическое и тепловое действие. Все эти эффекты повсеместно используются в современном мире, как в промышленных масштабах, так и на бытовом уровне.

Тема 11. ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ.

11.1. Опыты Фарадея. Индукционный ток. Правило Ленца. 11.2. Величина ЭДС индукции.

11.3. Природа ЭДС индукции.

11.4. Циркуляция вектора напряжённости вихревого электрического поля.

11.5. Бетатрон.

11.6. Токи Фуко.

11.7. Скин-эффект.

11.1. Опыты Фарадея. Индукционный ток. Правило Ленца.

С момента открытия связи магнитного поля с током (что является подтверждением симметрии законов природы), делались многочисленные попытки получить ток с помощью магнитного поля. Задача была решена Майклом Фарадеем в1831г. (Американец Джозеф Генри тоже открыл, но не успел опубликовать свои результаты. Ампер также претендовал на открытие, но не смог представить свои результаты).

ФАРАДЕЙ Майкл (1791 – 1867) – знаменитый английский физик. Исследования в области электричества, магнетизма, магнитооптики, электрохимии. Создал лабораторную модель электродвигателя. Открыл экстротоки при замыкании и размыкании цепи и установил их направление. Открыл законы электролиза, первый ввел понятия поля и диэлектрической проницаемости, в 1845 употребил термин «магнитное поле».

Кроме всего прочего М. Фарадей открыл явления диа и парамагнетизма. Он установил, что все материалы в магнитном поле ведут себя по-разному: ориентируются по полю (пара и ферромагнетики) или поперек

поля – диамагнетики.

Из школьного курса физики опыты Фарадея хорошо известны: катушка и постоянный магнит (Рис.11.1)

Рис. 11.1 Рис. 11.2

Если подносить магнит к катушке или наоборот, то в катушке возникнет электрический ток. Тоже самое с двумя близко расположенными катушками: если к одной из катушек подключить источник переменного тока, то в другой так же возникнет переменный ток

(Рис.11.2), но лучше всего этот эффект проявляется, если две катушки соединить сердечником (Рис.11.3).

По определению Фарадея общим для этих опытов является то, что: если поток

вектора индукции, пронизывающий замкнутый, проводящий контур меняется, то в контуре возникает электрический ток.

Это явление называют явлением электромагнитной индукции, а ток – индукционным. При этом, явление совершенно не зависит от способа изменения потока вектора магнитной индукции.

Итак, получается, что движущиеся заряды (ток) создают магнитное поле, а движущееся магнитное поле создает (вихревое) электрическое поле и, собственно индукционный ток.

Для каждого конкретного случая Фарадей указывал направление индукционного тока. В 1833 г. Ленц установил общееправило нахождения направления тока :

индукционный ток всегда направлен так, что магнитное поле этого тока препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение носит название правило Ленца.

Заполнение всего пространства однородным магнетиком приводит при прочих равных условиях к увеличению индукции в µ раз. Этот факт подтверждает то, что

индукционный ток обусловлен изменением потока вектора магнитной индукции B , а не потока вектора напряженностиH .

11.2. Величина ЭДС индукции.

Для создания тока в цепи необходимо наличие электродвижущей силы. Поэтому явление электромагнитной индукции свидетельствует о том, что при изменении магнитного потока в контуре возникает электродвижущая сила индукции E i . Наша

задача , используя законы сохранения энергии, найти величинуE i и выяснить ее

Рассмотрим перемещение подвижного участка 1 – 2 контура с током в магнитном поле

B (Рис. 11.4).

Пусть сначала магнитное поле B отсутствует. Батарея с ЭДС равнойE 0 создает

ток I 0 . З а времяdt , батарея совершает работу

dA = E ·I0 dt(11.2.1)

– эта работа будет переходить в тепло которое можно найти по закону Джоуля-Ленца:

Q = dA = E 0 I0 ·dt = I0 2 ·Rdt,

здесь I 0 = E R 0 , R- полное сопротивление всего контура.

Поместим контур в однородное магнитное поле с индукцией B . ЛинииB ||n и связаны с направлением тока правилом буравчика. ПотокФ , сцепленный с контуром – положителен.r

Каждый элемент контура испытывает механическую силу d F . Подвижная сторона рамки будет испытывать силуF 0 . Под действием этой силы участок1 – 2

будет перемещаться со скоростью υ = dx dt . При этом изменится и поток магнитной

индукции.

Тогда в результате электромагнитной индукции ток в контуре изменится и станет

результирующая). Эта сила за времяdt произведет работуdA: dA = Fdx = IdФ.

Как и в случае, когда все элементы рамки неподвижны, источником работы является E 0 .

При неподвижном контуре эта работа сводилась только лишь к выделению тепла. В нашем случае тепло тоже будет выделяться, но уже в другом количестве, так как ток изменился. Кроме того, совершается механическая работа. Общая работа за время dt , равна:

E 0 Idt = I2 R dt + I dФ

Умножим левую и правую часть этого выражения на

Получим

Полученное выражение мы вправе рассматривать как закон Ома для контура, в котором кроме источника E 0 действуетE i , которая равна:

ЭДС индукции контура (E i )

равна скорости изменения потока магнитной

индукции, пронизывающей этот контур.

Это выражение для ЭДС индукции контура является совершенно универсальным, не зависящим от способа изменения потока магнитной индукции и носит название

закон Фарадея.

Знак (-) – математическое выражение правила Ленца о направлении индукционного тока:индукционный ток всегда направлен так, чтобы своим полем

противодействовать изменению начального магнитного поля.

Направление индукционного тока и направление d dt Ф связаныправилом буравчика (Рис. 11.5).

Размерность ЭДС индукции: [ E i ] =[ Ф ] =B c =B .t c

Если контур состоит из нескольких витков, то надо пользоваться понятием

потокосцепления (полный магнитный поток):

Ψ = Ф·N,

где N – число витков. Итак, если

E i = –∑

∑Ф i

i= 1

∑ Ф = Ψ

Ei = −

11.3. Природа ЭДС индукции.

Ответим на вопрос, что является причиной движения зарядов, причиной возникновения индукционного тока? Рассмотрим рисунок 11.6.

1) Если перемещать проводник в однородном магнитном поле B , то под действием силы Лоренца, электроны будут отклоняться вниз, а положительные заряды вверх – возникает разность потенциалов. Это и будетE i -сторонняя сила , под действием

которой течет ток. Как мы знаем, для положительных зарядов

F л = q + ; для электроновF л = –e - .

2) Если проводник неподвижен, а изменяется магнитное поле, какая сила возбуждает индукционный ток в этом случае? Возьмем обыкновенный трансформатор (Рис.11.7).

Как только мы замкнули цепь первичной обмотки, во вторичной обмотке сразу возникает ток. Но ведь сила Лоренца здесь ни причем, ведь она действует на движущиеся заряды, а они в начале покоились (находились в тепловом движении – хаотическом, а здесь нужно направленное движение).

Ответ был дан Дж. Максвеллом в 1860 г.: всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле (Е"). Оно и является причиной возникновения индукционного тока в проводнике. То естьЕ" возникает только при наличии переменного магнитного поля (на постоянном токе трансформатор не работает).

Сущность явления электромагнитной индукции совсем не в появлении индукционного тока (ток появляется тогда, когда есть заряды и замкнута цепь), а в возникновении вихревого электрического поля(не только в проводнике, но и в окружающем пространстве, в вакууме).

Это поле имеет совершенно иную структуру, нежели поле, создаваемое зарядами. Так как оно не создается зарядами, то силовые линии не могут начинаться и заканчиваться на зарядах, как это было у нас в электростатике. Это поле вихревое, силовые линии его замкнуты.

Раз это поле перемещает заряды, следовательно, оно обладает силой. Введем

вектор напряженности вихревого электрического поля E " . Сила с которой это поле действует на заряд

F "= q E ".

Но когда заряд движется в магнитном поле, на него действует сила Лоренца

F " = q .

Эти силы должны быть равны в силу закона сохранения энергии:

q E " = − q , отсюда,

E" = − [ vr , B] .

здесь v r - скорость движения зарядаq относительноB . Но

для явления

электромагнитной индукции важна скорость изменения магнитного поля B . Поэтому

можно записать:

E " = − ,

Большую часть электроэнергии в виде переменного индукционного тока на планете Земля человечество производит с помощью индукционных электрогенераторов. Постоянный ток, также получаемый от электрогенераторов, является частным случаем переменного тока. Существует множество различных конструкций электрогенераторов, но в основе их работы лежит один и тот же принцип. Это принцип относительного движения (вращения) якоря в магнитном поле индуктора, или наоборот, вращения магнитного поля индуктора относительно якоря.

Большой научный и практический вклад в развитие науки об электричестве и создании оборудования для его производства внес известный сербский ученый Никола Тесла. Его изобретения и открытия как физика, инженера, конструктора, явились прочным фундаментом для развития электротехники и радиофизики. Многие его идеи в этих областях науки и техники востребованы и в настоящее время.

На организацию и поддержание работы электрогенератора, для преодоления сил сопротивления вращению якоря в магнитном поле индуктора, затрачиваются значительные механические силы. В основном, эти силы реализуются в виде различных приводов, таких как паровые, газовые турбины, гидротурбины, ДВС и др. Электромагнитная индукция непосредственно (напрямую) связана с производством электроэнергии.

Рассмотрим простейшую лабораторную схему устройства электрогенератора, представленную на Рис.1. По этой схеме, но более сложной конструкции, устроено большинство промышленных электрогенераторов.

В магнитном поле постоянного магнита между полюсами N и S вращается проводящая рамка 2 из проволоки, концы которой припаяны к проводящим кольцам 1. Эти кольца соединены с контактами 3 и далее с проводами внешней цепи, включающей гальванометр. Рамка вращается в магнитном поле магнита, магнитный поток которого все время изменяется. В результате воздействия магнитного потока Ф на микроструктуру проводников рамки в замкнутой цепи возникает индукционный ток, который фиксируется гальванометром. Практически во всех учебниках по физике величину Ф через виток-рамку определяют, как произведение напряженности магнитного поля (H) на площадь витка (S) и на синус угла (a) между направлением магнитного поля и плоскостью рамки.

Заменив угол а через (wхt), где w- угловая скорость вращения витка-рамки, а t- время, получим формулу

в которой график изменения величины Ф через рамку представляет собой синусоиду (Рис.2).

Приведенная формула кроме математического описания изменения величины Ф через площадь витка, ничего не дает в плане понимания физического смысла процесса. В этой формуле вместо площади витка S следовало бы указать длину проводников рамки, так как магнитное поле в процессе вращения рамки взаимодействует с микроструктурой ее проводов.

Аналогичные графики изменения величины тока и напряжения во времени, регистрируемые осциллографом, также представляют собой синусоиду (Рис.3). Эта известная информация понадобилась нам только для того, чтобы напомнить о том, что воздействие внешнего магнитного поля магнита на вращающийся в нем виток-рамку есть не что иное как синусоидальное, импульсное взаимодействие магнитного поля с микроструктурой проводов витка-рамки.

Как уже упоминалось ранее, конструкция электрогенератора представляет собой колебательный контур. Магнитное поле индуктора-магнита (Рис.1), которое является внешним магнитным полем по отношению к якорю-рамке, воздействует на микроструктуру проводников рамки изменяющимся по закону изменения синуса магнитным потоком, индуцируя в микроструктуре проводников якоря его собственное магнитное поле. Почти одновременно с началом вращения рамки по всей остальной замкнутой электрической цепи проходит сигнал-импульс от внешнего магнитного поля и во всем объеме цепи микро источники повторяют этот импульс по образу и подобию, создавая собственное магнитное поле по всей цепи. Еще один импульс — и снова воспроизводство (повторение). И так бесконечное число раз пока работает электрогенератор.

Рассмотрим более подробно этот процесс. Начнем с неудобного детского вопроса: «Почему индукционный ток возникает в замкнутой рамке (применительно к рис.1), которая вращается в магнитном поле постоянного магнита, и не возникает в неподвижной рамке, находящейся в том же магнитном поле магнита, в каком бы положении не находилась рамка?» Как утверждает квантовая физика электроны-электрические заряды обращаются вокруг ядра атома с большой скоростью. При этом электроны обладают двумя магнитными моментами: орбитальным и спиновым и по тем же квантовым законам должны взаимодействовать с магнитным полем, (должны тормозиться в магнитном поле неподвижного магнита), излучая микроэнергию по аналогии с северным сиянием. Но не тут-то было. Никакого излучения не происходит, хотя магнитные силовые линии (МСЛ) магнита пронизывают микроструктуру проводников на атомарном уровне. Чем же так привлекает микро источники-электроны в микроструктуре проводников движущееся магнитное поле? Чтобы ответить на этот вопрос вспомним опыты русского ученого П.Н. Лебедева по изучению давления света на легкие предметы в вакууме. На то, что давление света существует, указывал еще Коперник, наблюдая за хвостовой частью комет, пролетающих вблизи Солнца.

ИНДУКЦИОННЫЙ ТОК — это электрический ток, возникающий при изменении потока магнитной индукции в замкнутом проводящем контуре. Это явление носит название электромагнитной индукции. Хотите узнать какое направление индукционного тока? Росиндуктор — это торговый информационный портал, где вы найдете информацию про ток.

Определяющее направление индукционного тока правило звучит следующим образом: «Индукционный ток направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван». Правая рука развернута ладонью навстречу магнит¬ным силовым линиям, при этом большой палец направлен в сторону движения проводника, а четыре пальца по-казывают, в каком направлении будет течь индукционный ток. Перемещая проводник, мы перемещаем вместе с проводчиком все электроны, заключенные в нем, а при перемещении в магнитном поле электрических зарядов на них будет действовать сила по правилу левой руки.

Направление индукционного тока, как и его величина, определяется правилом Ленца, в котором говорится, что направление индукционного тока всегда ослабляет действие фактора, возбудившего ток. При изменении потока магнитного поля через контур направление индукционного тока будет таким, чтобы скомпенсировать эти изменения. Когда магнитное поле возбуждающее ток в контуре создается в другом контуре, направление индукционного тока зависит от характера изменений: при увеличении внешнего тока индукционный ток имеет противоположное направление, при уменьшении — направлен в ту же сторону и стремиться усилить поток.

Катушка с индукционным током имеет два полюса (северный и южный), которые определяются в зависимости от направления тока: индукционные линии выходят из северного полюса. Приближение магнита к катушке вызывает появление тока с направлением, отталкивающим магнит. При удалении магнита ток в катушке имеет направление, способствующее притягиванию магнита.


Индукционный ток возникает в замкнутом контуре, находящемся в переменном магнитном поле. Контур может быть как неподвижным (помещенным в изменяющийся поток магнитной индукции), так и движущимся (движение контура вызывает изменение магнитного потока). Возникновение индукционного тока обуславливает вихревое электрическое поле, которое возбуждается под воздействием магнитного поля.

О том, как создать кратковременный индукционный ток можно узнать из школьного курса физики.

Для этого есть несколько способов:

  • - перемещение постоянного магнита или электромагнита относительно катушки,
  • - перемещение сердечника относительно вставленного в катушку электромагнита,
  • - замыкание и размыкание цепи,
  • - регулирование тока в цепи.


Основной закон электродинамики (закон Фарадея) гласит, что сила индукционного тока для любого контура равна скорости изменения магнитного потока, проходящего через контур, взятой со знаком минус. Сила индукционного тока носит название электродвижущей силы.




Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ