Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

До сих пор мы изучали только скалярные или векторные случайные величины, каждая из которых в результате опыта принимает одно определенное значение, скалярное или векторное, соответственно. Однако в приложениях приходится встречаться еще с такими случайными величинами, значения которых в каждом данном опыте изменяются в зависимости от времени или каких-нибудь других аргументов. Каждая такая случайная величина принимает в результате опыта бесчисленное (в общем случае несчетное) множество значений - по одному для каждого значения аргумента или для каждой совокупности значений аргументов. Так, например, в результате измерения непрерывно изменяющейся величины мы получаем функцию, определяющую закон изменения результата измерения со временем в процессе измерения. Эта функция имеет одно вполне определенное значение для каждого момента времени в интервале, в течение которого производится измерение. Повторяя измерение, казалось бы в одинаковых условиях, мы будем получать вследствие неточности измерительных приборов различные функции. Таким образом, результат измерения непрерывно изменяющейся величины является такой случайной величиной, которая в каждом данном опыте представляет собой определенную функцию времени, а в различных опытах, произведенных как будто бы в совершенно одинаковых условиях, представляет собой различные функции времени. Подобные случайные величины представляют собой случайные функции. Результат одновременного измерения нескольких непрерывно изменяющихся величин (например, координат какого-либо движущегося объекта) может служить примером векторной случайной функции, т. е. совокупности нескольких случайных функций.

Случайной функцией называется функция, значение которой при каждом данном значении аргумента (или нескольких аргументов)

является случайной величиной. В результате опыта случайная функция может принимать различные конкретные формы. Всякая функция, которой может оказаться равной случайная функция в результате опыта, называется реализацией случайной функции (или возможным значением случайной функции). В соответствии с принятым в настоящей книге правилом обозначения случайных величин и их возможных значений мы будем обозначать случайные функции большими буквами латинского алфавита, например Реализации случайных функций будем обозначать соответствующими малыми буквами, например х, у и т. д.

Аргумент случайной функции или совокупность всех ее аргументов будем обозначать буквой или буквой 5 и писать, как обычно принято, в скобках за обозначением самой функции, например Если аргумент случайной функции представляет собой совокупность скалярных переменных, то его можно рассматривать как -мерный вектор. Таким образом, аргументами случайных функций в излагаемой дальше теории могут быть произвольные скалярные или векторные величины

Случайную функцию можно также рассматривать как бесконечную (в общем случае несчетную) совокупность случайных величин, зависящую от одного или нескольких непрерывно изменяющихся параметров Каждому данному значению параметра (или параметров) соответствует одна случайная величина Вместе все случайные величины определяют случайную функцию Такая трактовка случайной функции показывает, что случайная функция как объект математического исследования значительно сложнее обычной случайной величины, а именно равноценна бесконечному (в общем случае несчетному) множеству случайных величин.

В физических и технических приложениях часто приходится рассматривать случайные функции времени. Такие случайные функции обычно называются случайными или стохастическими процессами. Соответственно теория случайных функций одной независимой переменной часто называется теорией случайных (стохастических) процессов. Примером случайной функции времени может служить ошибка измерения непрерывно изменяющейся величины. На рис. 18 приведена запись ошибки измерения угловой координаты самолета радиолокатором, заимствованная из .

В физике часто приходится рассматривать случайные функции координат точки пространства. Пространство с заданным в нем распределением значений некоторой величины называется полем данной величины. Случайная функция координат точки пространства приводит

(кликните для просмотра скана)

в соответствие каждой точке пространства некоторую случайную величину. Вследствие этого, изучая случайную функцию координат точки пространства, можно говорить о случайном поле. Поэтому теорию случайных функций координат точки пространства часто называют теорией случайных полей. Примером случайного поля может служить поле вектора скорости ветра в установившейся турбулентной атмосфере. В общем случае неустановившейся атмосферы вектор скорости ветра является случайной функцией координат точки пространства и времени.

Так как при каждом данном значении аргумента значение случайной функции является обычной скалярной случайной величиной, то полной вероятностной характеристикой этого значения является его закон распределения. Этот закон распределения называется одномерным законом распределения случайной функции Одномерный закон распределения случайной функции в общем случае зависит от как от параметра и может быть задан одномерной плотностью вероятности Одномерный закон распределения случайной функции является достаточной характеристикой случайной функции для тех задач, в которых значения случайной функции при различных значениях аргумента рассматриваются изолированно друг от друга. Для решения задач, в которых приходится рассматривать совместно значения случайной функции при двух или большем числе значений аргумента, необходимо ввести совместные законы распределения значений случайной функции при нескольких значениях аргумента.

Двумерным законом распределения случайной функции называется совместный закон распределения ее значений при двух произвольно взятых значениях аргумента Вообще -мерным законом распределения случайной функции называется закон распределения совокупности ее значений при произвольно взятых значениях аргумента Мы будем характеризовать -мерный закон распределения случайной функции ее -мерной плотностью вероятности которая в общем случае зависит от значений аргумента как от параметров.

Зная двумерную плотность вероятности случайной функции, можно определить ее одномерную плотность вероятности по формуле (15.8). В результате получим соотношение

Вообще, зная -мерную плотность вероятности случайной функции, можно определить все ее плотности вероятности чисел измерений, меньших чем пользуясь формулой (15.17). В результате

Таким образом, задавая -мерную плотность вероятности случайной функции, мы тем самым задаем и все ее плотности вероятности меньших чисел измерений. Закон распределения случайной функции большего числа измерений является более полной характеристикой случайной функции, чем любой закон распределения меньшего числа измерений. Однако закон распределения любого конечного числа измерений не может служить в общем случае исчерпывающей характеристикой случайной функции, так как знание -мерного закона распределения в общем случае недостаточно для определения законов распределения больших, чем чисел измерений. Лишь в частных случаях закон распределения конечного числа измерений может служить исчерпывающей характеристикой случайной функции. В общем случае для полной характеристики случайной функции необходимо задать всю последовательность ее законов распределения, т. е. плотности вероятности для всех значений

Если значения случайной функции при любых различных значениях аргумента являются независимыми случайными величинами, то -мерная плотность вероятности случайной функции согласно формуле (16.9) и определению независимости случайных величин (§ 16), при любом выражается через ее одномерную плотность вероятности формулой

Эта формула показывает, что исчерпывающей характеристикой случайной функции с независимыми значениями является ее одномерный закон распределения.

Примером случайных функций, исчерпывающей характеристикой которых являются двумерные законы распределения, могут служить марковские случайные процессы. Марковским случайным процессом, или случайным процессом без последствия, называется случайная функция скалярной переменной значения которой при значениях переменной при любом образуют простую цепь Маркова . Согласно определению простой цепи Маркова,

данному в § 47, условный закон распределения значения случайной функции зависит только от значения случайной величины и не зависит от значений случайных величин Поэтому, применяя последовательно общую формулу (16.17), получим для -мерной плотности вероятности марковского случайного процесса формулу

Но условная плотность вероятности на основании формулы (16.6) равна:

Формулы (48.4) и (48.5) дают:

Формулы (48.1) и (48.6) показывают, что -мерная плотность вероятности марковского случайного процесса при любом может быть определена, если известна его двумерная плотность вероятности. Следовательно, двумерный закон распределения является исчерпывающей характеристикой марковского случайного процесса.

Вторым примером случайных функций, для которых исчерпывающей характеристикой является двумерный закон распределения, могут служить нормально распределенные случайные функции. Мы будем считать, что случайная функция распределена нормально, если совокупность ее значений при любом и при любых из области изменения аргумента образует нормально распределенный случайный вектор. В § 23 мы видели, что -мерный нормальный закон распределения полностью определяется математическими ожиданиями, дисперсиями и корреляционными моментами случайных величин. Но математические ожидания и дисперсии случайных величин вполне определяются одномерным законом распределения случайной функции а их корреляционные моменты - двумерным законом распределения случайной функции Следовательно, двумерный закон распределения нормально распределенной случайной функции вполне определяет ее -мерный закон распределения при любом таким образом, является исчерпывающей ее характеристикой.

Несколько более общей, чем случайная функция с независимыми значениями, является случайная функция с некоррелированными значениями. Однако случайная функция с некоррелированными значениями в общем случае не может быть полностью охарактеризована никаким конечномерным законом распределения. Несмотря на это,

случайные функции с некоррелированными значениями играют большую роль в прикладной теории случайных функций.

Легко понять, что интеграл от случайной функции с некоррелированными (в частном случае независимыми) значениями представляет собой случайную функцию с некоррелированными (соответственно независимыми) приращениями на неперекрывающихся областях изменения аргумента. В § 54 будет показано, что интеграл от случайной функции с некоррелированными значениями имеет конечную дисперсию только в том случае, если дисперсия этой случайной функции бесконечна. Вследствие этого особенно важными для приложений являются случайные функции с некоррелированными значениями и бесконечной дисперсией, называемые обычно белыми шумами. Мы будем называть белым шумом любую случайную функцию с некоррелированными значениями, имеющую бесконечную дисперсию и конечную дисперсию интеграла от нее по любэй конечной области изменения аргумента. В основе этого термина лежат физические представления, связанные с быстро изменяющимися величинами, значения которых, разделенные очень малыми промежутками времени, практически независимы. Мы увидим дальше, что при разложении таких случайных функций на элементарные гармонические колебания гармоники всех частот оказываются одинаковыми по интенсивности. Эта аналогия с белым светом и послужила причиной того, что такие случайные функции называются белыми шумами. Это название удобно распространить на все случайные функции, обладающие перечисленными свойствами, независимо от физической (или математической) природы их аргументов.

Белый шум в чистом виде в природе не существует. Как мы увидим в § 74, для реализации белого шума необходима бесконечная мощность. Поэтому понятие белого шума является математической абстракцией, удобной для построения теории. Практически же можно говорить лишь о большей или меньшей степени приближения к белому шуму, о том, что минимальный промежуток времени, разделяющий значения случайной функции, которые можно считать практически некоррелированными, достаточно мал для того, чтобы его можно было не учитывать.

Очевидно, что вместо того, чтобы характеризовать случайную функцию последовательностью ее законов распределения различных чисел измерений, можно характеризовать ее одномерным законом распределения и последовательностью условных законов распределения, которые можно задать соответствующими условными плотностями вероятности

Совершенно так же, как был определен двумерный закон распределения случайной функции, определяется двумерный закон распределения двух случайных функций Двумерным законом распределения случайных функций называется закон распределения двумерного случайного вектора, составляющими которого

являются значение случайной функции при данном значении аргумента и значение случайной функции при данном значении аргумента Аналогично определяются совместные законы распределения других чисел измерений двух или нескольких случайных функций.

Исчерпывающей характеристикой случайной функции является ее вероятностная мера, определение которой было дано в § 14 для любых случайных объектов, в том числе и для случайных функций. Вероятностную меру случайной функции можно определить, если известны ее законы распределения всех чисел измерений. Выделим сначала из множества всех возможных реализаций случайной функции X множество всех реализаций, значения которых в точках принадлежат данным числовым множествам Согласно определению вероятностной меры значение вероятностной меры случайной функции X, соответствующее множеству ее реализаций, определится формулой

Эта формула определяет вероятностную меру случайной функции X для всех множеств рассмотренного типа при любых и при любом выборе числовых множеств Поставим теперь в соответствие каждому значению аргумента случайной функции X некоторое числовое множество и рассмотрим множество А всех реализаций случайной функции значения которых при всех принадлежат соответствующим множествам Для того чтобы определить значение вероятностной меры случайной функции X для такого множества ее реализаций, поставим в соответствие каждому целому положительному разбиение области изменения аргумента случайной функции X на ячеек таким образом, чтобы размеры всех ячеек стремились к нулю при . В каждой ячейке разбиения выберем произвольную точку так, чтобы множество точек содержало все точки соответствующие предыдущим разбиениям. Обозначим через множество реализаций случайной функции X, значения которых в точках принадлежат соответственно множествам Тогда получим последовательность множеств реализаций случайной функции X, каждое из которых включает все последующие множества. Предположим, что произведение всех множеств (т. е. множество реализаций случайной функции X, принадлежащих всем множествам совпадает с исходным множеством реализаций А, если не считать некоторых исключительных реализаций, имеющих нулевую суммарную вероятность появления, при любом выборе такого множества реализаций А. Это предположение накладывает определенные ограничения на характер возможных реализаций случайной функции . А именно, необходимо, чтобы любое множество ее реализаций можно было определить с любой степенью точности, накладывая на них ограничения в конечном числе достаточно близких друг к другу точек. Полагая в формуле (48.7)

найдем значения вероятностной меры случайной функции для множеств Числа образуют монотонную невозрастающую последовательность неотрицательных чисел. Следовательно, существует предел

который и является значением вероятностной меры случайной функции X для рассматриваемого множества ее реализаций А.

Формулы (48.7) и (48.8) определяют вероятностную меру случайной функции для всех цилиндрических множеств реализаций. Этого достаточно для того, чтобы определить ее для любых множеств реализаций .

Для случайной функции можно также определить функционал распределения, который является естественным обобщением функции распределения случайной величины. В соответствии с определением функции распределения (14.13) функционалом распределения случайной функции X называется вероятность выполнения неравенства при всех значениях аргумента

где произвольно заданная функция. Величина является функционалом, так как она зависит от вида функции Очевидно, что функционал распределения случайной функции представляет собой значение ее вероятностной меры, соответствующее множеству всех реализаций, значения которых при каждом принадлежат соответствующему полубесконечному интервалу Поэтому на основании (48.8) и (48.7) функционал распределения случайной функции X выражается формулой

Вероятностная мера и функционал распределения случайной функции пока не имеют большого практического значения, вследствие того, что методы вычисления интегралов типа (18.12) для произвольно заданной вероятностной меры в настоящее время еще очень мало разработаны .

Совершенно аналогично можно обобщить понятие характеристической функции на случайные функции. Рассматривая случайную функцию как совокупность бесконечного множества случайных величин зависящую от непрерывно изменяющегося параметра и обобщая определение характеристической функции -мерного случайного вектора (28.1), мы должны будем распространить сумму в показателе степени на все возможные значения непрерывно изменяющегося параметра При этом вместо придется взять и заменить сумму интегралом. В результате получим определение характеристического функционала действительной случайной функции

где интеграл распространяется на всю область изменения аргумента Характеристический функционал случайной функции зависит от функции (т. е. от значений этой функции при всех значениях аргумента

Характеристический функционал является исчерпывающей характеристикой случайной функции Действительно, задавая функцию к как линейную комбинацию импульсных -функций:

получим на основании свойств -функции:

Сравнивая это выражение с (28.1), приходим к заключению, что величина представляет собой характеристическую функцию -мерного случайного вектора с составляющими Поэтому, применяя формулу (28.14), можно определить -мерную плотность вероятности случайной функции при любом значении Таким образом, если задан характеристический функционал случайной функции то его значения при частных видах функции определяют все законы распределения случайной функции.

Можно дать более общее определение характеристического функционала. Для этого необходимо предварительно дать определение линейного функционала. Линейным функционалом называется такая величина, которая зависит от функции и удовлетворяет условию

где произвольные постоянные, а произвольные функции. Интеграл в показателе в формуле (48.11), очевидно, является линейным функционалом от случайной функции Сумма в показателе формулы (48.13) также является линейным функционалом от случайной функции Линейный функционал от функции можно сокращенно обозначать опуская скобки и обозначение аргумента функции х.

Обобщая определение (48.11), можно определить характеристический функционал случайной функции формулой

где А - произвольный линейный функционал. Задавая в формуле (48.15), линейный функционал А в виде интеграла или суммы, получим формулы (48.11) и (48.13) как частные случаи формулы (48.15). Формула (48.15) определяет характеристический функционал и в том случае, когда аргумент случайной функции X является вектором, одни составляющие которого представляют собой непрерывно изменяющиеся переменные, а другие составляющие являются дискретными переменными, в то время как формула (48.11) определяет характеристический функционал только в частном случае, когда все составляющие вектора являются непрерывно изменяющимися переменными.

Если характеристический функционал случайной функции X определяется формулой

где - некоторые функции, а индексы у линейных функционалов А указывают, к функциям каких аргументов они применяются, то характеристические функции всех чисел измерений случайной функции А

будут нормальными и, следовательно, случайная функция X распределена нормально. Таким образом, формула (48.16) определяет характеристический функционал нормально распределенной случайной функции. Эта формула является очевидным обобщением формулы (28.18) для характеристической функции нормально распределенного случайного вектора.

Пример 1. Найти плотности вероятности случайной функции скалярной независимой переменной с независимыми приращениями, если при ее значение равно нулю, а ее приращение на любом интервале распределено нормально и имеет математическое ожидание, равное нулю, и дисперсию

В данном случае значение случайной функции X при любом равно сумме ее значения при (равного нулю) и ее приращения на интервале Следовательно, одномерная плотность вероятности случайной функции X определяется формулой

Рассматриваемая случайная функция, очевидно, представляет собой марковский случайный процесс, так как ее приращение на любом интервале не зависит от ее значений вне этого интервала и, следовательно, ее значение в конце интервала связано лишь с ее значением в начале интервала и не имеет непосредственной статистической связи с ее значениями в точках, предшествующих началу интервала. Вследствие этого для определения всех плотностей вероятности случайной функции X в данном случае достаточно найти условную плотность вероятности ее значения в конце любого интервала относительно ее значения в начале интервала. Эта условная плотность вероятности, очевидно, выражается формулой

СЕВАСТОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

М.М. Гхашим, Т.В.Чернэуцану

СЛУЧАЙНЫЕ ФУНКЦИИ

Учебное пособие

Утверждено

ученым советом института

Севастополь


Гхашим М.М., Т.В.Чернэуцану

Случайные функции: учеб.-метод. пособие. – Севастополь: СевГУ, 2015.

В данном пособии рассмотрены три основных раздела: « », « », « ». Каждый из разделов включает в себя основные вопросы теории, разбор типовых примеров, задания для самостоятельной работы с ответами к ним.

предназначено для студентов третьего курса при изучении темы « ».

Рецензенты:

к.ф.-м..,

к.т.н, доцент

нк.ф.-м.н доцент

© Издание СевГУ, 2015

§ 1. Понятие о случайной функции……………………………………

§ 2. Характеристики случайных функций……………………………

§ 3. Оператор динамической системы……………………………….

§ 4. Линейные преобразования случайных функций………………

§ 5. Стационарные случайные процессы ……………………

§ 6. Спектральное разложение стационарной случайной функции………

§ 7. Эргодическое свойство стационарных случайных функций………….

Решение типовых задач………………………………………………..

Задачи для самостоятельного решения………………………………

ЛИТЕРАТУРА………………………………………………………………

Случайные функции

Понятие о случайной функции.

В курсе теории вероятностей основным предметом исследования были случайные величины, которые характеризовались тем, что в результате опыта принимали некоторое одно, заранее неизвестное, но единственное значение. Т.е., случайные явления изучались как бы в «статике», в каких-то фиксированных постоянных условиях отдельного опыта. Однако на практике часто приходится иметь дело со случайными величинами, непрерывно изменяющимися в процессе опыта. Например, угол упреждения при непрерывном прицеливании по движущейся цели; отклонение траектории управляемого снаряда от теоретической в процессе управления или самонаведения, и т.д. В принципе, любые системы с автоматизированным управлением предъявляют определенные требования к соответствующей теоретической базе – теории автоматического управления. Развитие этой теории невозможно без анализа ошибок, неизбежно сопровождающих процессы управления, которые всегда протекают в условиях непрерывно действующих случайных возмущений или «помех». Эти возмущения по своей природе являются случайными функциями. Итак:



Определение . Случайной функцией X (t ) называют функцию неслучайного аргумента t , которая при каждом фиксированном значении аргумента является случайной величиной.

Конкретный вид, принимаемый случайной функцией X (t ) в результате опыта, называется реализацией случайной функции.

Пример . Самолет на воздушном курсе имеет теоретически постоянную воздушную скорость V . Фактически его скорость колеблется около этого среднего номинального значения и представляет собой случайную функцию времени. Полет можно рассматривать как опыт, в котором случайная функция V (t ) принимает определенную реализацию (Рис.1).


От опыта к опыту вид реализации меняется. Если на самолете установлен самописец, то он в каждом полете запишет новую, отличную от других, реализацию случайной функции. В результате нескольких полетов можно получить семейство реализаций случайной функции V (t ) (Рис.2).

На практике встречаются случайные функции, зависящие не от одного аргумента, а от нескольких, например, состояние атмосферы (температура, давление, ветер, осадки). В данном курсе мы будем рассматривать только случайные функции одного аргумента. Так как этим аргументом чаще всего является время, будем обозначать его буквой t . Кроме того, условимся обозначать случайные функции большими буквами (X (t ), Y (t ), …) в отличие от неслучайных функций (x (t ), y (t ), …).

Рассмотрим некоторую случайную функцию X (t ). Предположим, что над ней произведено n независимых опытов, в результате которых получено n реализаций, которые мы обозначим соответственно номерам опытов x 1 (t ), x 2 (t ), …, x n (t ). Очевидно, каждая реализация есть обычная (не случайная) функция. Таким образом, в результате каждого опыта случайная функция X (t ) превращается в не случайную функцию.

Зафиксируем теперь некоторое значение аргумента t . В этом случае случайная функция X (t ) превратится в случайную величину.

Определение. Сечением случайной функции X (t ) называют случайную величину, соответствующую фиксированному значению аргумента случайной функции.

Мы видим, что случайная функция совмещает в себе черты случайной величины и функции. В дальнейшем часто будем попеременно рассматривать одну и ту же функцию X (t ) то как случайную функцию, то как случайную величину, в зависимости от того, рассматривается ли она на всем диапазоне изменения t или при его фиксированном значении.

Рассмотрим случайную величину X (t ) – сечение случайной функции в момент t . Эта случайная величина, очевидно, обладает законом распределения, который в общем случае зависит от t . Обозначим его f (x , t ). Функция f (x , t ) называется одномерным законом распределения случайной функции X (t ).

Очевидно, функция f (x , t ) не является полной, исчерпывающей характеристикой случайной функции X (t ), т.к. она характеризует только закон распределения X (t ) для данного, хотя и произвольного t и не отвечает на вопрос о зависимости случайных величин X (t ) при различных t . С этой точки зрения более полной характеристикой случайной функции X (t ) является так называемый двумерный закон распределения : f (x 1 , x 2 ; t 1 , t 2). Это – закон распределения системы двух случайных величин X (t 1), X (t 2), т.е. двух произвольных сечений случайной функции X (t ). Но и эта характеристика в общем случае не является исчерпывающей. Очевидно, теоретически можно неограниченно увеличивать число аргументов и получать все более полную характеристику случайной функции, но оперировать столь громоздкими характеристиками, зависящими от многих аргументов, крайне затруднительно. В пределах данного курса мы вообще не будем пользоваться законами распределения, а ограничимся рассмотрением простейших характеристик случайных функций, аналогичных числовым характеристикам случайных величин.

Лабораторная работа № 4

СЛУЧАЙНЫЕ ПРОЦЕССЫ
И ИХ ХАРАКТЕРИСТИКИ

4.1. ЦЕЛЬ РАБОТЫ

Ознакомление с основными понятиями теории случайных процессов. Выполнение измерений моментных характеристик и оценки ПРВ мгновенных значений случайных процессов. Анализ вида автокорреляционной функции (АКФ) и спектральной плотности мощности (СПМ) случайного процесса. Исследование преобразований случайного процесса линейными стационарными и нелинейными безынерционными цепями.

4.2. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Случайные события и случайные величины
Событие , которое может произойти или не произойти в некотором опыте, называется случайным событием и характеризуется вероятностью осуществления
. Случайная величина (СВ)
может принять в опыте одно значение из некоторого множества
; это значение называется реализацией данной СВ. может быть, например, множеством вещественных чисел или его подмножеством. Если множество конечно или счетно (дискретная СВ), можно говорить о вероятности
осуществления события, которое заключается в принятии случайной величиной значения , т. е. на множестве значений дискретной случайной величины задается распределение вероятностей . Если множество несчетно (например, вся вещественная прямая), то полное описание случайной величины дает функция распределения, определяемая выражением

,

где
. Если функция распределения непрерывна и дифференцируема, то можно определить плотность распределения вероятностей (ПРВ), называемую также для краткости плотностью вероятности
(а иногда просто плотностью):

, при этом
.

Очевидно, функция распределения – неотрицательная неубывающая функция со свойствами
,
. Следовательно,
ПРВ – неотрицательная функция, удовлетворяющая условию нормировки
.

Иногда ограничиваются числовыми характеристиками случайной величины, чаще всего моментами . Начальный момент -го порядка (-й начальный момент)

,

где горизонтальная черта и
– символические обозначения интегрального оператора усреднения по ансамблю . Первый начальный момент
, называется математическим ожиданием или центром распределения.

Центральный момент -го порядка (-й центральный момент)

Наиболее употребительным из центральных моментов является второй центральный момент, или дисперсия

Вместо дисперсии часто оперируют среднеквадратическим отклонением (СКО) случайной величины
.

^ Средний квадрат , или второй начальный момент
, связан с дисперсией и математическим ожиданием:

Для описания формы ПРВ используют коэффициент асимметрии
и коэффициент эксцесса
(иногда эксцесс характеризуют величиной
).

Часто используется нормальное, или гауссовское (гауссово), распределение с ПРВ

,

где и – параметры распределения (математическое ожидание и СКО соответственно). Для гауссовского распределения
,
.

Две случайные величины и характеризуются совместной плотностью распределения
. Числовыми характеристиками совместной плотности служат начальные и центральные смешанные моменты

,
,

где и – произвольные целые положительные числа;
и – математические ожидания СВ x и y .

Наиболее часто используются смешанные моменты второго порядка – начальный (корреляционный момент):

и центральный (ковариационный момент, или ковариация )

.

Для пары гауссовских случайных величин двумерная совместная ПРВ имеет вид

где , – среднеквадратические отклонения;
– математические ожидания; коэффициент корреляции – нормированный ковариационный момент

.

При нулевом коэффициенте корреляции очевидно,

,

т. е. некоррелированные гауссовские случайные величины независимы.
^

Случайные процессы

Случайный процесс – это последовательность случайных величин, упорядоченная по возрастанию некоторой переменной (чаще всего времени). Перейти от описания случайной величины к описанию случайного процесса можно, рассматривая совместные распределения двух, трех и более значений процесса в некоторые различные моменты времени. В частности, рассматривая процесс в временных сечениях (при
), получаем -мерные совместные функцию распределения и плотность распределения вероятностей случайных величин

, определяемые выражением

.

Случайный процесс считается полностью определенным, если для любого можно записать его совместную ПРВ при любом выборе моментов времени
.

Часто при описании случайного процесса можно ограничиться совокупностью его смешанных начальных моментов (если они существуют, т.е. сходятся соответствующие интегралы)

и смешанных центральных моментов

при целых неотрицательных
и целом .

В общем случае моменты совместной ПРВ зависят от расположения сечений на оси времени и называются моментными функциями . Чаще всего используют второй смешанный центральный момент

,

называемый функцией автокорреляции или автокорреляционной функцией (АКФ). Напомним, что здесь и далее явно не указана зависимость от времени, а именно – функциями времени являются
,
и
.

Можно рассматривать совместно два случайных процесса
и
; такое рассмотрение предполагает их описание в виде совместной многомерной ПРВ, а также в виде совокупности всех моментов, в том числе смешанных. Наиболее часто при этом используют второй смешанный центральный момент

,

называемый взаимно корреляционной функцией
.

Среди всех случайных процессов выделяют СП, для которых совместная -мерная ПРВ не изменяется при одновременном изменении (сдвиге) всех временных сечений на одну и ту же величину. Такие процессы называются стационарными в узком смысле или строго стационарными .

Чаще рассматривают более широкий класс случайных процессов с ослабленным свойствам стационарности. СП называется стационарным в широком смысле , если при одновременном сдвиге сечений не изменяются лишь его моменты не выше второго порядка. Практически это означает, что СП стационарен в широком смысле, если он имеет постоянные среднее (математическое ожидание ) и дисперсию
, а АКФ зависит только от разности моментов времени, но не от их положений на временнóй оси:

1)
,

2) ,
.

Заметим, что
, откуда и следует постоянство дисперсии.

Нетрудно убедиться, что процесс, стационарный в узком смысле, стационарен и в широком смысле. Обратное утверждение вообще неверно, хотя существуют процессы, для которых стационарность в широком смысле влечет стационарность в узком смысле.

Совместная -мерная ПРВ отсчетов
гауссовского процесса, взятых во временных сечениях , имеет вид

, (4.1)

где – определитель квадратной матрицы, составленной из попарных коэффициентов корреляции отсчетов;
– алгебраическое дополнение элемента этой матрицы.

Совместная гауссовская ПРВ при любом полностью определяется математическими ожиданиями, дисперсиями и коэффициентами корреляции отсчетов, т. е. моментными функциями не выше второго порядка. Если гауссовский процесс стационарен в широком смысле, то все математические ожидания одинаковы, все дисперсии (а значит, и СКО) равны друг другу, а коэффициенты корреляции определяются только тем, насколько временные сечения отстоят друг от друга. Тогда, очевидно, ПРВ (4.1) не изменится, если все временные сечения сдвинуть влево или вправо на одну и ту же величину. Отсюда следует, что гауссовский процесс, стационарный в широком смысле, стационарен и в узком смысле (строго стационарен).

Среди строго стационарных случайных процессов часто выделяют более узкий класс эргодических случайных процессов. Для эргодических процессов моменты, найденные усреднением по ансамблю, равны соответствующим моментам, найденным усреднением по времени:

,

(здесь – символическое обозначение оператора усреднения по времени).

В частности, для эргодического процесса математическое ожидание, дисперсия и АКФ равны соответственно

,

,

Эргодичность весьма желательна, так как дает возможность практически измерять (оценивать) числовые характеристики случайного процесса. Дело в том, что обычно наблюдателю доступна лишь одна (хотя, возможно, достаточно длинная) реализация случайного процесса. Эргодичность означает, по существу, что эта единственная реализация является полноправным представителем всего ансамбля .

Измерение характеристик эргодического процесса может быть выполнено при помощи простых измерительных устройств; так, если процесс представляет собой напряжение, зависящее от времени, то вольтметр магнитоэлектрической системы измеряет его математическое ожидание (постоянную составляющую), вольтметр электромагнитной или термоэлектрической системы, подключенный через разделительную емкость (для исключения постоянной составляющей), – его среднеквадратическое значение (СКО). Устройство, структурная схема которого показана на рис. 4.1, позволяет измерить значения функции автокорреляции при различных . Фильтр нижних частот играет здесь роль интегратора, конденсатор выполняет центрирование процесса, так как не пропускает постоянную составляющую тока. Это устройство называется коррелометром .


Рис. 4.1

Достаточными условиями эргодичности стационарного случайного процесса служат условие
, а также менее сильное условие Слуцкого
.
^

Дискретные алгоритмы оценивания параметров СП

Приведенные выше выражения для нахождения оценок параметров СП и корреляционной функции справедливы для непрерывного времени. В данной лабораторной работе (как и во многих современных технических системах и приборах) аналоговые сигналы генерируются и обрабатываются цифровыми устройствами, что приводит к необходимости некоторого изменения соответствующих выражений. В частности, для определения оценки математического ожидания используется выражение выборочного среднего

,

где
– последовательность отсчетов процесса (выборка объема
). Оценкой дисперсии служит выборочная дисперсия , определяемая выражением

.

Оценка автокорреляционной функции, иначе называемая коррелограммой , находится как

.

Оценкой плотности распределения вероятностей мгновенного значения ССП служит гистограмма . Для ее нахождения диапазон возможных значений СП разбивается на интервалов равной ширины, затем для каждого -го интервала подсчитывается количество отсчетов выборки, попавших в него. Гистограмма представляет собой набор чисел
, обычно изображаемый в виде решетчатой диаграммы. Количество интервалов при заданном объеме выборки выбирается исходя из компромисса между точностью оценивания и разрешением (степенью подробности) гистограммы.
^

Корреляционно-спектральная теория случайных процессов

Если интересоваться только моментными характеристиками первого и второго порядка, которые определяют свойство стационарности в широком смысле, то описание стационарного СП осуществляется на уровне автокорреляционной функции
и спектральной плотности мощности
, связанных парой преобразований Фурье (теорема Винера–Хинчина ):

,
.

Очевидно, СПМ – неотрицательная функция. Если процесс имеет ненулевое математическое ожидание , то к СПМ добавляется слагаемое
.

Для вещественного процесса АКФ и СПМ – четные вещественные функции.

Иногда можно ограничиться числовыми характеристиками – интервалом корреляции и эффективной шириной спектра. ^ Интервал корреляции определяют по-разному, в частности, известны следующие определе

Во всех предыдущих параграфах этой главы предполагалось, что управляющие и возмущающие воздействия являются определенными функциями времени. Однако для систем автоматического управления, работающих в реальных условиях, характерно, что эти воздействия носят случайный характер и принципиально непредсказуемы.

Рассмотрим, например, работу следящей системы, управляющей антенной радиолокатора. Для этой системы управляющим воздействием является положение цели, а возмущающими воздействиями можно считать ветровые нагрузки на антенну, отклонения луча от направления на цель из-за рефракции в атмосфере, собственные шумы в усилительном тракте системы, помехи от источников питания и т. п. Все эти процессы обусловлены множеством взаимодействующих причин и носят настолько сложный характер, что их нельзя представить какой-либо заданной функцией времени. То же самое можно сказать и относительно управляющего воздействия. На практике его нельзя считать типовым, например ступенчатым, линейно-растущим, синусоидальным или каким-либо регулярным сигналом. Реально цель маневрирует, поэтому ее положение в любой последующий момент не может быть точно предсказано. На этом маневрирование накладывается постоянное блуждание отражающей точки по корпусу цели.

Таким образом, сигналы управления и возмущения в реальных условиях являются случайными процессами. Случайным, или стохастическим процессом

называют такую функцию времени которая при каждом значении аргумента является случайной величиной. Если вместо времени употребляют другую независимую переменную, то используют термин случайная функция. При многократном воспроизведении условий протекания случайного процесса последний принимает каждый раз различные конкретные значения. Эти значения как функции времени называют реализациями случайного процесса. Типичный вид нескольких реализаций стохастического процесса ошибки угловой координаты цели, отслеживаемой радиолокационной станцией, представлен на рис. XIII. 14.

Математическое описание случайного процесса. При фиксированном значении аргумента случайный процесс является случайной величиной, полное описание которой дает функция распределения

т. е. вероятность того, что в данный момент случайная величина примет значение, меньшее Как известно из теории вероятностей, вместо функции распределения часто удобнее пользоваться плотностью вероятности, являющейся ее производной (в обобщенном смысле):

Если зафиксировать два момента времени то значения случайного процесса образуют систему двух случайных величин или двумерный случайный вектор. Для его полного описания требуется знать двумерную функцию распределения

Рис. ХIII.14. Стохастический процесс ошибки измерения угловой координаты цели, отслеживаемой радиолокационной станцией

или двумерную плотность

которые зависят от как от параметров.

Для более подробного описания случайного процесса в произвольные моменты времени аналогично вводятся функции распределения и плотности более высоких порядков. Таким образом, полное статистическое описание случайной функции (процесса) даетесконечная последовательность ее функций распределения:

или последовательность их производных

Каждый из членов этих последовательностей имеет обычные свойства функций распределения или соответственно плотностей. Кроме того, каждый следующий член последовательности определяет все предыдущие. Например, если положить то

аналогичные формулы имеем и для любых других моментов времени.

Это условие называют условием согласованности семейства функций распределения. Справедливо также условие симметрии:

В общем случае плотности или функции распределения более высокого порядка не определяются плотностями или функциями более низких порядков.

Однако часто полезно рассматривать так называемый абсолютно случайный процесс, значения которого независимы в совокупности для любых Для такого процесса плотность распределения любого порядка определяется через одномерную:

Такой процесс является математическим упрощением, поскольку при достаточно близких значениях значения любого реального процесса близки, и, следовательно, зависимы. Другим крайним случаем является вырожденный, или сингулярный процесс, определяемый одной или несколькими случайными величинами; например,

где - случайная величина; - известные константы. Такой процесс становится полностью известным, если можно измерить его в какой-либо момент времени. В более общем случае сингулярный случайный процесс характеризуется совокупностью случайных величин например,

где - обычные (детерминированные функции времени).

Рис. XIII.15. Возможные реализации двух случайных функций: а - с высокочастотными составляющими; б - с низкочастотными составляющими

Моментные функции. В практических задачах обычно пользуются более простыми характеристиками случайных процессов - моментными функциями. Моментом первого порядка или математическим ожиданием процесса называют выражение

Если эту функцию рассматривать в зависимости от то около среднего значения функции будут группироваться все реализации случайного процесса (рис. XIII.15).

Математические ожидания более высоких степеней носятназвания начальных моментов порядка

Случайная функция имеет нулевое среднее значение и называется центрированной. Центральным моментом -порядка процесса называется математическое ожидание степени центрированного процесса

Меру рассеяния значений случайного процесса относительно математического ожидания его определяет момент второго порядка, называемый чаще дисперсией:

Однако характеристики случайного процесса, основанные на первой плотности не отражают изменения реализаций во времени. Например, два процесса с одной и той же первой плотностью (рис. XIII. 15, а и б) различаются по скорости изменения реализаций, т. е. по степени взаимосвязи между двумя значениями, принимаемыми в одной реализации в различные моменты времени. Для описания временной внутренней структуры случайных процессов используют корреляционную функцию

Эту функцию часто называют также автокорреляционной, или ковариацией, она играет основную роль в теории случайных процессов.

Легко показать, что корреляционная функция симметрична относительно своих аргументов а при ее значение равно дисперсии случайного процесса . В самом деле,

Для характеристики точности систем автоматического регулирования удобно использовать нецентрированную корреляционную функцию:

называемую также вторым начальным моментом процесса.

Связь между устанавливается следующими преобразованиями:

При средний квадрат процесса будет

В системах автоматического регулирования часто действует несколько случайных возмущающих или управляющих сигналов, независимых или взаимосвязанных. Мерой взаимосвязи двух случайных процессов служит взаимная корреляционная функция

где - совместная плотность вероятности для независимых процессов

Для взаимной корреляционной функции справедливо равенство

Теория случайных процессов, в которой используются лишь моменты первого и второго порядков называется корреляционной теорией. Она была создана основополагающими работами А. Н. Колмогорова , Д. Я. Хинчина , Н. Вииера. Большой вклад в ее развитие внесли советские ученые В. С. Пугачев , В. В. Солодовников и др.

Стационарные случайные процессы. При рассмотрении различных случайных процессов выделяют группу процессов, статистические свойства которых не изменяются при сдвиге во времени. Такие процессы называются стационарными. Рассматривая множество реализаций случайного процесса, приведенного на рис. XIII. 14, можно предположить, что в данном случае начало отсчета времени может быть выбрано произвольно, т. е. налицо стационарный процесс. Напротив, на рис. XIII. 15, очевидно, имеем примеры нестационарных процессов.

Исследование систем, случайные процессы в которых стационарны, значительно проще, чем исследование систем с нестационарными процессами. Однако процессы во многих системах регулирования можно приближенно рассматривать как стационарные. Это имеет большое прикладное значение в теории стационарных случайных процессов.

По определению стационарного случайного процесса его математическое ожидание должно быть постоянно при сдвиге аргумента на любой тервал Т:

а корреляционная функция удовлетворяет соотношению

Полагая находим, что корреляционная функция стационарного процесса зависит только от разности отсчетов

Эргодические свойства случайных процессов. Если мы имеем совокупность, или, как говорят, ансамбль реализаций, то математическое ожидание и корреляционная функция получаются усреднением по ансамблю реализаций случайного процесса, т. е. «поперек» процесса в одном или соответственно двух его сечениях. Интересно рассмотреть также результаты усреднения реализаций стационарного процесса по времени вдоль оси на интервале , определив эту операцию естественным образом:

Эта величина различна для разных реализаций случайного процесса и сама является случайной. Можно показать, что ее математическое ожидание для стационарного процесса равно . В то же время дисперсия этой величины, как показывают непосредственные расчеты,

Рис. XIII.16. Структурная схема коррелятора

Условия эргодичности процесса по , сформулированные В. С. Пугачевым , содержат более высокие моменты случайного процесса и здесь не приводятся.

Свойства эргодичности случайных процессов позволяют заменить усреднение по множеству реализаций, практически редко осуществимое, усреднением по времени, взятым по одной реализации, когда Т велико..

Не все стационарные процессы имеют эргодические свойства. Например, процесс, все реализации которого есть случайные величины, не изменяющиеся во времени, как легко убедиться, неэргодичен. Отсюда следует, что физический смысл эргодичности заключается в «хорошей перемешиваемости» реализаций случайного процесса. Поскольку это имеет место практически во всех приложениях, в дальнейшем будем предполагать рассматриваемые процессы эргодическими.

Для таких процессов можно экспериментально определить среднее значение и корреляционную функцию процесса с помощью специальных приборов - корреляторов. Принцип действия корреляторов ясен из рис. XIII.16.

Подавая на вход коррелятора единичный сигнал, на его выходе при достаточно большом времени интегрирования Т будем иметь среднее значение процесса х, приблизительно совпадающее с его математическим ожиданием Если же то в результате будем иметь второй начальный момент по которому легко определить и корреляционную функцию.

Предварительные замечания. Найдем изображение Фурье от d -функции.

Очевидно, справедливо и обратное преобразование Фурье:

А также:

1. Пусть процесс представляет собой постоянную величину x(t)=A o . Как уже было выяснено ранее, корреляционная функция такого процесса равна Найдем спектральную плотность процесса путем прямого преобразования Фурье функции R(t):

Спектр процесса состоит из единственного пика типа импульсной функции, расположенной в начале координат. Таким образом, если в процессе присутствует только одна частота w =0, то это значит, что вся мощность процесса сосредоточена на этой частоте, что и подтверждает вид функции S(w). Если случайная функция содержит постоянную составляющую, т.е. среднее значение , то S(w) будет иметь разрыв непрерывности в начале координат и будет характеризоваться наличием d -функции в точке w =0.

2. Для гармонической функции X=A o sin(w 0 t+j) корреляционная функция:

Спектральная плотность равна

График S(w) будет иметь два пика типа импульсной функции, расположенных симметрично относительно начала координат при w= +w 0 и w= -w 0 . Это говорит о том, что мощность процесса сосредоточена на двух частотах +w 0 и -w 0 .

Если случайная функция имеет гармонические составляющие, то спектральная плотность имеет разрывы непрерывности в точках w = ±w 0 и характеризуется наличием двух дельта-функций, расположенных в этих точках.

Белый шум . Под белым шумом понимают случайный процесс, имеющий одинаковые значения спектральной плотности на всех частотах от -¥ до +¥ : S(w ) = Const.

Примером такого процесса при определенных допущениях являются тепловые шумы, космическое излучение и др. Корреляционная функция такого процесса равна

Таким образом R(t) представляет собой импульсную функцию, расположенную в начале координат.

Этот процесс является чисто случайным процессом, т.к. при любом t ¹0 отсутствует корреляция между последующими и предыдущими значениями случайной функции. Процесс с такой спектральной плотностью является физически нереальным, т.к. ему соответствуют бесконечно большие дисперсия и средний квадрат случайной величины:

Такому процессу соответствует бесконечно большая мощность и источник с бесконечно большой энергией.

2. Белый шум с ограниченной полосой частот. Такой процесс характеризуется спектральной плотностью вида

S(w)=C при ½w½ <w n ,

S(w) =0 при ½w½>w n .

где (-w n , w n) полоса частот для спектральной плотности.

Это такой случайный процесс, спектральная плотность которого остается практически постоянной в диапазоне частот, могущих оказать влияние на рассматриваемую систему управления, т.е. в диапазоне частот, пропускаемых системой. Вид кривой S (w ) вне этого диапазона не имеет значения, т.к. часть кривой, соответствующая высшим частотам, не окажет влияния на работу системы. Этому процессу соответствует корреляционная функция

Дисперсия процесса равна

5. Типовой входной сигнал следящей системы. В качестве типового сигнала принимают сигнал, график которого показан на рис.63. Скорость вращения задающего вала следящей системы сохраняет постоянное значение в течение некоторых интервалов времени t 1 , t 2 ,...

Переход от одного значения к другому совершается мгновенно. Интервалы времени подчиняются закону распределения Пуассона. Математическое ожидание

Рис.63. Типовой сигнал

График такого вида получается в первом приближении при слежении РЛС за движущейся целью. Постоянные значения скорости соответствуют движению цели по прямой. Перемена знака или величины скорости соответствует маневру цели.

Пусть m -среднее число перемен скорости за 1 с. Тогда Т=1/m будет среднее значение интервалов времени, в течение которых угловая скорость сохраняет свое постоянное значение. Применительно к РЛС это значение будет средним временем движения цели по прямой. Для определения корреляционной функции необходимо найти среднее значение произведения

При нахождении этого значения могут быть два случая.

1. Моменты времени t и t+t относятся к одному интервалу. Тогда среднее произведения угловых скоростей будет равно среднему квадрату угловой скорости или дисперсии:

2. Моменты времениt и t+t относятся к разным интервалам. Тогда среднее произведения скоростей будет равно нулю, так как величины W(t) и W(t+t) для разных интервалов можно считать независимыми величинами:

Корреляционная функция равна:

где, Р 1 - вероятность нахождения моментов времени t и t+t в одном интервале, а Р 2 =1- Р 1 вероятность нахождения их в разных интервалах.

Оценим величину Р 1 . Вероятность появления перемены скорости на малом интервале времени Dt пропорциональна этому интервалу и равна mDt или Dt/Т. Вероятность отсутствия перемены скорости для этого же интервала будет равна 1-Dt/Т. Для интервала времени t вероятность отсутствия перемены скорости т.е. вероятность нахождения моментов времени t и t+t в одном интервале постоянной скорости будет равна произведению вероятности отсутствий перемены скорости на каждом элементарном промежутке Dt, т.к. эти события независимые. Для конечного промежутка получаем, что число промежутков равно t/Dt и

Перейдя к пределу, получим



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ