Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Магнетики

Все вещества в магнитном поле намагничиваются (в них возникает внутреннее магнитное поле). В зависимости от величины и направления внутреннего поля вещества разделяют на:

1) диамагнетики,

2) парамагнетики,

3) ферромагнетики.

Намагниченность вещества характеризуется магнитной проницаемостью ,

Магнитная индукция в веществе,

Магнитная индукция в вакууме.

Любой атом можно характеризовать магнитным моментом .

Сила тока в контуре, - площадь контура, - вектор нормали к поверхности контура.

Микроток атома создается движением отрицательных электронов по орбите и вокруг собственной оси, а также вращением положительного ядра вокруг собственной оси.

1. Диамагнетики.

Когда нет внешнего поля , в атомах диамагнетиков токи электронов и ядра скомпенсированы. Суммарный микроток атома и его магнитный момент равны нулю.

Во внешнем магнитном поле в атомах индуцируются (наводятся) ненулевые элементарные токи. Магнитные моменты атомов при этом ориентируются противоположно .

Создается небольшое собственное поле , направленное противоположно внешнему , и ослабляющего его.

В диамагнетиках .

Т.к. < , то для диамагнетиков 1.

2. Парамагнетики

В парамагнетиках микротоки атомов и их магнитные моменты не равны нулю.

Без внешнего поля эти микротоки расположены хаотично.

Во внешнем магнитном поле микротоки атомов парамагнетика ориентируются по полю , усиливая его.

В парамагнетике магнитная индукция = + , незначительно превышает .

Для парамагнетиков, 1. Для диа- и парамагнетиков можно считать 1.

Таблица 1. Магнитная проницаемость пара- и диамагнетиков.

Намагниченность парамагнетиков зависит от температуры, т.к. тепловое движение атомов препятствует упорядоченному расположению микротоков.

Большинство веществ в природе являются парамагнетиками.

Собственное магнитное поле в диа- и парамагнетиках незначительно и разрушается, если вещество убрать из внешнего поля (атомы возвращаются в исходное состояние, происходит размагничивание вещества).

3. Ферромагнетики

Магнитная проницаемость ферромагнетиков достигает сотен тысяч и зависит от величины намагничивающего поля (сильномагнитные вещества ).

Ферромагнетики: железо, сталь, никель, кобальт, их сплавы и соединения.

В ферромагнетиках существуют области самопроизвольного намагничивания («домены»), в которых все микротоки атомов ориентированы одинаково. Размер доменов достигает 0,1 мм.

В отсутствии внешнего поля магнитные моменты отдельных доменов ориентированы хаотично и компенсируются. Во внешнем поле те домены, в которых микротоки усиливают внешнее поле, увеличивают свои размеры за счет соседних. Результирующее магнитное поле = + в ферромагнетиках намного сильнее по сравнению с пара- и диамагнетиками.

Домены, включающие миллиарды атомов, обладают инерционностью и не возвращаются быстро в первоначальное беспорядочное состояние. Поэтому, если ферромагнетик удалить из внешнего поля, то его собственное поле сохраняется длительное время.

Магнит размагничивается при длительном хранении (с течением времени домены возвращаются в хаотичное состояние).

Другой способ размагничивания – нагревание. Для каждого ферромагнетика существует температура (она называется «точка Кюри»), при которой в доменах разрушаются связи между атомами. В этом случае ферромагнетик превращается в парамагнетик и происходит его размагничивание. Например, точка Кюри для железа составляет 770°С.

Магнитная проницаемость - физическая величина , коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией B {\displaystyle {B}} и напряжённостью магнитного поля H {\displaystyle {H}} в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая её состав, состояние, температуру и т. д.).

Впервые встречается в работе Вернера Сименса «Beiträge zur Theorie des Elektromagnetismus» («Вклад в теорию электромагнетизма») в 1881 году .

Обычно обозначается греческой буквой μ {\displaystyle \mu } . Может быть как скаляром (у изотропных веществ), так и тензором (у анизотропных).

В общем, соотношение между магнитной индукцией и напряженностью магнитного поля через магнитную проницаемость вводится как

B → = μ H → , {\displaystyle {\vec {B}}=\mu {\vec {H}},}

и μ {\displaystyle \mu } в общем случае здесь следует понимать как тензор, что в компонентной записи соответствует :

B i = μ i j H j {\displaystyle \ B_{i}=\mu _{ij}H_{j}}

Для изотропных веществ соотношение:

B → = μ H → {\displaystyle {\vec {B}}=\mu {\vec {H}}}

можно понимать в смысле умножение вектора на скаляр (магнитная проницаемость сводится в этом случае к скаляру).

Нередко обозначение μ {\displaystyle \mu } используется не так, как здесь, а именно для относительной магнитной проницаемости (при этом μ {\displaystyle \mu } совпадает с таковым в СГС).

Размерность абсолютной магнитной проницаемости в СИ такая же, как размерность магнитной постоянной, то есть Гн / или / 2 .

Относительная магнитная проницаемость в СИ связана с магнитной восприимчивостью χ соотношением

μ r = 1 + χ , {\displaystyle \mu _{r}=1+\chi ,}

Энциклопедичный YouTube

  • 1 / 5

    Подавляющее большинство веществ относятся либо к классу диамагнетиков ( μ ⪅ 1 {\displaystyle \mu \lessapprox 1} ), либо к классу парамагнетиков ( μ ⪆ 1 {\displaystyle \mu \gtrapprox 1} ). Но ряд веществ - (ферромагнетики), например железо , обладают более выраженными магнитными свойствами.

    У ферромагнетиков вследствие гистерезиса , понятие магнитной проницаемости, строго говоря, неприменимо. Однако в определенном диапазоне изменения намагничивающего поля (чтобы можно было пренебречь остаточной намагниченностью, но до насыщения) можно в лучшем или худшем приближении всё же представить эту зависимость как линейную (а для магнитомягких материалов ограничение снизу может быть и не слишком практически существенно), и в этом смысле величина магнитной проницаемости бывает измерена и для них.

    Магнитные проницаемости некоторых веществ и материалов

    Магнитная восприимчивость некоторых веществ

    Магнитная восприимчивость и магнитная проницаемость некоторых материалов

    Medium Восприимчивость χ m
    (объемная, СИ)
    Проницаемость μ [Гн/м] Относительная проницаемость μ/μ 0 Магнитное поле Максимум частоты
    Метглас (англ. Metglas ) 1,25 1 000 000 при 0.5 Тл 100 kHz
    Наноперм (англ. Nanoperm ) 10 × 10 -2 80 000 при 0.5 Тл 10 kHz
    Мю-металл 2,5 × 10 -2 20 000 при 0.002 Тл
    Мю-металл 50 000
    Пермаллой 1,0 × 10 -2 70 000 при 0.002 Тл
    Электротехническая сталь 5,0 × 10 -3 4000 при 0.002 Тл
    Феррит (никель-цинк) 2,0 × 10 -5 - 8,0 × 10 -4 16-640 100 kHz ~ 1 MHz [ ]
    Феррит (марганец-цинк) >8,0 × 10 -4 640 (и более) 100 kHz ~ 1 MHz
    Сталь 8,75 × 10 -4 100 при 0.002 Тл
    Никель 1,25 × 10 -4 100 - 600 при 0.002 Тл
    Неодимовый магнит 1.05 до 1,2-1,4 Тл
    Платина 1,2569701 × 10 -6 1,000265
    Алюминий 2,22 × 10 -5 1,2566650 × 10 -6 1,000022
    Дерево 1,00000043
    Воздух 1,00000037
    Бетон 1
    Вакуум 0 1,2566371 × 10 -6 (μ 0) 1
    Водород -2,2 × 10 -9 1,2566371 × 10 -6 1,0000000
    Тефлон 1,2567 × 10 -6 1,0000
    Сапфир -2,1 × 10 -7 1,2566368 × 10 -6 0,99999976
    Медь -6,4 × 10 -6
    or -9,2 × 10 -6
    1,2566290 × 10 -6 0,999994

    Магнитные материалы: свойства и характеристики. Особенности различных видов магнетизма. Процессы намагничивания. Особенности сильномагнитных материалов. Потери на перемагничивание.

    Магнитомягкие материалы: классификация, свойства, назначение.

    Магнитотвердые материалы: классификация, свойства, назначение. Магнитные материалы специального назначения: классификация, свойства, назначение.

    Литература

    Все вещества в природе взаимодействуют с внешниммагнитным полем, но каждое вещество по-разному.

    Магнитные свойства веществ зависят от магнитных свойств элементарных частиц, структуры атомов и молекул, а также их групп, но основное определяющее влияние оказывают электроны, их магнитные моменты.

    Все вещества, по отношению к магнитному полю, поведению в нем, разделяются на следующие группы:

    Диамагнетики – материалы, не имеющие постоянного магнитного дипольного момента, обладающие относительной магнитной проницаемостью (μ≤1) чуть меньше единицы. Относительная диэлектри-ческая проницаемость μ диамагнетиков почти не зависит от величины магнитного поля (Н) и не зависит от температуры. К ним относятся: инертные газы (Nе, Аr, Кr, Хе), водород (H 2); медь (Сu), цинк (Zn), серебро (Аg), золото (Au), сурьма (Sb) и др.

    Парамагнетики – материалы, имеющие постоянные дипольные моменты, но расположены они беспорядочно, поэтому взаимодействие между ними очень слабое. Относительная магнитная проницаемость парамагнетиков чуть больше единицы (μ≥1), слабо зависит от напряженности магнитного поля и от температуры.

    К парамагнетикам относятся следующие материалы: кислород (О 2), алюминий (Al), платина (Рt), щелочные металлы, соли железа, никеля, кобальта и др.

    Ферромагнетики – материалы, имеющие постоянные магнитные дипольные моменты, доменную структуру. В каждом домене они параллельны друг другу и одинаково направлены, поэтому взаимодействие между ними очень сильное. Относительная магнитная проницаемость ферромагнетиков велика (μ >> 1), у некоторых сплавов доходит до 1500000. зависит от напряженности магнитного поля и от температуры.

    К ним относятся: железо (Fe), никель (Ni), кобальт (Со), многие сплавы, редкоземельные элементы: самарий (Sm), гадолиний (Gd) и др.

    Антиферромагнетики – материалы, имеющие постоянные дипольные магнитные моменты, которые расположены антипараллельно друг другу. Относительная магнитная проницаемость их чуть больше единицы (μ ≥ 1), очень слабо зависит от напряженности магнитного поля и от температуры. К ним относятся: окиси кобальта (CoO), марганца (MnO), фтористый никель (NiF 2) и др.

    Ферримагнетики – материалы, обладающие антипараллельными постоянными дипольными магнитными моментами, которые не полностью компенсируют друг друга. Чем меньше такая компенсация, тем выше их ферромагнитные свойства. Относительная магнитная проницаемость ферримагнетиков может быть близка к единице (при почти полной компенсации моментов), а может доходить до десятков тысяч (при малой компенсации).

    К ферримагнетикам относятся ферриты, их можно назвать оксиферрами, так как они представляют собой, окислы двухвалентных металлов с Fe 2 O 3 . Общая формула феррита , где Ме – двухвалентный металл.

    Магнитная проницаемость ферритов зависит от температуры и напряженности магнитного поля, но в меньшей степени, чем у ферромагнетиков.

    Ферриты представляют собой керамические ферромагнитные материалы с малой электропроводностью, вследствие чего могут быть отнесены к электронным полупроводникам с высокой магнитной (μ ≈ 10 4) и высокой диэлектрической (ε ≈ 10 3) проницаемостями.

    Диа-, пара- и антиферромагнетики можно объединить в группу слабомагнитных веществ, а ферро- и ферримагнетики – в группу сильномагнитных веществ.

    Для технического применения в области радиоэлектроники наибольший интерес представляют сильномагнитные вещества.(рис. 6.1)

    Рис. 6.1. Структурная схема магнитных материалов

    Магнитные свойства материалов определяются внутренними скрытыми формами движения электрических зарядов, представляющими собой элементарные круговые токи. Круговой ток характеризуется магнитным моментом и может быть заменен эквивалентным магнитным диполем. Магнитные диполи образуются, в основном, спиновым вращением электронов, орбитальное же вращение электронов принимает в этом процессе слабое участие, так же как и ядерное вращение.

    У большинства материалов спиновые моменты электронов компенсируют друг друга. Поэтому ферромагнетизм наблюдается далеко не у всех веществ таблицы Менделеева.

    Условия, которые необходимы, чтобы материал был ферромагнитным :

    1. Существование элементарных круговых токов в атомах.

    2. Наличие нескомпенсированных спиновых моментов, электронов.

    3. Соотношение между диаметром электронной орбиты (D), имеющей нескомпенсированный спиновый момент, и постоянной кристаллической решетки вещества (а) должно быть

    . (6.1)

    4. Наличие доменной структуры, т.е. таких кристаллических областей, в которых дипольные магнитные моменты оказываются параллельно ориентированы.

    5. Температура материала (вещества) должна быть ниже точки Кюри, так как при более высокой температуре происходит исчезновение доменной структуры, материал переходит из ферромагнитного состояния в парамагнитное.

    Характерным свойством ферромагнитного состояния вещества является наличие спонтанной намагниченности без приложения внешнего магнитного поля. Однако магнитный поток такого тела будет равен нулю, так как направление магнитных моментов отдельных доменов различно (доменная структура с замкнутой магнитной цепью).

    Степень намагничивания вещества характеризуют величиной намагниченности, или интенсивности намагничивания (J), которая определяется как предел отношения результирующего магнитного момента Σm, отнесенного к объему вещества (V), когда, объем стремиться к нулю

    . (6.2)

    Если поместить вещество во внешнее магнитное поле с напряженностью Н, то соотношение между J и Н будет

    J = 4 πχH , (6.3)

    где χ (каппа) называется магнитной вязкостью.

    Относительная магнитная проницаемость μ зависит от χ:

    μ = 1 + 4 πχ . (6.4)

    Интенсивность, намагничивания можно определить, зная μ

    μ= 1+. (6.5)

    В общем, магнитное поле в ферромагнетике создается как сумма двух составляющих: внешней, создаваемой напряженностью внешнего магнитного поля Н, и внутренней, создаваемой намагниченностью (J).

    Суммарное магнитное поле характеризуется магнитной индукцией В:

    B = μ 0 (H + J ), (6.6)

    где μ 0 – магнитная постоянная (магнитная проницаемость вакуума)

    μ 0 = 4 π ∙10 -7 , Г/м. (6.7)

    Выражая значение J через χ, а затем и μ, получим:

    B = μ 0 H (1 + 4 πχ ) или B = μ 0 μH . (6.8)

    Абсолютная величина магнитной проницаемости

    μ абс = μ 0 μ . (6.9)

    Окончательная формула для магнитной индукции В

    B = μ абс H . (6.10)

    Процесс намагничивания ферромагнитного материала под влиянием внешнего магнитного поля заключается в следующем:

      рост доменов, магнитные моменты которых близки по направлению с внешним полем, и уменьшением других доменов;

      ориентация магнитных моментов всех доменов в направлении внешнего поля.

    Процесс намагничивания характеризуется для каждого ферромагнетика своей основной кривой намагничивания В = f(Н).

    Магнитная проницаемость μ в процессе намагничивания тоже изменяется.

    Это показано на рис. 6.2.

    Рис. 6.2. Кривые намагниченности (В = f(Н)) и магнитной проницаемости (μ = f(Н))

    Магнитная проницаемость μ при напряженности Н, близкой к нулю, называется начальной (участок 1), а при переходе материала к насыщению она будет принимать максимальное значение (2), с дальнейшим увеличением Н магнитная проницаемость μ – уменьшается (участки 3 и 4).

    При циклическом намагничивании ферромагнетика кривые намагничивания и размагничивания образуют петлю гистерезиса. Петлю гистерезиса, полученную при условии насыщения материала, называют предельной. По петле гистерезиса, полученной, например, на экране осциллографа можно получить довольно полную информацию об основных магнитных параметрах материала (рис. 6.3).

    Рис. 6.3. Петля гистерезиса

    Основными параметрами являются:

    1) остаточная индукция, после снятия напряженности поля – Вr;

    2) коэрцитивная сила Нс – напряженность, которую нужно приложить к образцу, чтобы снять остаточную индукцию;

    3) максимальная индукция B max , которая достигается при полном насыщении образца;

    4) удельные потери на гистерезис за один цикл перемагничивания, которые характеризуются площадью, охватываемой петлей гистерезиса.

    Остальные магнитные параметры материала, а также потери на перемагничивание (гистерезис), на вихревые токи, энергию в зазоре (для постоянного магнита) можно рассчитать по формулам, которые были приведены выше и будут приведены в дальнейшем.

    Потери в ферромагнитных материалах - это затраты энергии, которые идут на перемагничивание ферромагнетиков, на возникновение вихревых токов в переменном магнитном поле, на магнитную вязкость материала – создают так называемые потери, которые можно разделить на следующие виды:

    а) потери на гистерезис Рг, пропорциональны площади петли гистерезиса

    Рг = η∙ f
    V , Вт (6.11)

    где η – коэффициент гистерезиса для данного материала;

    f – частота поля, Гц;

    В max – максимальная индукция, Тл;

    V – объем образца, м 3 ;

    n ≈ 1,6...2 – значение показателя степени;

    б) потери на вихревые токи

    Рв.т. = ξ∙ f 2 ∙В max V , Вт (6.12)

    где ξ – коэффициент, зависящий от удельного электрического сопротивления материала и от формы образца;

    в) потери на последействие Рп.с., (потери на магнитную вязкость), которые не поддаются аналитическому расчету и определяются исходя из полных потерь Р, Рг и Рв.т. по формуле

    Рп.с. = Р – Рг – Рв.т. (6.13)

    Потери на вихревые токи можно уменьшить, увеличивая электрическое сопротивление ферромагнетика. Для этого магнитопровод, например для трансформаторов, набирают из отдельных тонких, изолированных друг от друга пластин ферромагнетика.

    На практике иногда применяют ферромагнетики с разомкнутой магнитной цепью , т.е. имеющие, например, воздушный зазор, обладающий большим магнитным сопротивлением. В теле, имеющем воздушный зазор, возникают свободные полюса, создающие размагничивающее поле, направленное навстречу внешнему намагничивающему полю. Происходит снижение индукции тем большее, чем шире воздушный зазор. Это проявляется в электромашинах, магнитных подъемных устройствах и др.

    Энергия в зазоре (W L), например, постоянного магнита, выражается формулой

    , Дж/м 3 , (6.14)

    где В L и Н L – собственно индукция и напряженность поля при данной длине воздушного зазора.

    Изменяя подаваемую напряженность на ферромагнетик, можно получить в данном зазоре максимальную энергию.

    Для нахождения W max пользуются диаграммой, на которой по кривой размагничивания для магнитного материала, расположенной во втором квадранте (участок петли гистерезиса), строят кривую энергии в зазоре, задаваясь различными значениями В (или Н). Зависимость W L от В L и Н L показана на рис. 6.4.

    Рис. 6.4. Энергия в воздушном зазоре ферромагнетика

    Чтобы определить напряженность поля Н, при которой будет максимальная энергия в зазоре магнита, нужно провести касательную к максимальной энергии (в точке А), а от нее провести горизонтальную линию до пересечения с петлей гистерезиса во втором квадранте. Затем опустить перпендикуляр до пересечения с координатой Н. Точка Н L 2 будет определять искомую напряженность магнитного поля.

    По основным магнитным параметрам ферромагнитные материалы можно классифицировать на следующие группы ;

      Магнитно-мягкие – материалы с малым значением коэрцитивной силы Нc (до 100 А/м), большой величиной магнитной проницаемости и малыми потерями на гистерезис. Они используются в качестве магнитопроводов постоянного тока (сердечники трансформаторов, измерительных приборов, катушек индуктивности и т.п.)

    К магнитно-мягким материалам относятся:

      технически чистое железо, карбонильное железо;

      электротехническая сталь;

      пермаллои;

      альсиферы;

      ферриты (медномарганцевые);

      термомагнитные сплавы (Ni-Сr-Fе) и др.

    2. Магнитно-твердые – материалы, имеющие большую коэрцитивную силу (Нс > 100 А/м) (см. рис. 4.5, г ).

    Магнитотвердые материалы применяют для изготовления постоянных магнитов, в которых используется магнитная энергия в воздушном зазоре между полюсами магнита.

    К магнитно-твердым материалам относятся:

    Литые сплавы альни (Аl-Ni-Fе);

    Альнико (Al-Ni-Со-Fе);

    Магнико;

    Легированные стали, закаливаемые на мартенсит и др.

    Особый интерес представляют сплавы на основе редкоземельных материалов (YCo, CeCo, SmCo и др.), обладающие высоким значением Н с и w max .

    3. Ферриты – материалы представляющие собой двойные окислы железа с окислами двухвалентных металлов (МеО∙Fe 2 O 3). Ферриты могут быть магнитно-мягкими и магнитно-твердым, в зависимости от их кристаллического строения, например, типа шпинели – (MgAl 3 O 4), гаусмагнита (Мn 3 O 4), граната Ga 3 Al 2 (SiO 4) 3 и др. Электрическое удельное сопротивление их велико (от 10 -1 до 10 10 Ом∙м), следовательно потери на вихревые токи, особенно при высоких частотах, малы.

    4. Магнитодиэлектрики – материалы, состоящие из ферромагнитного порошка с диэлектрической связкой. Порошок берется обычно на основе магнитно-мягкого материала – карбонильное железо, альсифер, а связующим диэлектриком служит материал с малыми диэлектрическими потерями – полистирол, бакелит и др.

    Вопросы для самопроверки:

      Классификация веществ по магнитным свойствам.

      Особенности сильномагнитных веществ (домены, анизотропия, кривая намагничивания, магнитострикция, магнитная проницаемость, гистерезис, и т.п.)

      Факторы, влияющие на магнитные свойства

      Потери в магнитных материалах

      Классификация сильномагнитных материалов

      Низкочастотные магнитомягкие материалы

      Высокочастотные магнитомягкие материалы

      Магнитотвердые материалы

      Магнитные материалы спецназначения

    Приложения

    Проводниковые материалы Таблица П.1

    проводника

    Ом∙мм 2 /м

    удельного

    сопротив-

    теплопро-

    водности

    Вт/м∙град

    тельно меди,

    Работа выхода электрона

    Темпе- ратура правле-ния,

    Чистые металлы

    Алюминий

    Молибден

    Вольфрам

    поли- кристалл

    Манганин

    (5…30)∙10 -6

    Константан

    (5…20)∙10 -6

    Нейзильбер

    Термопары

    Медь-константан

    Тизм до 350 °С

    Хромель-алюмель

    Тизм до 1000 °С

    Платина-платинородий

    Тизм до 1600 °С

    Полупроводниковые материалы Таблица П.2

    Наименование

    полупроводни-

    кового материала

    собствен.

    носителей

    Подвижность

    носителей

    U,

    Неорганические

    Кристалл. элементарные (атомарные)

    Германий

    Кристалл. соединения

    Карбид кремния

    возгонка

    Сурьмянистый индий

    Арсенид галлия

    Фосфид галлия

    Арсенид индия

    Теллурид висмута

    Сульфид свинца

    Стеклообразные

    Халькогениды

    As 2 Te 2 Se, As 2 Se 3 ∙Al 2 Se 3

    Органические

    Антрацен

    Нафталин

    Красители и пигменты

    Фталоцианин меди

    Молекулярные комплексы

    Иод-пирен

    Полимеры

    Полиакрилонитрил

    Диэлектрические материалы Таблица П.3

    Агре-гатное сос-тояние

    Наиме-нование матери-

    алов (диэлек-триков)

    Диэлект-рическая прони-цаемость, относи-тельная Е

    ное объем-

    ное сопро-тивление
    , Ом·м

    угла ди-электрических потерь

    Проч-ность (элект-ричес-кая) Е пр, МВ/м

    Удель-ная тепло-

    ность λ, Вт/м·ºК

    Элегаз (SF 6)

    Жид-кости

    Масло трансфор-маторное

    Твер-дые мате-риалы

    Органи-ческие

    а) Парафин

    Головакс

    б) Смола бакели-товая

    Канифоль

    Поливинил-

    Полистирол

    Полиэтелен

    Полиметил-метакрилат

    Смола эпоксидная

    Компаунд

    г) Фенол-пласт (ФАС)

    д) Лако-ткань

    Электро-картон (ЭВТ)

    ж) Каучук бутади-еновый

    Резина изоляц.

    з) Фторо-пласт-4

    фторо-пласт-3

    Неоргани-ческие

    а) Стекла электротех.

    б) Стеатит (керам.)

    фарфор электротех.

    в) Слюда мусковит

    Микалекс

    г) Сегнето-керамика ВК-1

    Пьезокварц

    д) Фторид-ная изоляция (AlF 3)

    е) Асбест

    Элементо-орган.

    а) Кремний орг. смола

    б) Кремний орган. каучук

    Магнитные материалы Таблица П.4

    Наиме- нование магнитного материала

    Хими-ческий состав или марка

    Относительная магнитная проницаемость, μ

    Магнитная индукция В, Т

    Коэр-цитив-

    ная сила Нс, А/м

    Удельн. эл. сопро-тивле- ние ρ, мкОм∙м

    Энергия в зазоре , Дж/м 3

    нача-льная, μ н

    макси-маль-ная, μ max

    оста-точ-ная, В

    макси-маль-ная, В max

    Магнитно-мягкие

    Электро- техн. сталь

    Пермаллой низко-никелевый

    Пермаллой высоко-никелевый

    Супермаллой

    Альсифер

    Ферриты

    Феррит никель-цинковый

    Феррит марганец-цинковый

    Магнитно-твердые

    бариевый

    бариевый

    Магнитодиэлектрики

    На основе карбонильного железа

    Библиографический список

    1. Пасынков, В.В. Материалы электронной техники: учеб.для вузов/ В.В.Пасынков, В.С.Сорокин -СПб.: Лань, 2003. – 367с.

    2. Радиоматериалы и радиокомпоненты: метод. указания/ сост. А.М. Хадыкин А.М.- Омск: Изд-во ОмГТУ, 2007. – 44 с.

    3. Радиоматериалы и радиокомпоненты: конспект лекций/ авт.-сост. А. М. Хадыкин. - Омск: Изд-во ОмГТУ, 2008. – 91 с.

    4. Материалы и элементы электронной техники: метод. указания / сост. А. М. Хадыкин. - Омск: Изд-во ОмГТУ, 2005.-34с.

    5. Кликушин Ю.Н. Материаловедение в приборостроении. Электротехнические материалы: Учеб. пособие для вузов / Ю. Н. Кликушин, А. И. Чередов, И. Л. Захаров; ОмГТУ. - Омск: Изд-во ОмГТУ, 2005. - 79 с.

    6. Сорокин В. С. Материалы и элементы электронной техники. В 2-х т.: учебник для студентов вузов, обучающихся по направлению подготовки бакалавров, магистров и специалистов 210100"Электроника и микроэлектроника" / В. С. Сорокин, Б. Л. Антипов, Н. П. Лазарева. Т.1: Проводники, полупроводники, диэлектрики. - М. : Издательский центр "Академия", 2006. - 448 с.

    7. Сорокин В. С. Материалы и элементы электронной техники. В 2 т.: учебник для студентов вузов, обучающихся по направлению подготовки и специальностям "Электроника и микроэлектроника" / В. С. Сорокин, Б. Л. Антипов, Н. П. Лазарева. Т.2. - М. : Издательский центр "Академия", 2006. - 384 с.

    8. Алиев И.И. Электротехничесике материалы и изделия. Справочник. – М.: ИП РадиоСофт, 2007. – 352 с.

    9. А.И. Сидоров, Н.В. Никоноров «Материалы и технологии интегральной

    оптики». Учебное пособие, курс лекций. СПб: СПбГУ ИТМО, 2009 г. - 107

    10. Бондаренко И.Б., Гатчин Ю.А., Иванова Н.Ю., Шилкин Д.А. Соединители и коммутационные устройства. Учебное пособие. СПб: СПбГУ ИТМО, 2007. 151 с.

    11. Рощин В.М. Технология материалов микро-, опто- и наноэлектроники: учебное пособие. Ч 2/ В.М. Рощин, М.В. Силибин. – М.: БИНОМ. Лаборатория знаний, 2010. – 180 с.

    12. Садченков Д.А. Маркировка радиодеталей отечественных и зарубежных. Справочное пособие. Том 1. – М.: СОЛОН-Р, 2002. – 208 с.

    13. Петров К.С. Радиоматериалы, радиокомпоненты и электроника. Учебное пособие для вузов. - Санкт- Петербург.: Питер, 2006 г. - 522 с.

    14. Ульянина И.Ю. Строение материалов: учеб. пособие / И. Ю. Ульянина, Т. Ю. Скакова. - М. : МГИУ, 2006. - 55 с.

    15. Ульянина И.Ю. Материаловедение в схемах-конспектах: учеб. пособие / И. Ю. Ульянина. - М. : Изд-во МГИУ, 2006. - 139 с.

    16. Мишин Д.Д. Магнитные материалы. – М.:Высш.шк., 1991. – 384 с.

    17. Харламова Т.Е. Электроматериаловедение. Электротехнические материалы: Учеб. Пособие. – СПб.: СЗПИ, 1998. – 82 с.

    18. Шкаруба М.В., Тихонов С.А. Материалы и элементы электронной техники: Учеб пособие. – Омск: Изд-во Омгту, 2006. – 120 с.

    19. Компоненты и технологии: Ежемес. всерос. журн.– М.:Ред.журн. «Издательство Файнстрит», – Выходит ежемесячно.

    20. Internet: www.wieland – electric.com

    21. Internet: www.platan.ru

    22. Internet: www.promelec.ru

    23. Internet: www.chipdip.ru

    Определение магнитной проницаемости вещества. Ее роль в описании магнитного поля

    Если провести опыт с соленоидом, который соединен с баллистическим гальванометром, то при включении тока в соленоиде можно определять значение магнитного потока Ф, который будет пропорционален отбросу стрелки гальванометра. Проведем опыт дважды, причем ток (I) в гальванометре установим одинаковый, но в первом опыте соленоид будет без сердечника, а во втором опыте, перед тем как включить ток, введем в соленоид железный сердечник. Обнаруживается, то, что во втором опыте магнитный поток существенно больше, чем в первом (без сердечника). При повторении опыта с сердечниками разной толщины, получается, максимальный поток получается в том случае, когда весь соленоид заполнен железом, то есть обмотка плотно навита на железный сердечник. Можно провести опыт с разными сердечниками. В результате получается, что:

    где $Ф$ -- магнитный поток в катушке с сердечником, $Ф_0$ -- магнитный поток в катушке без сердечника. Увеличение магнитного потока при введении в соленоид сердечника объясняется тем, что к магнитному потоку, который создает ток в обмотке соленоида, добавился магнитный поток, создаваемый совокупностью ориентированных амперовых молекулярных токов. Под влиянием магнитного поля молекулярные токи ориентируются, и их суммарный магнитный момент перестает быть равным нулю, возникает дополнительное магнитное поле.

    Определение

    Величину $\mu $, которая характеризует магнитные свойства среды, называют магнитной проницаемостью (или относительной магнитной проницаемостью).

    Это безразмерная характеристика вещества. Увеличение потока Ф в $\mu $ раз (1) означает, что магнитная индукция $\overrightarrow{B}$ в сердечнике во столько же раз больше, чем в вакууме при том же токе в соленоиде. Следовательно, можно записать, что:

    \[\overrightarrow{B}=\mu {\overrightarrow{B}}_0\left(2\right),\]

    где ${\overrightarrow{B}}_0$ -- магнитная индукция поля в вакууме.

    Наряду с магнитной индукцией, которая является основной силовой характеристикой поля, используют такую вспомогательную вектор ную величину как напряженность магнитного поля ($\overrightarrow{H}$), которая связана с $\overrightarrow{B}$ следующим соотношением:

    \[\overrightarrow{B}=\mu \overrightarrow{H}\left(3\right).\]

    Если формулу (3) применить к опыту с сердечником, то получим, что в отсутствии сердечника:

    \[{\overrightarrow{B}}_0={\mu }_0\overrightarrow{H_0}\left(4\right),\]

    где $\mu $=1. При наличии сердечника мы получаем:

    \[\overrightarrow{B}=\mu {\mu }_0\overrightarrow{H}\left(5\right).\]

    Но так как выполняется (2), то получается, что:

    \[\mu {\mu }_0\overrightarrow{H}={\mu м}_0\overrightarrow{H_0}\to \overrightarrow{H}=\overrightarrow{H_0}\left(6\right).\]

    Мы получили, что напряженность магнитного поля не зависит от того, каким однородным веществом заполнено пространство. Магнитная проницаемость большинства веществ около единицы, исключения составляют ферромагниетики.

    Магнитная восприимчивость вещества

    Обычно вектор намагниченности ($\overrightarrow{J}$) связывают с вектором напряженности в каждой точке магнетика :

    \[\overrightarrow{J}=\varkappa \overrightarrow{H}\left(7\right),\]

    где $\varkappa $ -- магнитная восприимчивость, безразмерная величина. Для неферромагнитных веществ и в не больших полях $\varkappa $ не зависит от напряженности, является скалярной величиной. В анизотропных средах $\varkappa $ является тензором и направления $\overrightarrow{J}$ и $\overrightarrow{H}$ не совпадают.

    Связь между магнитной восприимчивостью и магнитной проницаемостью

    \[\overrightarrow{H}=\frac{\overrightarrow{B}}{{\mu }_0}-\overrightarrow{J}\left(8\right).\]

    Подставим в (8) выражение для вектора намагниченности (7), получим:

    \[\overrightarrow{H}=\frac{\overrightarrow{B}}{{\mu }_0}-\overrightarrow{H}\left(9\right).\]

    Выразим напряженность, получим:

    \[\overrightarrow{H}=\frac{\overrightarrow{B}}{{\mu }_0\left(1+\varkappa \right)}\to \overrightarrow{B}={\mu }_0\left(1+\varkappa \right)\overrightarrow{H}\left(10\right).\]

    Сравнивая выражения (5) и (10), получим:

    \[\mu =1+\varkappa \left(11\right).\]

    Магнитная восприимчивость может быть как положительной так и отрицательной. Из (11) следует, что магнитная проницаемость может быть как больше единицы, так и меньше нее.

    Пример 1

    Задание: Вычислите намагниченность в центре кругового витка радиуса R=0,1 м с током силой I=2A, если он погружен в жидкий кислород. Магнитная восприимчивость жидкого кислорода равна $\varkappa =3,4\cdot {10}^{-3}.$

    За основу решения задачи примем выражение, которое отражает связь напряженности магнитного поля и намагниченности:

    \[\overrightarrow{J}=\varkappa \overrightarrow{H}\left(1.1\right).\]

    Найдем поле в центре витка с током, так как намагниченность нам необходимо вычислит в этой точке.

    Выберем на проводнике с током элементарный участок (рис.1), в качестве основы для решения задачи используем формулу напряженности элемента витка с током:

    где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направлением тока), $\vartheta$ -- угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Исходя из рис. 1 $\vartheta=90{}^\circ $, следовательно (1.1) упростится, кроме того расстояние от центра окружности (точки, где мы ищем магнитное поле) элемента проводника с током постоянно и равно радиусу витка (R), следовательно имеем:

    Результирующий вектор напряженности магнитного поля направлен по оси X, его можно найти как сумму отдельных векторов$\ \ \overrightarrow{dH},$ так как все элементы тока создают в центре вика магнитные поля, направленные вдоль нормали витка. Тогда по принципу суперпозиции полную напряженность магнитного поля можно получить, если перейти к интегралу:

    Подставим (1.3) в (1.4), получим:

    Найдем намагниченность, если подставим напряженность из (1.5) в (1.1), получим:

    Все единицы даны в системе СИ, проведем вычисления:

    Ответ: $J=3,4\cdot {10}^{-2}\frac{А}{м}.$

    Пример 2

    Задание: Вычислите долю суммарного магнитного поля в вольфрамовом стержне, который находится во внешнем однородном магнитном поле, которую определяют молекулярные токи. Магнитная проницаемость вольфрама равна $\mu =1,0176.$

    Индукцию магнитного поля ($B"$), которая приходится на долю молекулярных токов, можно найти как:

    где $J$ -- намагниченность. Она связана с напряженностью магнитного поля выражением:

    где магнитную восприимчивость вещества можно найти как:

    \[\varkappa =\mu -1\ \left(2.3\right).\]

    Следовательно, магнитное поле молекулярных токов найдем как:

    Полное поле в стержне вычисляется в соответствии с формулой:

    Используем выражения (2.4) и (2.5) найдем искомое соотношение:

    \[\frac{B"}{B}=\frac{{\mu }_0\left(\mu -1\right)H}{\mu {\mu }_0H}=\frac{\mu -1}{\mu }.\]

    Проведем вычисления:

    \[\frac{B"}{B}=\frac{1,0176-1}{1,0176}=0,0173.\]

    Ответ:$\frac{B"}{B}=0,0173.$

    Магнитная проницаемость. Магнитные свойства веществ

    Магнитные свойства веществ

    Подобно тому, как электрические свойства вещества характеризуются диэлектрической проницаемостью, магнитные свойства вещества характеризуются магнитной проницаемостью.

    Благодаря тому, что все вещества, находящиеся в магнитном поле, создают собственное магнитное поле, вектор магнитной индукции в однородной среде отличается от вектора в той же точке пространства в отсутствие среды, т. е. в вакууме.

    Отношение называется магнитной проницаемостью среды.

    Итак, в однородной среде магнитная индукция равна:

    Величина m у железа очень велика. В этом можно убедиться на опыте. Если вставить в длинную катушку железный сердечник, то магнитная ин­дукция, согласно формуле (12.1), увеличится в m раз. Сле­довательно, во столько же раз увеличится поток магнитной индукции. При размыкании цепи, питающей намагничи­вающую катушку постоянным током, во второй, небольшой катушке, намотанной поверх основной, возникает индукцион­ный ток, регистрируемый гальванометром (рис. 12.1).

    Если в катушку вставлен железный сердечник, то отклоне­ние стрелки гальванометра при размыкании цепи будет в m раз больше. Измерения показывают, что магнитный поток при внесении в катушку железного сердечника может увеличиться в тысячи раз. Следовательно, магнитная проницаемость железа огромна.

    Существует три основных класса веществ с резко разли­чающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

    Ферромагнетики

    Вещества, у которых, подобно железу, m >> 1, называются ферромагнетиками. Кроме железа, ферромагнетиками явля­ются кобальт и никель, а также ряд редкоземельных элемен­тов и многие сплавы. Важнейшее свойство ферромагнетиков – существование у них остаточного магнетизма. Ферромагнитное вещество может находиться в намагничен­ном состоянии и без внешнего намагничивающего поля.

    Железный предмет (например, стержень), как известно, втя­гивается в магнитное поле, т. е. перемещается в область, где магнитная индукция больше. Соответственно, он притягивает­ся к магниту или электромагниту. Это происходит потому, что элементарные токи в железе ориентируются так, что направ­ление магнитной индукции их поля совпадает с направлением индукции намагничивающего поля. В результате железный стержень превращается в магнит, ближайший полюс которого противоположен полюсу электромагнита. Противоположные же полюса магнитов притягиваются (рис. 12.2).

    Рис. 12.2

    СТОП! Решите самостоятельно: А1–А3, В1, В3.

    Парамагнетики

    Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле. Эти вещества называются парамагнитными . К их числу относятся некоторые ме­таллы (алюминий, натрий, калий, марганец, платина и др.), кислород и многие другие элементы, а также различные рас­творы электролитов.

    Так как парамагнетики втягиваются в поле, то линии ин­дукции создаваемого ими собственного магнитного поля и намагничивающего поля направлены одинаково, поэтому поле усиливается. Таким образом, у них m > 1. Но от единицы m от­личается крайне незначительно, всего на величину порядка 10 –5 ...10 –6 . Поэтому для наблюдения парамагнитных явлений требуются мощные магнитные поля.

    Диамагнетики

    Особый класс веществ представляют собой диамагне­тики , открытые Фарадеем. Они выталкиваются из магнит­ного поля. Если подвесить диамагнитный стерженек возле по­люса сильного электромагнита, то он будет отталкиваться от него. Следовательно, линии индукции созданного им поля на­правлены противоположно линиям индукции намагничиваю­щего поля, т. е. поле ослабляется (рис. 12.3). Соответственно у диамагнетиков m < 1, причем отличается от единицы на вели­чину порядка 10 –6 . Магнитные свойства у диамагнетиков вы­ражены слабее, чем у парамагнетиков.



    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ